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Quantum phase slips in Josephson junction rings
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We study quantum phase-slip (QPS) processes in a superconducting ring containing N Josephson junctions
and threaded by an external static magnetic flux �B . In such a system, a QPS consists of a quantum tunneling
event connecting two distinct classical states of the phases with different persistent currents [Matveev et al.,
Phys. Rev. Lett. 89, 096802 (2002)]. When the Josephson coupling energy EJ of the junctions is larger than the
charging energy EC = e2/2C, where C is the junction capacitance, the quantum amplitude for the QPS process
is exponentially small in the ratio EJ /EC . At given magnetic flux, each QPS can be described as the tunneling
of the phase difference of a single junction of almost 2π , accompanied by a small harmonic displacement of
the phase difference of the other N − 1 junctions. As a consequence, the total QPS amplitude νring is a global
property of the ring. Here, we study the dependence of νring on the ring size N , taking into account the effect of
a finite capacitance C0 to ground, which leads to the appearance of low-frequency dispersive modes. Josephson
and charging effects compete and lead to a nonmonotonic dependence of the ring’s critical current on N . For
N → ∞, the system converges either towards a superconducting or an insulating state, depending on the ratio
between the charging energy E0 = e2/2C0 and the Josephson coupling energy EJ .
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I. INTRODUCTION

One-dimensional Josephson junction chains (1D JJ chains)
have received considerable interest recently. Their use has
been proposed for the realization of a qubit topologically
protected against decoherence,1–6 for the realization of a
tunable parametric amplifier in narrow frequency ranges,7,8

for the realization of a fundamental current standard in
quantum metrology,9,10 and for designing controlled inductive
electromagnetic environments in quantum circuitry.11,12

Homogeneous JJ chains of infinite length have been
studied theoretically in the past.13–18 Such chains consist
of superconducting islands, separated by Josephson tunnel
junctions. In this paper, we consider JJ chains arranged in a
closed geometry (Fig. 1). The electrostatic interaction between
the metallic islands is modeled by a neighboring capacitance
C and by a local ground capacitance C0, with EC = e2/2C

and E0 = e2/2C0 the corresponding charging energies. Each
Josephson junction can sustain a maximum supercurrent
IJ = 2eEJ /h̄; this defines the Josephson coupling energy EJ .

Previous theoretical studies13–15 predicted a
superconductor-insulator phase transition when the ratio be-
tween the Josephson energy EJ and the characteristic charging
energy is reduced below a critical value. Bradley and Doniach
studied this phase transition for infinite JJ chains and for the
two extreme opposite cases when one of the two capacitances
is vanishing (C0 = 0 or C = 0).13 Korshunov investigated the
general case for arbitrary ratio C/C0.14,15 He found that the
critical value E

(c)
J of the Josephson energy at which the system

undergoes the phase transition equals to E
(c)
J = E0f (C/C0)

where f (x) is a smooth and regular function of order one. In
particular, for the case C0 = 0, we have E0 = ∞ = E

(c)
J and

the system is an insulator for any value of EJ in agreement with
the result of Bradley and Doniach.13 Subsequently, experimen-
tal studies of the finite-temperature behavior of the residual

resistance in long one-dimensional chains of SQUIDs reported
a phase transition when reducing the Josephson energy.19–23

The theoretical results reviewed so far were obtained in
the thermodynamic limit N → ∞. A first attempt to go
beyond this limit was undertaken by Matveev, Glazman, and
Larkin24 who studied quantum phase-slip (QPS) processes
in a superconducting nanoring containing a large, but finite
number of Josephson junctions. Here, a QPS consists of a
quantum tunneling between two distinct classical states of the
phases with different persistent currents circulating in the ring
at given magnetic flux.24 This is a collective process which
can be described as the tunneling of the phase difference
of a single junction by almost 2π , accompanied by a small
harmonic displacement of the phase difference of the other
N − 1 junctions (see Ref. 24 and the explanation in Sec. III B).
Quantum tunneling is possible due to the finite junction
capacitance,which plays the role of inertia.

Matveev et al. predicted a strong reduction of the maximum
critical current sustained by the ring with increasing ring size
N due to QPS processes. Recent experiments on flux-biased
rings containing a few Josephson junctions25 indeed reported
a remarkable suppression of the maximum supercurrent as
EJ /EC decreases, in agreement with the findings of Ref. 24.
In these devices, the effects of the capacitance to ground
could be neglected since the ring’s circumference was much
smaller than the screening length λ of the system, given
by λ = π

√
C/C0. However, it is expected that, for JJ rings

of intermediate circumference N � λ, the effects of the
capacitance to ground can no longer be ignored.

In this paper, we study a JJ ring of finite circumference and
threaded by an external magnetic flux �B (Fig. 1). Specifically,
we consider properties of the flux-dependent thermodynamic
persistent current. We go beyond the previous work of Matveev
et al.24 and we take into account the collective nature of a
QPS as well as the ground capacitance C0 for calculating
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FIG. 1. Schematic representation of a superconducting ring
threaded by a magnetic flux �B and containing N identical Josephson
junctions with a mutual capacitance C and a local ground capacitance
C0. EJ is the energy scale for the Josephson coupling. The variables
(ϕn,Qn) are, respectively, the condensate phase and the excess charge
of the nth superconducting island.

the QPS amplitude. We show that the interplay between the
finite value of the ratio C0/C and finite-size effects gives rise
to a nonmonotonic dependence of the low-energy properties
on N . We systematically discuss this interplay as well as
its consequences for the QPS amplitude for flux-biased rings
with arbitrary number N � 5. For shorter lengths, a detailed
numerical analysis was realized in Ref. 26.

We focus on the limit where the Josephson coupling energy
EJ dominates over the charging energies EC,E0, such that
the amplitude for QPS to occur is exponentially small in the
ratio EJ /EC . This fact allows us to focus on the analysis of a
single QPS event. Once the QPS amplitude is known, one can
calculate the ring’s low-energy spectrum as a function of the
external flux �B and hence obtain the maximum supercurrent
Imax that the ring can sustain.

II. QUALITATIVE DISCUSSION AND MAIN RESULTS

Our main results are summarized in Fig. 2, where we show
the dependence of Imax, scaled to the classical value Icl =
πIJ /N found in the absence of QPS processes, as a function
of N for two relevant situations: C0 = 0 and C/2.

As we will discuss in detail in the following, a QPS can
be described as a 2π (1 − 1/N) winding of the local phase
difference occurring on one of the junctions, accompanied by a
simultaneous small (harmonic) adjustment of the phases of the
other N − 1 junctions.24 In a first approximation, the winding
of the phase on one of the junctions can be characterized by
the amplitude for the quantum tunneling between two different
minima of the Josephson potential. It is given by24,27–29

ν0 = 4√
π

(
8E3

J EC

) 1
4 exp

(
−
√

8
EJ

EC

)
. (1)

The dynamics of the simultaneous small adjustment depends
crucially on the capacitance ratio C0/C.

Consider first the case C0 = 0 [Fig. 2(a)]. The other N − 1
junctions form a bath of dispersionless harmonic oscillators, all
having the same (plasma) frequency ωp = (8EJ EC)1/2/h̄. In
order to satisfy the constraint imposed by the flux threading the
ring at all times during the QPS process, the phase differences
for the N − 1 other junctions perform a small shift ∼1/N . This
adjustment gives rise to finite-size corrections for intermediate
ring circumferences N to the amplitude given by Eq. (1)
leading to a QPS amplitude ν0 → ν(N ). Since any junction
can act as a QPS center, the total QPS amplitude for the ring
is given by νring = Nν(N ).

In the limit N � 1, finite-size effects vanish and ν(N ) con-
verges to the constant ν0 so that νring increases with the length
and the maximum supercurrent Imax vanishes exponentially24

[see Fig. 2(a)]. The system becomes a perfect insulator at
N = ∞, in agreement with Refs. 13–15. On the other hand, we
find that the interplay between charging and Josephson effects
in finite systems leads to an enhancement of the effective
QPS amplitude ν(N ) with decreasing ring circumference N ,
ν(N ) ∼ ν0 exp[(EJ /EC)1/2/N ], thus reducing the maximum
supercurrent Imax. Consequently, the maximum supercurrent
Imax shows nonmonotonic behavior as a function of the ring
circumference N for sufficiently large values of the ratio
EJ /EC .

When the capacitance to ground C0 is restored, the N − 1
harmonic junctions interact directly between them. This
leads to the appearance of an ensemble of N − 1 dispersive
electrodynamics modes at frequencies below ωp, similar to
the ones found in a standard LC-transmission line.30,31 The
tunneling phase couples to these modes in much the same
way as a quantum particle to a harmonic bath in the Caldeira-
Leggett model.32 In particular, the low-frequency modes with
linear dispersion h̄ωk ∼ (8EJ E0)1/2πk/N give rise to a finite
friction for the QPS dynamics in the limit N = ∞.
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FIG. 2. (Color online) Schematic behavior of the maximum supercurrent Imax in 1D JJ rings as a function of N , scaled to the classical value
Icl, for different values of the ratio EJ /EC for (a) C0 = 0 and (b) C0 = C/2 (see also Figs. 8 and 11 for details).
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At finite N , the coupling with the low-frequency modes
strongly affects the QPS amplitude. Indeed, we find that
ν(N ) ∼ ν0/N

α for N � 1 where α ∝ (EJ /E0)1/2. Depending
on the value of α, νring = Nν(N ) ∼ N1−α either tends to zero,
when α � 1, or grows linearly, when α � 1, indicating that
the system either displays a superconducting or an insulating
behavior, as can be seen in Fig. 2(b). This behavior is
reminiscent of the dissipative phase transition33 occurring in
a single junction in an electromagnetic environment.14,15 For
intermediate ring sizes, finite-size effects occur, yielding a
nonmonotonic behavior of the maximum supercurrent in the
insulating regime, similar to what we find for the case C0 = 0.

The paper is structured as follows. In Sec. III, we
recall the model for a flux-biased 1D JJ ring as well
as the notion of QPS and the approximations involved to find
the ring’s flux-dependent quantum ground state and hence the
maximum supercurrent. In Sec. IV, we discuss the single QPS
approximation and we show how the system reduces to a model
similar to that of Caldeira and Leggett32 where one single
Josephson junction, the center of the QPS, is coupled to N − 1
harmonic oscillators. The results for the specific case C0 = 0
are shown in Sec. V, where we explain in detail the different
finite-size corrections on the QPS amplitude. The effect of the
finite ground capacitance C0 > 0 and the general results are
discussed in Sec. VI. In Sec. VII, we draw our conclusions.

III. MODEL

A. Hamiltonian

We consider a homogeneous ring of N identical super-
conducting islands each coupled to its nearest neighbor by
Josephson tunnel junctions (see Fig. 1). The ring is threaded
by a magnetic flux �B . We assume the superconducting gap
	 of the islands to be the largest energy scale involved in the
problem. If 	 � δE where δE is the average spacing of the
electronic energy levels, superconductivity is well established.
The islands should be metallic with large enough volume
so that the perturbative treatment of Cooper-pair tunneling
through the contacting surfaces is justified. We assume the ab-
sence of quasiparticle excitations at low temperature T and low
voltage kBT ,2eV̄ � 	, where V̄ is the typical voltage across
the junctions. Furthermore, the condition 	 � EC,E0 implies
that the Josephson coupling energy EJ characterizing Cooper-
pair tunneling between islands is independent of EC,E0.

We assume that the kinetic inductance, associated with
the kinetic energy of the Cooper pairs in each supercon-
ducting island, is negligible as compared to the Josephson
inductance.34,35 We also assume that the geometric inductance
can be neglected so that the current circulating in the ring does
not generate any magnetic field. The total flux �B is thus only
given by the externally applied magnetic field.

The previous conditions define the standard quantum-phase
model for a 1D JJ homogeneous chain whose Hamiltonian
reads as16

H = 1

2

N−1∑
n,m=0

Q̂n
¯̄C

−1
nmQ̂m

−EJ

N−1∑
n=0

cos

(
ϕ̂n+1 − ϕ̂n + 2π�B

N�0

)
, (2)

where �0 is the flux quantum. For each island, the BCS
condensate phase ϕ̂n and the excess charge Q̂n on the nth island
represent the conjugate variables of the system [ϕ̂n,Q̂n] = 2ei.
¯̄C is the capacitance matrix with matrix elements ¯̄Cn,m =
(C0 + 2C)δn,m − C(δn+1,m + δn−1,m), with the index n = −1
corresponding to N − 1 and n = 0 corresponding to N . The
relative phase difference across the nth junction is θ̂n = ϕ̂n+1 −
ϕ̂n. As the phases are compact variables, i.e., ϕ̂N = ϕ̂0 + 2πm

where m is an integer, we have the constraint on the phase
differences for Josephson junctions in a ring36

N−1∑
n=0

θ̂n = 2πm. (3)

Note that the argument of each cosine in Eq. (2) is the
gauge-invariant phase difference across the corresponding
junction.

From Eqs. (2) and (3), we see that the physical properties of
the system depend periodically on the ratio δ = 2π�B/�0. In
the steady-state regime, the dc supercurrent flowing through
the ring is the same for all the junctions 〈În〉 = I and can be
related to the derivative of the ground-state energy EGS of the
system with respect to δ:

I (δ) = ∂EGS

∂�B

=
(

2e

h̄

)
∂EGS

∂δ
. (4)

It is in general a difficult task to find the ground-state energy
EGS(δ) for the flux-biased ring described by Hamiltonians (2)
and (3). An approximate solution can be found in the limit
where the Josephson energy is larger than the characteristic
electrostatic energy EJ � EC,E0, which is the regime dis-
cussed in this paper.

B. Single QPS in JJ rings of finite circumference

To set the stage, let us first consider the classical limit,
achieved by setting EC = E0 = 0, so that the phases are well-
defined classical variables. The classical energy of the system
reduces to

Ecl = −EJ

N−1∑
n=0

cos

(
θn + δ

N

)
. (5)

The energy Eq. (5) is invariant under a change by 2π of
the phases θn. In other words, the states θn and θn + 2πk

are equivalent (k integer). However, at fixed magnetic flux δ,
a given configuration of {θn} corresponds to a real physical
state only if the constraint Eq. (3) is satisfied. Therefore, any
distribution of the phases that violates Eq. (3) is unphysical.

The classical states |m〉 that minimize the energy Eq. (5)
under the constraint (3) correspond to a uniform distribution
of phase differences θn = 2πm/N . They have energies

Em = −EJ N cos

(
2πm + δ

N

)
, (6)

with the condition d2Ecl/dθ2
n

∣∣
m

= −Em > 0 and the index
−(N − 1)/2 < m < (N − 1)/2 (N odd) or −N/2 < m <

(N/2) − 1 (N even). These classical states |m〉 are physically
distinguishable as they are characterized by different persistent
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currents

Im = IJ sin

(
2πm + δ

N

)
. (7)

Away from the degeneracy points δ = 0 and π they also have
different energies. The classical ground state corresponds to
an absolute minimum

E
(cl)
GS = −EJ N max

m
cos

(
2πm + δ

N

)

� EJ

2N
min

m
(2πm + δ)2, (8)

where the second, approximate equality is numerically accu-
rate for sufficiently long rings (N � 5). The corresponding
supercurrent then has as a sawtoothlike dependence as a
function of δ with a maximum supercurrent given by Icl �
πIJ /N .24

For finite C,C0, the electrostatic interaction acts as an
inertial term on the phases so that quantum fluctuations occur,
giving rise to quantum phase slips (QPSs). At fixed magnetic
flux and in a ring of finite circumference, the QPS is a
collective process corresponding to the quantum tunneling
in a multidimensional space of dimension N between two
distinct minima of the potential, corresponding for instance
to the classical states |m〉 and |m + 1〉, separated by some
energy barrier associated with the potential (5). In the
multidimensional space, the physical paths {θn} which connect
|m〉 and |m ± 1〉 correspond to a subspace defined by the
constraint (3). Due to this constraint, the multidimensional
tunneling reduces to one-dimensional tunneling in which we
have only a few trajectories connecting the initial and the final
states (see Fig. 3). As it was discussed in Ref. 24, an example
of QPS connecting the states |m〉 and |m + 1〉 is given by the
displacements

θn0 = 2πm

N
−→ 2π (m + 1)

N
− 2π, (9)

θn = 2πm

N
−→ 2π (m + 1)

N
(n �= n0), (10)

in which the local phase difference θn0 , n0 being the center of
the QPS, winds by an amount of 2π (1 + 1/N ) and the whole
set of phase differences {θn} (n �= n0) shifts in order to preserve
the constraint. Figure 3(a) shows this process. One can express
the classical energy Eq. (5) as Ecl/EJ = − cos(θn0 + δ/N) −
(N − 1) cos(θn + δ/N) with n �= n0 [Fig. 3(b)].

As it is shown in Fig. 3(b), the trajectory of the QPS
equations (9) and (10) can be drawn in a restricted, compact
zone scheme as well as in an extended one. This fact allows
us to introduce the adiabatic potential for the QPS process.
In the limit in which the evolution of the phases is extremely
slow, the kinetic energy can be neglected at any time and one
obtains the energy of the system just minimizing the classical
energy for each intermediate configuration which connects the
initial and the final states. Hence, the adiabatic potential is
associated with the line of minimum energy on the surface (5)
which connects the end points as shown in the example of
Fig. 3(b). This line is given by the condition

θn = 2πm − θn0

N − 1
(n �= n0). (11)

θn (n≠n0)

(b)

-2π -π 0 π 2π
θn0

π/2

-10

-8

-6

-4

-2

 0

 2

 4

 6

•

⊗ •

|m>

|m+1>

Ecl / EJ

(a)

FIG. 3. (Color online) Example of a QPS process. (a) The oval
loop represents the JJ ring. The arrows represent a few phase
differences {θn} around the QPS center at n0, the phase θn0 winding
of 2π (1 − 1/N ) (red arrow). The initial configuration (left) is the
state |m〉 and the final configuration (right) is |m + 1〉. The central
configuration is intermediate between the two states |m〉 and |m + 1〉.
(b) The classical energy expressed as Ecl/EJ = − cos(x) − (N − 1)
cos(y) with the axis x = θn0 − δ/N and y = θn − δ/N (n �= n0). The
dots represent the states |m〉 and |m + 1〉. The cross also represents
the state |m + 1〉 but in the extended zone scheme. The black lines
represent the physical trajectory of the QPS that connects the initial
and the final states, the (black) solid one in the restricted zone
scheme, the (red) dashed line in the extended zone scheme. The
bold line for the borders marks the compact region. Parameters:
N = 10, δ = π/2, m = 1.

After a shift of the phase θn0 → θn0 − δ/N , the effective
adiabatic potential Veff(θn0 ) reads as

Veff(θn0 )

= −EJ

[
cos(θn0 ) + (N − 1) cos

(
δ + 2πm − θn0

N − 1

)]

� EJ

[
− cos(θn0 ) +

(
δ + 2πm − θn0

)2

2(N − 1)

]
, (12)

where the second, approximate equality is valid for sufficiently
long rings (N � 5). At the initial time, we have Veff[θn0 =
(δ + 2πm)/N ] = Em and at the final time Veff{θn0 = 2π +
[δ + 2π (m + 1)]/N} = Em+1. In Fig. 4, we show Veff(θn0 ).

In the limit of N → ∞, we have Veff(θn0 ) = −EJ cos(θn0 )
and we recover the simplified picture of QPS corresponding
to the quantum tunneling of the phase difference θn0 of a given
junction n0 from one minimum of the local Josephson potential
− cos(θn0 ) to the neighboring one.

On the other hand, as we explained above, QPS is a
collective process corresponding to a quantum tunneling in a
multidimensional space with the constraint (3). Consequently,
the potential in terms of the variable θn0 , the center of the QPS,
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FIG. 4. (Color online) Example of the effective potential Veff (θn0 )
[Eq. (12)] for N = 10 and for the values δ = 0 solid (red) line,
δ = π/2 dashed (purple) line, and δ = π dotted (blue) line. Inset:
comparison between the effective potential at δ = π [dotted (blue)
line], with the cosine potential E∗

J cos[θn0 (N − 1)/N ] [solid line
(see text)].

is not a periodic function although the global classical energy
of the system Eq. (5) is 2π periodically invariant.

C. Effective low-energy description

We now turn to the effects of quantum phase fluctuations
in the limit EJ � EC,E0. In this case, a simple analysis is
possible since the QPS processes occur only rarely, with an
exponentially small amplitude ν [Eq. (1)]. The single QPS
approximation is further analyzed in Secs. VI D and VI E,
where we estimate its range of validity.

As a consequence of QPSs and for small amplitude ν,
the quantum ground state |GS〉 of the ring corresponds to
a superposition of different classical states of the phases,
namely, |GS〉 = ∑

m cm|m〉. The coefficients cm as well as
the quantum ground-state energy EGS(δ) can be obtained from
the following effective Schrödinger equation:24

Emcm − νring(cm+1 + cm−1) = EGS cm, (13)

where the term proportional to νring ≡ Nν connects two
classical states differing by a single QPS. The factor N takes
into account the fact that a QPS can have the center in
any junction of the chain and this corresponds to different
trajectories in the multidimensional space N so that QPS am-
plitudes add up coherently. This coherence has been recently
confirmed experimentally in a short 6-SQUID JJ chain37 by
the measurements of the Aharonov-Casher interference effect.
The coherence is affected by offset charge dynamics. The
details of this dynamics are currently not understood. It is
expected to give rise to an additional dependence of ν on N

which is beyond the scope of this paper.
The behavior of the general solution for the ground state

of the model given by Eq. (13) is determined by only one
dimensionless parameter

q = N2ν(N )

2π2EJ

. (14)

 0
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I max / Icl
 

δmax / π

FIG. 5. (Color online) Maximum supercurrent (solid line) for the
model defined by Eq. (13) as a function of q [Eq. (14)]. The dashed
line represents the value of the scaled flux δmax which gives the
maximum supercurrent.

The ground-state energy EGS = EGS(δ; q) depends paramet-
rically on q, hence leading to a dependence of the maximum
supercurrent Imax(q) on the QPS amplitude ν. This dependence
is illustrated in Fig. 5 together with the evolution of the value
of the phase δmax that corresponds to the maximum. For q � 1,
the solution scales as Imax/Icl � 1 − (5/2)q2/3, whereas it
scales as Imax/Icl � 24

√
πq4/3 exp(−8

√
q) for q � 1.

The effective low-energy theory defined by (13) was
introduced in Ref. 24 for C0 = 0 and was discussed for
long JJ rings N � 1. As we discussed in Sec. III B, the
validity of Eq. (13) extends more generally to include rings
of intermediate size and with C0 �= 0. In the following, we
will obtain the detailed dependence of the QPS amplitude νring

on the parameters N , EJ ,EC , and E0. Hence, we calculate the
ground-state energy of the system using Eq. (13) to obtain the
periodic dependence of EGS(δ) and I (δ) on δ [Eq. (4)] from
which we extract Imax.

IV. QPS IN 1D JJ RING

A. General approach for a single QPS event

We present a general approach to calculate the quantum
amplitude ν for a single QPS event occurring on a ring
containing N junctions and with mutual and ground capac-
itance C and C0, in the regime EJ � EC,E0. According to
Eqs. (9) and (10), the QPS process is a collective process in
which the local phase difference θn0 winds by an amount of
2π (1 − 1/N ), accompanied by a shift of the whole set of phase
differences {θn} (n �= n0). For rings of circumference N � 5,
the phase differences of the other junctions will vary only
slightly 	θn ∼ 1/N compared to the period 2π of the cosine
potential. Hence, we can apply the harmonic approximation to
describe the dynamics corresponding of θn, n �= n0.

For vanishing ground capacitance C0 = 0, the phase differ-
ences of the other N − 1 junctions behave as independent LC
oscillators at the plasma frequency ωp whose displacement is
inversely proportional to the circumference N . Thus, in the
limit of a very large ring N � 1, the dynamics of the other
N − 1 phase differences can be neglected24 so that the QPS
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amplitude ν(N ) can be approximated by the N -independent
constant value ν0 [Eq. (1)]. However, for 1D JJ rings of finite
circumference, the dynamics of the other junctions can have
considerable effects on ν, as we will show in the following.
Moreover, for finite ground capacitance C0 > 0, the harmonic
oscillations of the phase differences of the N − 1 junctions
play a crucial role for any ring’s circumference.

To calculate the QPS amplitude ν, we start by considering
the partition function associated with the Hamiltonian (2), with
the constraint (3). In the path-integral formalism, it reads as
(β = h̄/kBT )

Z = Tr
[
e− β

h̄
Ĥ
] =

N−1∏
n=0

∮
D[ϕn(τ )] e−S/h̄, (15)

where the Euclidean action for the phases {ϕn(τ )} reads as
S = ∫ β

0 dτL, and L is the Lagrangian

L =
N−1∑
n=0

h̄2C0

8e2
ϕ̇2

n +
N−1∑
n=0

h̄2C

8e2
(ϕ̇n+1 − ϕ̇n)2

−
N−1∑
n=0

EJ cos

(
ϕn+1 − ϕn + δm

N

)
, (16)

with ϕ̇n = dϕ/dτ and δm = δ + 2πm. The compact variables
{ϕn} are defined on the circle [0; 2π [. Notice that we shifted
the phase differences {θn} with respect to their average value
so that Eq. (3) now reads as

∑N−1
n=0 θn = 0. The last constraint

is automatically satisfied by imposing the boundary condition
ϕN = ϕ0.

B. Harmonic modes

Let us briefly discuss the behavior of the system in
the harmonic approximation, neglecting the QPS. When the
Josephson energy EJ � EC,E0 the phases fluctuate only
slightly around their classical values. The average phase
difference between the neighboring islands is small so that
we can expand the Josephson interaction to lowest (quadratic)
order. The general imaginary-time Lagrangian (16) then
reduces to the harmonic one

L(N)
har =

N−1∑
n=0

h̄2C0

8e2
ϕ̇2

n +
N−1∑
n=0

h̄2C

8e2
(ϕ̇n+1 − ϕ̇n)2

+
N−1∑
n=0

1

2
EJ (ϕn+1 − ϕn)2 + EJ

2N
δ2
m, (17)

where we omitted an irrelevant constant term. Any periodic
function ϕn defined on the finite lattice n = 0, . . . ,N − 1 can
be decomposed as

ϕn = 1√
N

N−1∑
k=0

ϕke
i 2π

N
kn, (18)

with the condition for the complex variables ϕN−k = ϕ∗
k which

preserves the total number of degrees of freedom. Substituting
Eq. (18) into (17) and summing over the index n, the harmonic

 0
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ω
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/ 
ω

p

k / N
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FIG. 6. (Color online) Frequency dispersion of the harmonic
modes in a JJ ring of N = 100 junctions. We use the equivalent
index notation k = −N/2 + 1, . . . ,N/2. Solid (purple) line, dashed
(blue) line, and dotted (red) line are, respectively, for the ratio
C/C0 = 0.1,1,100.

Lagrangian is diagonalized (see also Appendix A):

L(N)
har =

N−1∑
k=0

(
1

2
μk|ϕ̇k|2 + 1

2
μkω

2
k |ϕk|2

)
+ EJ

2N
δ2
m. (19)

We have introduced the constants

μk = h̄2

4e2

{
C0 + 2C

[
1 − cos

(
2π

N
k

)]}
; (20)

the frequency dispersion is given by

ωk = ωp

√√√√ 1 − cos
(

2πk
N

)
1 − cos

(
2πk
N

) + π2

2λ2

, (21)

where the screening length is λ = π
√

C/C0. For N � 1, the
maximal frequency of the modes ωmax is given by

ωmax = 4

√
EJ

h̄2

(
e2

4C + C0

)
. (22)

An example of this frequency dispersion is given in Fig. 6.
We can distinguish two regimes for C0 > 0. For JJ rings
longer than the screening length λ, N � λ, the spectrum has a
linear dispersion for low frequencies. For shorter rings N � λ,
the lowest mode appears almost at the plasma frequency ωp

and the linear behavior is completely absent. For the case
C0 = 0, we recover a flat distribution where all the modes are
degenerate and correspond to the plasma frequency ωp.

Let us calculate the phase-dependent ground-state energy
E

(har)
GS (δ) in the harmonic approximation. The path integral

in Eq. (15) can be explicitly calculated for the diagonalized
harmonic action (19). We obtain

Z (N)
har ∼

⎛
⎝∏

k �=0

1

2 sinh (βωk/2)

⎞
⎠ e− βEJ

2h̄N
minm δ2

m, (23)

where the product corresponds to the partition function for
an ensemble of N − 1 independent harmonic oscillators and
the exponential factor contains the classical energy of the
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system (mod 2π ) at finite temperature. Notice that the zero-
frequency mode k = 0 is not involved in the relevant part of
the partition function. Note also the periodicity of the result
(23) with respect to δ. The quadratic dependence on δ in
each of the segment −π + 2πm < δ < −π + 2π (m + 1) is
a consequence of the harmonic approximation, i.e., Eq. (8).

We thus obtain the phase-dependent ground-state energy
E

(har)
GS = − limβ=∞(h̄/β) lnZ (N)

har :

E
(har)
GS =

∑
k �=0

h̄ωk

2
+ EJ

2N
min

m
δ2
m. (24)

Notice that to reach the full quantum regime of the har-
monic modes, as expressed by Eq. (24), the temperature
has to be much smaller than the energy of the lowest mode
kBT � h̄ωmin, which is given by

ωmin = ωmax
π

N

√√√√1 + (
2λ
π

)2

1 + (
2λ
N

)2 . (25)

We conclude that, in the absence of QPS processes, the JJ
ring forms a closed quantum LC line (each Josephson junction
in Fig. 1 is replaced by an inductance LJ = h̄2/4e2EJ )
formed by N − 1 independent harmonic oscillators with
eigenfrequencies ωk . The classical sawtooth relation between
the supercurrent and the total phase I = I (δ) is unmodified
by the quantum harmonic fluctuations of the phases. However,
harmonic fluctuations are relevant when the QPSs are restored,
as we will now show.

C. Effective QPS action in the presence of harmonic modes

We now turn our attention to the effect of the harmonic
modes on the QPS amplitude. We will restrict our analysis to
the limit in which the frequency of the lowest mode ωmin is
greater than the frequency ν/h̄ associated to the tunneling in
the effective (static) potential Veff [Eq. (12)]. In this adiabatic
limit, the problem can be reduced to an effective two-state
problem involving tunneling between neighboring states m

and m + 1 (see also Sec. VI E).
As discussed in Sec. III B, when a single QPS is centered on

one specific junction n0, the dynamics of the other junctions
(n �= n0) is well described by the harmonic approximation.
Then, as seen in Sec. IV B, we can consider this part of the
ring as an electromagnetic environment formed by N − 1
independent harmonic oscillators and to which the single
junction, center of the QPS process, is coupled. Accordingly,
it is natural to cast the full action in a form where the winding
phase difference θn0 is linearly coupled to an ensemble of
harmonic oscillators acting as an external bath.

Without loss of generality, one can assume the center of
the QPS to the junction n0 = N − 1, namely, θ = θN−1 =
ϕ0 − ϕN−1. It is useful to introduce the average value of the
phase at the junction N − 1, namely, �0 = (ϕ0 + ϕN−1)/2, so
that one can write

ϕ0 = �0 + θ

2
, ϕN−1 = �0 − θ

2
. (26)

We choose as the relevant variables the set S given by the
winding phase difference difference θ together with the local
phases ϕn with n = 1, . . . ,N − 2.

First, we discuss the harmonic expansion of the potential
energy of the Lagrangian (16). In a QPS, the phase differences
across the junctions remain small with respect to 2π except at
the junction n0 = N − 1:

N−1∑
n=0

cos

(
θn + δm

N

)
� cos

(
θ + δm

N

)

− 1

2

N−2∑
n=0

(
θn + δm

N

)2

. (27)

Using the set S, the last sum in Eq. (27) contains a
quadratic coupling between θ and the quantities �0 − ϕ1

and �0 − ϕN−2. Although these terms contain θ varying by
almost 2π , this does not make invalid our expansion as the
overall argument of the cosine function, representing the
phase difference in the neighboring junctions n = 0 and N − 2
remains small during the QPS.

Using the set S, the Lagrangian of Eq. (16) is decomposed
as

L = L1 + L2 + L3, (28)

where the first term L1 is associated with the winding junction

L1 = h̄2(3C + C0)

16e2
θ̇2 − EJ cos

(
θ + δm

N

)

+ EJ

(
θ2

4
− θ

δm

N

)
. (29)

The second term L2 describes the environment to which θ is
coupled. Hereafter, we change the notation for the average

�0 → ϕ0 (30)

in order to simplify the following formulas. Then, L2 reads as

L2 = h̄2C0

8e2
ϕ̇2

0 +
N−2∑
n=0

h̄2

8e2

[
C0ϕ̇

2
n + C(ϕ̇n+1 − ϕ̇n)2

]

+
N−2∑
n=0

1

2
EJ (ϕn+1 − ϕn)2 + EJ (N − 1)

(
δm

N

)2

, (31)

with the periodic boundary condition n = 0 corresponding to
n = N − 1. Note the extra term in Eq. (31) associated with
the (average) phase at n = 0. The last term L3 of Eq. (28)
describes the coupling between the winding junction and the
electromagnetic environment,

L3 = h̄2C

8e2
(ϕ̇N−2 − ϕ̇1) θ̇ + EJ

2
(ϕN−2 − ϕ1) θ. (32)

We rewrite the Lagrangians L2 and L3 in terms of the normal
modes ϕk . They are given by Eq. (18) with N replaced by
N − 1. In terms of these modes, we have

L2 = h̄2C0

8e2
ϕ̇2

n=0 + L(N−1)
har + EJ

2
δ2
m

(
N − 2

N (N − 1)

)
, (33)

where L(N−1)
har is defined by Eqs. (19), (20), and (21) in which

we have to replace N by N − 1. Then, from Eq. (32), one can
see that the phase θ is coupled only to the imaginary part of
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the modes ϕk = ϕR
k + iϕI

k (see Appendix A):

L3 =
kmax∑
k=1

ζk

(
h̄2C

8e2
ϕ̇I

k θ̇ + EJ

2
ϕI

k θ

)
, (34)

where kmax = (N − 3)/2 for N odd and kmax = (N − 2)/2 for
N even. We have introduced the factor ζk:

ζk = 4 sin [2πk/(N − 1)] /(N − 1)1/2. (35)

Notice that the mode k = 0 is not coupled to the winding
phase θ and we can omit it hereafter. The partition function
associated with the total Lagrangians (28), (29), (33), and (34)
reads as

Z ∼
∮

D[θ (τ )]
kmax∏
k=1

∮
D
[
ϕI

k (τ )
]
e− 1

h̄

∫ β

0 dτ (L1+L2+L3). (36)

It is possible to integrate out the imaginary parts of the N − 2
harmonic modes to obtain a single effective action describing
the dynamics of θ . After the calculation, shown in Appendix A,
we find

Z ∼ Z (N−2)
har

∮
D [θ (τ )] e−Seff [θ(τ )], (37)

where Z (N−2)
har is given by Eq. (23) with N − 1 replacing N .

After a shift of the phase θ → θ − δm/N , the effective action
for the phase θ is given by

Seff =
∫ β

0
dτ

[
h̄2

8e2

(
NC

N − 1
+ C0

2

)
θ̇2

−EJ cos(θ ) + EJ (δm − θ )2

2(N − 1)

]

+ 1

2

∫ β

0
dτ

∫ β

0
dτ ′ G(τ − τ ′)θ (τ )θ (τ ′). (38)

The effective action has a kernel G(τ ) which is nonlocal
in time and whose Fourier series is given by G(τ ) =∑

�(1/β)G� exp(iω�τ ) where ω� = 2π�/β are bosonic
Matsubara frequencies and G� reads as

G� = h̄2C0

4e2

[
ω2

�

2(N − 1)

] kmax∑
k=1

1 + cos
(

2πk
N−1

)
1 − cos

(
2πk
N−1

) + π2

2λ2

(
ω2

�

ω2
�+ω2

p

) .

(39)

The kernel has the relevant property G� = 0 for �= ω� = 0. The
last relation is equivalent to

∫ β

0 dτ G(τ − τ ′) = ∫ β

0 dτ ′ G(τ −
τ ′) = 0. As a consequence, this term is invariant under a shift
of the winding phase θ → θ + const. In other words, upon a
proper redefinition of G(ω) = ω2G′(ω), this (kinetic) term can
be written as ∼ G′(τ − τ ′)θ̇ (τ )θ̇(τ ′).

We observe that the potential in the first line of Seff in
Eq. (38) corresponds exactly to the adiabatic potential Veff(θ )
[Eq. (12)] introduced in Sec. III B. This potential breaks
formally the periodicity in θ in the action. This symmetry
breaking is a consequence of the fact that the QPS is a
quantum tunneling in a multidimensional space with the
constraint imposed by the magnetic flux threading the JJ ring
(see discussion in Sec. III B).

In summary, Eqs. (37), (38), and (39) constitute the
central result of this paper. They enable us to calculate
the size-dependent QPS amplitude ν(N ) and hence the

phase-dependent ground-state energy and the ring’s maximum
supercurrent Imax in a broad range of values of the parameters
N, EJ , EC , and E0, as we will show in detail below. However,
we first establish a relation with previous work14,15 on infinitely
long chains by considering the thermodynamic limit.

D. Thermodynamic limit and the dissipative dynamics

The effective action (38) describes the single winding junc-
tion coupled to its electromagnetic environment constituted
by the other N − 2 junctions in the harmonic approximation.
This action is very similar to the one describing the dissipative
dynamics of the single Josephson junction in the framework of
the Caldeira-Leggett model.32 In this model, an abstract bath
formed by an infinite number of harmonic oscillators is phe-
nomenologically introduced as the mechanism of irreversible
loss of energy in the Josephson junction.

The external bath discussed here, expressed by the kernel
G(τ ) in Eq. (39), physically corresponds to the real harmonic
modes sustained by the Josephson junction ring. These discrete
modes can be experimentally designed and tested.12 As long
as the ring has finite size, there are a finite number of discrete
modes and no real dissipation occurs. We also note that the
interaction between the winding local phase difference at the
junction n0 and these N − 2 harmonic modes is characterized
by a linear coupling through the positions of the oscillators
ϕk as well as through their velocities ϕ̇k [see Eq. (34)]. As we
will show now, the difference between the system described
by Eqs. (38) and (39) and the standard Caldeira-Leggett model
disappears in the limit N = ∞.

Let us consider Eqs. (38) and (39). Taking the limit N → ∞,
the first term on the right-hand side of Eq. (38) reduces to the
action for a single capacitively shunted Josephson junction
with a capacitance C + C0/2. Equation (39) for the kernel G�

then takes a simple form by replacing the sum with an integral.
Proceeding in this way, we add the kinetic term of the first line
of Eq. (38) to G� to recover Korshunov’s result for the total
kernel γ (ω�) of a QPS in a chain of infinite length38

γ (ω�) = h̄2

4e2
ω2

�

(
C + C0

2

)
+ G�

= EJ

(
ω2

�

ω2
max

)
+ h̄ω�

4

√
EJ

2E0

√
1 + ω2

�

ω2
max

, (40)

where ωmax is defined in Eq. (22). The effective action now
reads as

Seff =
∫ β

0
dτ

∫ β

0
dτ ′ 1

2
γ (τ − τ ′)θ (τ )θ (τ ′)

−
∫ β

0
dτEJ cos[θ (τ )]. (41)

First, let us discuss the high- and low-energy regions for
the dynamics of the winding phase difference θ in the cosine
Josephson potential. These two regions are separated by the
condition that the kinetic energy be respectively larger or
smaller than the height of the potential ∼EJ . To estimate the
kinetic energy, we determine the effective capacitance of the
junction. This can be achieved by taking the limit ω� → ∞.
Then, the kernel γ (ω�) [Eq. (40)] corresponds simply to a pure
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capacitance

γ (ω�) � (h̄ω�)2

4e2

[
C + C0

4
+
√

C0

4

(
C + C0

4

)]
. (42)

The kinetic energy corresponds to the height of the potential
barrier when γ (ω�) = EJ , giving the threshold ω� = ωmax.
For ω� > ωmax, the cosine Josephson potential is a small
perturbation for the dynamics θ . On the contrary, the range
ω� < ωmax corresponds to the energy region where the winding
phase θ moves well within a potential minimum. In the absence
of the interaction with the modes, its dynamics is harmonic.

The threshold ωmax separates the low- and high-frequency
parts of the kernel γ [Eq. (40)]. As we have explained, the
high-frequency component ω� > ωmax scales approximately
as γ (ω�) ∼ ω2

� and the chain behaves as a pure capacitance.
On the other hand, approaching the zero frequency, γ (ω�)
scales linearly. In a Josephson junction with dissipation, this
behavior corresponds to the effect of an external resistance
R leading to a dimensionless damping parameter η = Rq/R

(Ref. 39) where Rq = h̄/4e2. In our model, for N = ∞, this
resistance corresponds to R = (LJ /C0)1/2, the characteristic
low-frequency impedance of the chain related to linear
dispersion of the modes.

It is interesting to observe that in the standard Caldeira-
Leggett model, the two energy scales (the first one related to
the ratio between the height of the potential and the kinetic
energy and the second one related to the high-energy cutoff
for the dissipation) are generally different as the latter is
determined by the specific electromagnetic environment to
which the junction is coupled.

Defining the relaxation time τr = RC, we can calculate the
quality factor given by the ratio between the oscillation period
and the relaxation time Q = 2π/(ωpτr ) = 2π (C/C0)1/2. In
infinite Josephson junction chains, the underdamped regime
Q � 1 corresponds thus to C � C0.

V. RESULTS: VANISHING GROUND CAPACITANCE

We now go beyond the thermodynamic limit and discuss
finite-size effects for a ring in the limit C0 = 0. The nonlocal
kernel then vanishes, G� = 0, and the effective Lagrangian
from Eq. (38) reduces to

Leff =
(

N

N − 1

)
h̄2C

8e2
θ̇2 − EJ cos(θ ) + EJ (δm − θ )2

2(N − 1)
.

(43)

This result has a simple interpretation. Let us write the total
Lagrangian (28), with C0 = 0 in terms of the phase differences
θn,

L = h̄2C

8e2
θ̇ − EJ cos(θ ) +

N−1∑
n=1

(
h̄2C

8e2
θ̇n + EJ

2
θ2
n

)
. (44)

We observe that the phases {θn} are not coupled explicitly
to the tunneling phase θ . But, the total phase difference is
fixed

∑
n θn + θ = δm which enforces an implicit interaction

between them. In case of identical phase differences θn for all

N − 1 junctions, we have

θn = δm − θ

N − 1
, θ̇n = − θ̇

N − 1
. (45)

By inserting Eq. (45) in the action (44), we obtain the effective
action (43). Clearly, in the limit N → ∞ finite-size corrections
vanish and we recover the simple action for the single JJ.

A finite value for N first of all modifies the kinetic term. The
constraint-induced coupling to the other junctions increases
the inertial mass C∗/C of the single phase performing an
almost complete winding, leading to a reduction of the
charging energy,

C∗

C
= N

N − 1
,

E∗
C

EC

= 1 − 1

N
. (46)

This causes a reduction of the QPS amplitude.
On the other hand, as we can see from Eq. (43), the

action of the phase θ involves the effective adiabatic potential
Veff(θ )/EJ = 1 − cos θ + (δ − θ )2/(N − 1)/2 (see Fig. 4),
which is not purely sinusoidal and depends on N , leading
to additional finite-size corrections.

Before discussing these corrections, we note that for short
rings, the effective potential can have only one minimum for
arbitrary value of δ. This is the case, for instance, when δ = 0
for N < 5. In this regime, the harmonic approximation fails
too. Focusing on lengths longer than N � 5, the potential
has always two minima for which the QPS process is well
defined.

Due to the periodicity in δm and the symmetry in
(δm ↔ −δm) for the quantum ground state of the system,
we can restrict our discussion to values of δ between 0
and π (m = 0). In this case, the relevant tunneling process
corresponds to an increase of the variable θ . The two positions
corresponding to the two minima of the effective potential
are, respectively, θl = δ/N and θr = 2π + (δ − 2π )/N , with
the energies Veff(θl) and Veff(θr ), which correspond to the two
classical energies associated with the initial and the final states
before and after a QPS, respectively.

A. Symmetric effective potential (q < 1)

For small values of the parameter q [Eq. (14)], the hopping
term is small [Eq. (13)]. The QPS process couples mainly
two neighboring classical states |m〉 and |m + 1〉, and it is
significant when they are degenerate. This occurs for δ � π

which corresponds to the point of the maximum of the
supercurrent in this regime (Fig. 5).

Therefore, we start by discussing the case δ = π when the
effective potential Veff(θ ) is symmetric around the maximum
(Fig. 4). Then, the effective potential is very well approximated
by a renormalized cosine potential of the form −E∗

J cos[θ (N −
1)/N] (see inset Fig. 4) where E∗

J is the renormalized
Josephson energy (half of the height of the energy barrier
separating the two wells)

E∗
J

EJ

= 1

2

[
1 + cos

(
π

N

)
− π2

2N2

(
N − 1

)]
� 1 − π2

4N
. (47)

The ratio E∗
J /EJ is an increasing function of N which

converges to one in the limit of N � 1. Thus, for any finite-size
system, this correction corresponds to a decrease of the barrier

174513-9



G. RASTELLI, I. M. POP, AND F. W. J. HEKKING PHYSICAL REVIEW B 87, 174513 (2013)

 1

 2

 3

 0  10  20  30  40  50  60  70  80  90  100

ν 
/ ν

0

 N

EJ/EC= 20

EJ/EC= 10

EJ/EC=    5

EJ/EC=    1

FIG. 7. (Color online) For C0 = 0, the renormalized QPS ampli-
tude ν as a function of N [Eq. (49)], scaled with ν0 [Eq. (1)], for
different values of the ratio EJ /EC .

for quantum tunneling which therefore would lead to an
enhancement of the QPS amplitude, in contrast to the effect
of the renormalized capacitance [Eq. (46)]. Another effect
which enhances the tunneling amplitude is the reduction of
the distance between the two minima of the effective potential

	θ∗

2π
= 1 − 1

N
, (48)

contributing to the enhancement of the tunneling amplitude for
finite N . Similar renormalization effects have been discussed
in Ref. 28, albeit for different superconducting circuits.

The three different effects given by Eqs. (46), (47), and
(48) combine in the final expression for the renormalized
effective amplitude for the quantum tunneling between the
two degenerate minima

ν(N ) =
√(

2π

	θ∗

)
4√
π

(
8E∗3

J E∗
C

) 1
4 e

−( 	θ∗
2π

)

√
8

E∗
J

E∗
C . (49)

For the range of interest N � 5, the QPS amplitude (49)
decreases with the length N indicating that the latter effects
(reduced barrier height and distance between minima) domi-
nate the capacitance renormalization. Indeed, when ν is scaled
with the amplitude ν0 (corresponding to the limit N = ∞),
the leading exponential term reads as ν/ν0 ∼ exp(Nc/N)
with Nc = (π2 + 4)

√
8EJ /EC . Here, Nc is the typical length

below which this finite-size correction becomes relevant. The
behavior of the ratio ν/ν0 is shown in Fig. 7.

The effective QPS amplitude ν decreases with increasing
N . As a result, the parameter q ∼ N2ν(N ) defined in Eq. (14)
has a nonmonotonic behavior as a function of N . Accordingly,
the maximum supercurrent obtained for Eq. (13) has also a
nonmonotonic dependence on the total length N . In Fig. 8,
we show the maximum supercurrent as a function of the ring
size N for different ratios of EJ /EC . Decreasing EJ /EC , the
nonmonotonic behavior occurs at shorter lengths.

B. Asymmetric effective potential (q � 1)

When the parameter q is of order ∼1, the maximum
supercurrent for the model given by Eq. (13) shifts from
the phase difference δ = π to the phase difference δ = π/2
(Fig. 5). The current-phase relation is strongly modified
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FIG. 8. (Color online) The maximum supercurrent Imax scaled
with Icl as a function of N and at different values of the ratio EJ /EC

by using the QPS amplitude ν(N ) [Eq. (49)]. Inset: the maximum
supercurrent by using the QPS amplitude ν0 [Eq. (1)].

passing from a sawtooth to a sinusoidal function.24 We should
then solve Eq. (13) using the renormalized QPS amplitude νas

associated with the full asymmetric effective potential Veff and
which depends on δ (Fig. 4).

To reach the regime q � 1, there are two possible ways.
First, it can be reached by decreasing the ratio EJ /EC at
given fixed length N , which is outside the range of validity
of this work. Alternatively, for a given ratio EJ /EC , we can
increase the length N of the system. The finite-size effects
that we have discussed in the previous section for the phase
difference δ = π vanish as 1/N . We now show that the
finite-size corrections due to the asymmetry of the barrier
vanish more rapidly, namely, as 1/N2. Consequently, in the
crossover range in which N spans from Nmin = 6 to N � 1,
we can neglect the difference between νas (for δ �= π ) and ν

(for δ = π ). It is then justified to use the renormalized
amplitude ν for the symmetric potential (49) when calculating
the maximum supercurrent for the model (13) in the full range
of q.

Let us introduce κ = 1 − δ/π as the natural parameter to
quantify the asymmetry. For an asymmetric potential, we can
approximate the hopping energy between the two levels as the
geometrical average obtained by considering the hopping for
the left part of the potential and the right part of the potential
with respect to the maximum40,41

ν � √
νLνR . (50)

The left (right) amplitude νL (νR) is the tunneling amplitude
for the symmetric double potential (49), with the barrier
height 2E

(+)
J (2E

(−)
J ) given by the difference between the

maximum energy and the left (right) minimum. In a similar
way, 	θ (±)/2π is the distance between the maximum and the
left (right) minimum point. Keeping the leading term of the
expansion in 1/N , they read as E

(±)
J /EJ = 1 − (π2/4N ) ±

(π2/2N )κ and 	θ (±)/2π = 1 − 1/N ± (π/N )κ where ± is
for L and R. Inserting this expansion into Eq. (50), we
finally conclude that finite-size corrections associated with
the asymmetry parameter κ cancel at order 1/N . When
higher-order corrections are taken into account by using the full
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formula (50) for the QPS amplitude ν = ν(δ), the differences
with the amplitude at ν = ν(π ) are practically unnoticeable.

Finally, our discussion is valid in the limit in which
the asymmetry is sufficiently weak such that the two-level
description remains valid. Close to the resonant condition, the
excited and ground harmonic levels between two neighboring
states in the effective potential (Fig. 4) are almost degenerate.
This implies the inequality En − En+1 < h̄ωp which translates
into an interval for the magnetic flux |	δ| < N

√
2EC/EJ /π

around the degeneracy point at half a flux quantum. As long
as the maximum supercurrent is well within this interval, our
analysis based on the simple two-level description holds. Note
that in the limit N → ∞, the range |	δ| is quite large as a
consequence of the fact that Veff in Fig. 4 is practically in-
distinguishable from the periodic and multidegenerate cosine
potential. On the other hand, for short rings, the maximum
supercurrent occurs around δ � π (Fig. 5), which is well inside
the interval |	δ| for a suitable choice of the parameters.

VI. EFFECTS OF THE CAPACITANCE C0

We now consider the effect of the ground capacitance C0 on
the QPS amplitude. In view of the discussion of the previous
section, we will focus on the analysis of the case δ = π . Then,
the effective potential appearing in the first line of Eq. (38) is
replaced by a renormalized cosine potential

Seff =
∫ β

0
dτ

[
h̄2

8e2

(
C∗ + C0

2

)
θ̇2(τ )

−E∗
J cos

(
2π

	θ∗ θ (τ )

)]

+ 1

2

∫ β

0
dτ

∫ β

0
dτ ′G(τ − τ ′)θ (τ )θ (τ ′), (51)

where C∗, E∗
J are defined in Eqs. (46) and (47) and 	θ∗ in

Eq. (48). Within the semiclassical instanton approach,42 the
QPS amplitude reads as

ν = A exp
[−S

(cl)
eff

/
h̄
]
, (52)

where S
(cl)
eff is the effective action (51) evaluated at θcl(τ ),

the asymptotic path which minimizes the action and which
connects the two relevant minima in the limit β → ∞, i.e., the
instanton solution. The prefactor A is related to the quantum
fluctuations around this minimum path.42 In contrast with the
previous analysis for C0 = 0, we now have to take into account
the effects of the kernel G(τ ) in the action (51).

A. Parabolic approximation

The first step is to find the classical path θcl(τ ). For a
cosine potential, this solution is known analytically only when
the kernel is zero G(τ ) = 0 (C0 = 0). For the general case,
to the best of our knowledge, the solution is unknown. We use
the Villain approximation to solve the problem.43 We replace
the periodic cosine potential by a parabolic potential

Sp =
∫ β

2

− β

2

dτ

[
h̄2

8e2

(
C∗ + C0

2

)
θ̇2 + VJ

2
min

m
(θ − m 	θ∗)2

]

+ 1

2

∫ β

2

− β

2

dτ

∫ β

2

− β

2

dτ ′G(τ − τ ′)θ (τ )θ (τ ′). (53)
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FIG. 9. (Color online) For EJ = 8EC , the classical action S(cl)
p

[Eq. (54)] scaled with S0 = (8EJ /EC)1/2 as a function of N for
different screening lengths λ = 3,10,50,∞. Notice the crossover at
N � λ to the logarithmic scaling ∼ ln(N ).

It is worth noting that, for G = 0 (C0 = 0) and N � 1, the
instanton solution for this potential yields the action S

(cl)
eff /h̄ =

π2(VJ /8EC)1/2, i.e., the numerical coefficient is different from
the one found for a cosine potential with the same amplitude
VJ . Thus, in order to recover the previous results for C0 = 0,
it is convenient to set the height of the parabolic periodic
potential to the value VJ = (8/π2)2E∗

J to take into account the
difference between the profiles of the two potentials.

After the calculation (see Appendix B for details), the
action (53) with the instanton path reads as44

S(cl)
p = 2πVJ

(
1 − 1

N

)2 ∫ ∞

0
dω

1

ω2 + 4e2VJ /h̄2

C∗+ 1
2 C0+ 4e2

(h̄ω)2
G(ω)

,

(54)

where G(ω) is the continuous limit for the Fourier transform
G(ω�) = G� defined in Eq. (39). In Fig. 9, the behavior of
S(cl)

p is shown as a function of the ring size N . For C0 = 0 and
N � 1, S(cl)

p saturates to S0 = (8EJ /EC)1/2. When the ground
capacitance is restored, we find a logarithmic scaling with N

for N > λ. Specifically, we find that ν ∼ exp[−α ln(N )] =
1/Nα with α = π

√
EJ /(8E0) (see Appendix C).

B. Prefactor A

So far, our semiclassical approach was general. We will now
restrict ourselves to the calculation of the finite-size corrections
entering the renormalized amplitude ν with exponential
accuracy; this corresponds to the leading dependence on N .
Correspondingly, we will use an approximate expression for
the prefactor A. This prefactor is associated with the quantum
Gaussian fluctuations around the classical path. Specifically,
we neglect the contribution of the low-energy paths having a
mean kinetic energy lower than the height of the potential.

Proceeding as in Sec. IV D, to estimate the kinetic en-
ergy we determine the effective capacitance of the junc-
tion in the ring but now taking into account the finite-
size effects. For ω� → ∞, the kernel Eq. (39) reduces to
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G� = 	C(h̄ω�)2/(4e2) where

	C = C0

2 (N − 1)

kmax∑
k=1

1 + cos
(

2πk
N−1

)
1 − cos

(
2πk
N−1

) + π2

2λ2

, (55)

so that the effective capacitance of the junction corresponds to

Ceff = C∗ + 1

2
C0 + 	C. (56)

Again, from Eq. (53), as VJ ∼ EJ we see that the threshold
frequency separating the high- and low-energy regions is still
ω� = ωmax for C > C0. From these observations, in order
to take into account the contribution of the high-energy
quantum fluctuations, we replace the effective capacitance in
the prefactor A of Eq. (49) (case C0 = 0), with the effective
capacitance Eq. (56). The result reads as

A = 4√
π

√(
2π

	θ∗

)(
8E

∗,3
J

e2

2Ceff

) 1
4

. (57)

We now discuss the conditions for this approximation to
be valid. For ω� < ωmax, the kernel G in Eq. (53) couples
the dynamics of the winding phase to the one of the modes.
As we have seen at the end of Sec. IV D at N = ∞, for
C � C0 this interaction between the winding phase and the
modes corresponds to a perturbation at low energies for the
Gaussian harmonic fluctuations. Indeed, at N = ∞ we have
weak damping for the quality factor Q = 2π (C/C0)1/2 � 1.
Although at finite N the dynamics of the JJ ring does not
correspond to a real resistance, the ratio C0/C still plays
the role of a dimensionless coupling between the winding
phase and the harmonic bath. The effect of this interaction on
the low-energy Gaussian fluctuations can be neglected in the
prefactor but not in the exponent where, as we have seen, they
strongly affect the instanton classical path.

C. Superconductor-insulator transition

By inserting Eqs. (54) and (57) into (52), we obtain the
QPS amplitude which we use to calculate the maximum
supercurrent. Here, we discuss some numerical results valid in
a general range of parameters, while in Appendix C we discuss
some analytic results valid for very long chains (N � λ).

In Fig. 10, we plot the factor q = N2ν(N )/(2π2) as a
function of the ring size N for the values C = 2C0 and for
different ratios of EJ /EC . In the inset of Fig. 10, we also show
the behavior of ν/EJ . The first striking observation is that for
large ratios of EJ /EC = 2(EJ /E0), the parameter q does not
increase as N2 but, indeed, it vanishes upon increasing the
length. This is due to the logarithmic dependence of the action
Seff that we have obtained in Sec. VI A.

The presence of the logarithmic dependence is related to
the lowest-energy modes (see Appendix C). Indeed, below
the corresponding threshold ω� � ωmin, the winding junction
feels the discreteness of the spectrum of the environment with
which it can exchange energy. It is equivalent to say that there
is no real dissipation at low frequency. An instanton solution
conserving the initial energy still exists with a finite value
of the corresponding action. For N � λ, we have ωmin ∼
(8EJ E0)1/2π/N . Eventually, ωmin vanishes as N → ∞ and
the action associated to the instanton diverges.
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FIG. 10. (Color online) The parameter q as a function of N for
C = 2C0 and different ratios EJ /EC . Inset: the behavior of the QPS
amplitude ν scaled with EJ .

As a consequence, the parameter q behaves as q ∼ N2ν ∼
N2−α and it scales either to zero or to infinity for N = ∞. A
crossover is therefore expected at some critical ratio EJ /E0 as
α = π

√
EJ /(8E0) (see Appendix C).

The behavior of the maximum supercurrent Imax scaled with
Icl as a function of N (Fig. 11) is related to the behavior of q.
In the very long length limit, Imax/Icl increases and saturates to
one for EJ /E0 > 3.24, whereas for EJ /E0 < 3.24 it vanishes.
On the other hand, we remark that for finite systems, the current
shows a nonmonotonic behavior: it increases with N up to a
maximum after which it decreases.

The interplay between finite-size effects, which scale as
ν(N ) ∼ exp(Nc/N ), and the low-energy modes at finite C0,
which reduce the QPS amplitude as ν ∼ 1/Nα , cause that
the total QPS amplitude of the ring νring = Nν(N ) has a
weak N dependence so that the dependence of the maximum
supercurrent on N appears almost flat over a large range of N

when the critical ratio is approached (see Fig. 11).
Due to the nonmonotonicity of the current as a function of

N , the critical point between the superconducting phase and
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FIG. 11. (Color online) The maximum supercurrent Imax scaled
with the classical value Icl as a function of N for C = 2C0 and
different ratios EJ /EC .

174513-12



QUANTUM PHASE SLIPS IN JOSEPHSON JUNCTION RINGS PHYSICAL REVIEW B 87, 174513 (2013)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3  4  5  6  7  8  9

I m
ax

 / 
I c

l 

EJ/EC

N=    100

N=    500

N= 2000

FIG. 12. (Color online) Imax scaled with Icl as a function of
EJ /EC = 2EJ /E0 for rings of different circumferences. The dashed
vertical line corresponds to the critical value EJ /E0 = 32/π 2 of
Ref. 15 for C = 2C0.

the insulator phase can be better determined by plotting the
maximal supercurrent as a function of the ratio EJ /EC for
different circumferences. The result is shown in Fig. 12 for the
case C = 2C0.

We find that the critical value saturates to the value
EJ /E0 � 3.24, as long as C � 2C0. This result is in agreement
with the result obtained by Korshunov15 who calculated
EJ /E0 = 32/π2 in the regime C � C0. Reducing the ratio
C/C0, we find a small increase of the critical value EJ /E0

which saturates to ∼ 4.16 for vanishing mutual capacitance
C = 0. In this limit, we do not recover the critical ratio
EJ /E0 = 128/π2 obtained by Bradley and Doniach.13

D. Discussion

In this section, we discuss the validity of the single QPS
approximation.

(a) The case C0 = 0. In this case, it is most convenient to
express the Lagrangian in terms of the phase differences {θn},

L =
∑

n

[
h̄2C

8e2
θ̇2
n − EJ cos

(
θn + δ

N

)]
, (58)

showing that there is no correlation in the spatial direction.
Indeed, Eq. (58) with the constraint Eq. (3) describes N − 1
independent variables. Under the condition EJ > EC , one
therefore can use the semiclassical instanton approach to
describe the QPS in each individual junction. This is a well-
controlled technique,42 based on the noninteracting (dilute)
instanton approximation. For instance, in the limit N � 1, the
problem reduces to the tunneling of a free particle in a double
well. The resulting tunnel amplitude is ν0 [Eq. (1)], which
is independent of the size of the system. The total amplitude
Nν0 grows linearly with N since instantons which can occur
independently in any of the junctions, as previously analyzed
in Ref. 24. The system becomes an insulator for N → ∞;
no phase transition occurs, in agreement with conclusions
obtained in the thermodynamic limit.13–15

(b) The case C0 � C and N � λ. When C0 is restored,
an interaction appears between the phase differences {θn}.14

This interaction yields a possible coupling between QPSs
occurring in different junctions n �= m. This bare interaction is
proportional to C0/C. For finite systems and for C0 � C we
expect that, by continuity with the case C0 = 0, this interaction
can be neglected in first approximation. Indeed, the instantons
are still rare events in the imaginary time for EJ � EC so
that one can study a single instanton centered in one junction
θn0 . The other phase differences n �= N − 1 can be approxi-
mated by N − 2 harmonic oscillators coupled to the winding
phase θn0 .

Another consequence of a finite C0 is the fact that the
modes have a frequency dispersion. This leads to an additional
nonlocal term in the effective action of θn0 [Eq. (51)] beyond
the finite-size corrections discussed for the case C0 = 0. In
particular, we considered the adiabatic regime in which all the
modes have a frequency higher than the tunneling frequency
of the phase θn0 . This situation is very close to the case
C0 = 0: the quantum tunneling of a fictitious particle in a
double well can be still reduced to the tunneling between
two levels but with an adiabatically renormalized amplitude.
This is exactly the theoretical framework presented in Ref. 45,
in which the authors developed the analysis for a generic
two-level system. In particular, they considered the adiabatic
regime expressed by their Eq. (2.9) which corresponds to our
Eq. (52). We exploited this approach for a specific system,
namely, the Josephson junction ring threaded by a magnetic
flux. Moreover, as shown in Sec. VI and in Appendix C, the
corrections to the instanton action due to the nonlocal term
are small as long as N � λ. Therefore, by continuity to the
previous case, we expect that our results are qualitatively and
quantitatively correct in this regime.

(c) The case C0 � C and N � λ. In the opposite limit
N � λ > 1 (see Appendix C), we find a logarithmic de-
pendence on N for the leading term in the instanton action
S(cl)

p ∼ π
√

EJ /(8E0) ln (N/λ). Approaching the thermody-
namic limit (N → ∞), even for C0 � C, the ground capaci-
tance C0 has a substantial effect. It leads to a renormalized QPS
amplitude which strongly depends on the length of the JJ ring

ν ∼ ν0 N−
√

π2EJ /(8E0). The validity of this result is addressed
in the next section.

E. Relation with the BKT transition

Mathematically, the one-dimensional quantum model of the
type in Eq. (2) can be mapped onto a two-dimensional classical
model. Considering the axis x = τ (imaginary time) and the
axis y = n (position on the chain) for the local phases {ϕn(τ )},
Bradley and Doniach showed that, for the case C = 0, the 1D
JJ chain is equivalent to anisotropic 2D classical spins with
nearest-neighbor interactions along the perpendicular axis.13

Hence, according to this mapping, the superconductor-
insulator phase transition occurring in the case N = ∞ corre-
sponds to the order-disorder phase transition of an ensemble
of ferromagnetically coupled planar classical spins. This is the
celebrated Berezinskii-Kosterlitz-Thouless (BKT) transition,
marked by a disruption of the ordered ferromagnetic phase
due to the appearance of vorticity: topological defects for
which the spin orientation changes by 2π when following a
closed path around them once. Reducing the ratio EJ /E0,
the BKT transition is driven by the dissociation of bound
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vortex-anti-vortex pairs formed in the ordered phase for the
local phases {ϕn(τ )}.13 Thus, as interaction between vortices
plays an essential role in this scenario, a natural question is
the range of validity of our approach where the correlations
between QPSs have been ignored.

Korshunov in Ref. 14 analyzed the same problem (C = 0)
but using the representation in the space of the phase difference
{θn(τ )}. In this space, the relevant (nonlinear) quantum
fluctuations are the instantons, i.e., the QPSs. Notice that the
vortices and the QPSs are not exactly the same object: the
former are configurations defined in the space of the local
phase {ϕn(τ )} of the BCS condensate in each superconducting
island,13 whereas the latter are defined in the space of the phase
differences {θn(τ )} in each Josephson junction.14

The two instantons defined the θ -space interact as14

Sint(τ,	N ) ∼ π
√

EJ /E0 ln[(ω0τ )2 + 	N2], (59)

in which ω0 ∼ (EJ E0)1/2 and (τ,	N ) are the separation
along the imaginary-time axis and in real space, respectively.
Remarkably, two instantons interact again with a logarith-
mic potential in the two directions in a very similar way
to the vortices defined the ϕ space. This interaction leads to
the formation of bound-pair states of QPSs which makes the
superconducting phase stable, even for an infinite number of
QPSs. This implies that, even if we focus on an individual
junction (	N = 0), interaction appears between different
instantons along the imaginary time.

The crucial point is that this interaction is mediated by
the propagating modes on the loop and is present only
in the thermodynamic limit N = ∞, when the modes are
sufficiently dense.45 In this limit, the local junction hosting
a QPS is coupled to the rest of the infinite chain which acts
as a dissipative environment. Indeed, the other Josephson
junctions form a dense bath of harmonic oscillators with
linear low-frequency dispersion. They mediate the interactions
of two different instantons in imaginary time. This is the
reason for the appearance of nonlocal correlations in time
between different instantons. As discussed in Sec. IV D, the
ratio C0/C plays the role of coupling between the winding
phase and the harmonic bath of oscillators formed by the
other N − 1 junctions. Although the coupling constant is
small (C0 � C), the dynamics of the winding phase is now
dissipative and the instantons in imaginary time are strongly
coupled with a long-range logarithmic potential: the single
QPS approximation breaks down.

As long as N remains finite, no real dissipation appears
and therefore no logarithmic interaction between instantons
occurs in imaginary time. In particular, we studied the
adiabatic regime in which the problem can be reduced to the
renormalized quantum tunneling of a fictitious particle in a
double-well potential45 (see the cases b and c in Sec. VI D).

Between these two limits, we have a continuous crossover
from the adiabatic regime to the full dissipative dynamics at
N = ∞. Therefore, we expect that, at given ratio C/C0 and
EJ /EC , there is a typical length N∗ which sets an upper bound
for the range of validity of the single QPS approximation.

Indeed, increasing the length N , the lowest frequency ωmin

defined in Eq. (25) decreases as h̄ωmin ∼ 4
√

2EJ EC(λ/N ).
Then, for our approach to be self-consistent, we estimate N∗ as

the point at which the adiabatic condition breaks down, namely,
when the level splitting of the two-level system coincides with
the lowest frequency of the modes: 2ν0 ∼ h̄ωmin. It gives

N∗/λ = (
√

π/23/4) e

√
8 EJ

EC /(EJ /EC)1/4. (60)

As an example, at EJ /EC = 6.5, λ = 4.4 (C = 2C0) (the
values close to the phase transition, see Fig. 12) we have the
condition N∗ ∼ 2800.

For N � N∗, only a finite number of discrete modes have
frequencies lower than the tunneling frequency.46 Notice that
this region beyond N � N∗ is still far away from the full
dissipative limit N = ∞, in which we expect a logarithmic
interaction between instantons Eq. (59). Therefore, one has to
consider Eq. (60) as a rough estimate. Remarkably, as shown in
Fig. 12, in finite-size systems with N ∼ 103 and well below the
line N = ∞, the crossing point of the maximal current can be
very close to the critical value of the phase transition although
the current does not drop vertically to zero as expected in the
real thermodynamic limit.

We conclude by recalling that the exact analysis of the
interaction between two instantons in imaginary time beyond
the limit N � N∗ in JJ chains is an interesting and open
theoretical issue, beyond the aim of this work. Moreover,
we remark that the Lagrangian of Eq. (16) can be exactly
mapped on the classical (anisotropic) XY spin Hamiltonian,
which represents the reference model for the BKT transition,
only for C = 0. For the general case of (C,C0), the two-
dimensional classical spin Hamiltonian associated with the
Lagrangian of Eq. (16) has a four-body anisotropic-diagonal
interaction between the spins ϕn(τ ). Even at N = ∞, the
superconductor/insulator transition in the extreme regime
C � C0 has not yet been analyzed in detail in the literature
(with the exception of Ref. 15).

VII. SUMMARY AND CONCLUSIONS

In this work, we studied the quantum QPS processes in
1D Josephson junction rings in the strong Josephson coupling
limit EJ � EC,E0. In contrast with the previous work,24 we
consider JJ rings of finite size in a wide range of lengths
(N � 5) and with ground capacitance C0. We calculated
the renormalized QPS amplitude ν(N ) and we discussed
its consequence for the maximum supercurrent Imax flowing
through a JJ ring threaded by a magnetic flux.

For the case C0 = 0, we found an interplay between
different finite-size effects which gives rise to a nonmonotonic
behavior of the maximum supercurrent Imax/Icl as a function
of the ring size. The critical length above which finite-size
corrections are negligible is Nc ∼ (π2 + 4)

√
8EJ /EC .

When the ground capacitance is restored C0 > 0, dispersive
modes are possible on the ring which are directly coupled to the
local winding phase difference. When N → ∞, we found that
the system converges either to a superconducting state with
Imax/Icl = 1 or to an insulating phase Imax/Icl = 0, depending
on the ratio EJ /E0. For C > C0, we found as critical ratio
(EJ /E0)c = 3.24, in agreement with the previous work of
Ref. 15.

Although our analysis was mainly developed for a ring of
identical junctions, it is also relevant for other systems, for
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instance, for a weak winding junction coupled to a chain of
Josephson junctions in which the QPS is prevented, i.e., the
so-called fluxonium.11 We have discussed the validity of the
single QPS approximation. The regime EC > EJ associated
with the regime of strong interaction between the QPSs is
beyond the scope of this paper. A global phase diagram was
reported some time ago in Refs. 14 and 15 in the thermody-
namic limit, but it was based on a perturbative renormalization
group analysis. A phase diagram obtained by nonperturbative
approaches as well as the behavior of finite-size systems for
arbitrary ranges of the parameters EJ , E0, EC , and C/C0

constitutes a still open theoretical issue.
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APPENDIX A: PATH INTEGRAL

In this Appendix, we summarize the main steps for the
calculation of the path integral (36). First, we recall that
any periodic function ϕn on the lattice n = 0, . . . ,N − 1
can be decomposed as Eq. (18) where the set {ϕk} are
complex numbers, i.e., ϕk = ϕR

k + iϕI
k . They are related by

the condition ϕN−k = ϕ∗
k as ϕn is real. Using this property, we

can write

ϕn = 1√
N

⎡
⎢⎢⎣ϕk=0 + (−1)nϕk= N

2︸ ︷︷ ︸
N even

+
kmax∑
k=1

(
ϕke

i 2πk
N

n + c.c.
)⎤⎥⎥⎦ .

(A1)

For N even we have kmax = (N/2) − 1, whereas for N odd
we have kmax = (N − 1)/2. We can express the Euclidean
Lagrangians only in terms of the independent variables. Setting
the action

L0 (xk) = 1
2μkẋ

2
k + 1

2μkω
2
kx

2
k , (A2)

one can demonstrate that the harmonic Lagrangian (17)
(omitting the constant proportional to δm) in terms of the modes
k reads as

L
(N)
0 = μ0

2
ϕ̇2

k=0 + L0(ϕk= N
2

)︸ ︷︷ ︸
N even

+2
kmax∑
k=1

[
L0

(
ϕR

k

) + L0
(
ϕI

k

)]
.

(A3)

We now consider the actions (29), (31), and (32) where
we have N − 1 harmonic variables ϕn. Inserting Eq. (A1)
with N replaced by N − 1 in Eq. (32), one can obtain that
only the imaginary parts of the modes are linearly coupled to
external forces [θ (τ ),θ̇(τ )] through the position and through

the velocity, i.e., Eq. (34). For the notation, we set

qk(τ ) ≡ ϕI
k (τ ), (A4)

and we can write

L3 =
kmax∑
k=1

ζk

(
h̄2C

8e2
q̇k θ̇ + EJ

2
qkθ

)
. (A5)

From Eq. (A1) we observe that the phase ϕn=0 at n = 0 depends
only on the real part of the mode {ϕR

k }. Therefore, the first
term of Eq. (31), ϕ2

n=0, couples only the real parts of the
different modes k. As real and imaginary parts are decoupled,
the relevant term in Eq. (33) in which we are interested for the
calculation of the effective action reduces to

L2 ∼ E0 + 2
kmax∑
k=1

(
1

2
μkq̇

2
k + 1

2
μkω

2
kq

2
k

)
, (A6)

with E0 = EJ δ2
m(N − 1)/(2N2). We express the generic peri-

odic path of the partition function as

qk(τ ) = qk,0 +
+∞∑
�=1

(qk,�e
iω�τ + c.c.), (A7)

in which the Fourier (Matsubara) component at ω� = 2π�/β

is given by qk,� = (1/β)
∫ β

0 dτ exp(−iω�τ )qk(τ ). Inserting the
expression (A7) into the Lagrangian L2 + L3 Eqs. (A5) and
(A6) and integrating over the time, we obtain∫ β

0
dτ (L2 + L3) = E0 + 2

kmax∑
k=1

(
Sk,0 +

+∞∑
�=1

Sk,�

)
. (A8)

The first term Sk,0 contains only the component at zero
frequency of θ (τ ) and qk(τ ):

Sk,0 = β

2
μkω

2
kq

2
k,0 + βEJ

2
qk,0θ0. (A9)

The second terms Sk,� contain all the nonzero frequency
components (� > 0)

Sk,� = βμk

(
ω2

� + ω2
k

)|qk,l|2

+ βζkh̄
2

16EC

(
ω2

� + ω2
p

)
(q∗

k,�θ� + c.c.). (A10)

Finally, the path integral is evaluated by integration over the
Fourier components as

	Z =
kmax∏
k=1

∮
D [qk(τ )] e− 1

h̄

∫ β

0 dτ (L2+L3) = e− βE0
h̄

×
kmax∏
k=1

∫
dqk,0 e− 2Sk,0

h̄√
4πβh̄

μk

+∞∏
�=1

∫∫
dqR

k,�dqI
k,�

πh̄

βμkω
2
�

e− 2Sk,�
h̄ ,

(A11)

where the preexponential factors are the Jacobians associated
with the transformation of the path integral from the time space
to the frequency space.42 (qR

k,�,q
I
k,�) denote, respectively, the

real and imaginary parts of qk,�. The integral (A11) has the
general Gaussian form and its evaluation is straightforward.
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After some algebra, the relevant exponential term is

	Z ∼ exp

{
βh̄

8EC

∞∑
�=0

Y (ω�)

(
ω2

� + ω2
p

)
1 + δ�,0

|θ�|2
}

, (A12)

with

Y (ω�) = 1

N − 1

kmax∑
k=1

sin2
(

2πk
N−1

)
1 − cos

(
2πk
N−1

) + π2

2λ2

(
ω2

�

ω2
�+ω2

p

) . (A13)

By adding the exponential term of Eqs. (A12) and (A13)
to the Lagrangian L1 [Eq. (29)] and going back to the time
representation, we obtain the result shown in Eqs. (37), (38),
and (39).

APPENDIX B: INSTANTON SOLUTION IN PERIODIC
PARABOLIC POTENTIAL

Referring to the action (53), we set h̄ωJ = 4VJ e2/

(C∗ + C0/2) as a shorthand notation. The most general path
can be always expressed as

θ (τ ) = θ (−β/2) +
∫ τ

− β

2

dτ ′ θ̇ (τ ′). (B1)

For the asymptotic instantonlike solution, we require the
following boundary conditions at the end points θi = θ (−β/2)
and θf = θ (β/2):

lim
β→+∞

θi = 0, lim
β→+∞

θf = 	θ∗. (B2)

It is useful to use the Fourier components of the velocity as
free variables

θ̇ (τ ) =
+∞∑

�=−∞
θ̇� eiω�τ , θ̇� = 1

β

∫ β

2

− β

2

dτ θ̇ (τ ) e−iω�τ . (B3)

By assuming that the total energy is conserved, we impose that
the initial velocity is equal to the final one: θ̇ (−β/2) = θ̇ (β/2).
More specifically, due to the symmetry of the potential, we
can assume that the velocity is an even function of the time
θ̇ (τ ) = θ̇0 + ∑+∞

�=1 2 cos(ω�τ )θ̇�, with θ̇� real numbers. By
definition, the average velocity is θ̇0 = (θf − θi)/β. In terms
of the variables {θ̇�}, the path Eq. (B1) reads as

θ (τ ) = θi + θ̇0(τ + β/2) +
∑
� �=0

(
eiω�τ − e−iω�

β

2

iω�

)
θ̇�. (B4)

We recall the definition of the kernel G(τ ) in the action (53)
in the Fourier space

G (τ ) = 1

β

∑
� �=0

G� eiω�τ , with G−� = G∗
�. (B5)

Using the expressions (B3), (B4), and (B5) in the action (53)
and taking into account the symmetry respect to the time, the
time integration is straightforward. The general action is thus

expressed in terms of the variables {θ̇�}:

1

β
Sp ({θ�}) = VJ

2ω2
J

θ̇2
0 +

+∞∑
�=1

(
VJ

ω2
J

+ VJ

ω2
�

+ G�

ω2
�

)
θ̇2
�

−
+∞∑
�=1

4VJ

βω2
�

[
θi(1 − (−1)�) + βθ̇0

2

]
θ̇�

+ VJ

2

[
θ2
i + βθ̇0

2
θi + (βθ̇0)

2

12

]
. (B6)

Then, by the condition of minimization ∂Sp/∂θ̇� = 0, we find
the classical solution θ̇

(cl)
� :

θ̇
(cl)
� = 2ω2

J /β

ω2
� + ω2

J + G�

VJ
ω2

J

[
[1 − (−1)�]θi + βθ̇0

2

]
. (B7)

We insert the solution (B7) into the action (B6) to obtain the
value of the action at the minimum

S(cl)
p

h̄
= βVJ θ̇2

0

2h̄ω2
J

+ 4VJ

h̄β

+∞∑
�=1

[
[1 − (−1)�]θi + βθ̇0

2

]2

ω2
� + ω2

J

1+ω2
J G�/(ω2

�VJ )

. (B8)

Finally, we take the limit β → ∞. We use the boundary
conditions (B2) and the fact that the average velocity θ̇0

scales as (θf − θi)/β � 	θ∗/β. After that, the resulting series
with respect to Matsubara frequencies � = 1, . . . ,∞ converges
to an integral ω� = ω and the resulting action coincides
with Eq. (54) of the main text by recalling h̄ωJ = 4VJ e2/

(C∗ + C0/2) and Eq. (48) for 	θ∗.

APPENDIX C: LONG JJ RING WITH
GROUND CAPACITANCE

In this Appendix, we discuss some general features and
some analytic limits of the effective action obtained within
the parabolic approximation (54). To simplify the notation, we
set VJ = EJ as the results are qualitatively the same for two
different coefficients. We focus on the long circumferences
limit of the rings defined by the condition that we can neglect
the corrections of order (1/N) in E∗

C , E∗
J , and 	θ∗ as well

as N � max(λ,1). In this regime, we replace the sum with
respect to the modes k in G(ω�) ≡ G(ω) [Eq. (39)] with an
integral and we obtain

G (ω) = (h̄ω)2

16e2
C0

(
F (ω)

√
1 + 4C

C0
− 1

)
, (C1)

where we set

F (ω) =
√

1 + ω2
max

ω2

[
1 − 2

π
arctan

(
ωmin

ω

√
1 + ω2

max

ω2

)]
,

(C2)

where ωmax, ωmin are defined in Eqs. (22) and(25). Note that
we can not neglect the N dependence in the function F (ω)
[Eq. (C2)], as it is strongly dependent on the minimum cutoff
frequency ωmin. Using Eqs. (C1) and (C2), we can express the
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action on the classical instanton path Eq. (54) as

S(cl)
p

h̄
= 2π

EJ

h̄

∫ ∞

0
dω

1

ω2 + ω2
max

1+2F (ω)/(1+4C/C0)1/2

. (C3)

The two frequencies ωmax, ωmin define three ranges for the
integral on the frequency ω. They are (i) ωmax � ω, (ii)
ωmin � ω � ωmax, and (iii) ω � ωmin. In these ranges, the
function F (ω) can be approximated as (i) F (ω) � 1, (ii)
F (ω) � ωmax/ω, and (iii) F (ω) � (N/π )/(1 + 4C/C0)1/2, to
leading order in 1/N . Cutting the integral (C3) in three parts,
we use the three approximated expressions for the function
F (ω) to evaluate the integration∫ +∞

0
dω . . . =

∫ +∞

ωmax

dω . . . +
∫ ωmax

ωmin

dω . . .

+
∫ ωmin

0
dω . . . . (C4)

The first integral (i) in the high-frequency range as well as
the third integral (iii) in the low-frequency range give a result
independent of the ring’s size N . On the other hand, for the
second integral (ii) in the intermediate frequency range, we

find the important result

S(cl)
p

h̄
∼ 2π

EJ

h̄

∫ ωmax

ωmin

dω
1

ω2 + ω ωmax (1 + 4C/C0)1/2

∼ π

√
EJ

8E0
ln

(
N

λ

)
+ . . . . (C5)

As we have reported numerically, we have a logarithmic
dependence on N of the classical action yielding to a
power-law dependence of the QPS amplitude ν. This leads
to a superconductor/insulator phase transition when the limit
N = ∞ is taken.

Finally, we observe that the function F (ω) [Eq. (C2)]
saturates to a constant for ω � ωmin This low-frequency cutoff
is important because it makes the total integral convergent. As
we have explained in the text, below this threshold ω � ωmin,
the winding junction feels the discreteness of the spectrum
of the environment with which it can exchange energy. That
corresponds to say that there is no real dissipation at low
frequency and an instanton solution conserving the initial
energy still exists.
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