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We study the effect of disorder on massless, spinful Dirac fermions in two spatial dimensions with attractive
interactions, and show that the combination of disorder and attractive interactions is deadly to the Dirac semimetal
phase. First, we derive the zero temperature phase diagram of a clean Dirac fermion system with tunable
doping level (μ) and attraction strength (g). We show that it contains two phases: a superconductor and a
Dirac semimetal. Then we add disorder and show that arbitrarily weak disorder destroys the Dirac semimetal,
turning it into a superconductor instead. Thus for Dirac fermions near charge neutrality, disorder actually assists
superconductivity. We discuss the strength of the superconductivity for both long range and short range disorder.
For long range disorder, the superconductivity is exponentially weak in the disorder strength. For short range
disorder, a uniform mean field analysis predicts that superconductivity should be doubly exponentially weak
in the disorder strength. However, a more careful treatment of mesoscopic fluctuations suggests that locally
superconducting puddles should form at a much higher temperature, and should establish global phase coherence
at a temperature that is only exponentially small in weak disorder. Thus, mesoscopic fluctuations exponentially
enhance the superconducting critical temperature. We also discuss the effect of disorder on the quantum critical
point of the clean system, building in the effect of disorder through a replica field theory. We show that disorder is
a relevant perturbation to the supersymmetric quantum critical point. We expect that in the presence of attractive
interactions, the flow away from the critical point ends up in the superconducting phase, although firm conclusions
cannot be drawn since the renormalization group analysis flows to strong coupling. We argue that although we
expect the quantum critical point to get buried under a superconducting phase, signatures of the critical point
may be visible in the finite temperature quantum critical regime. Our results have implications for experiments
on proximity induced superconductivity in Dirac fermion systems, where they imply an enormous disorder
enhancement of the superconducting susceptibility. As a result, the proximity induced superconductivity in dirty
systems is expected to be much stronger than that in clean systems at the Dirac point.
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I. INTRODUCTION

The study of many body effects in disordered electronic
systems has been a focus of condensed matter research for
decades.1 An important subset of problems involves disordered
electronic systems with attractive interactions, and hence the
interplay of superconductivity and disorder.2 The Anderson
theorem3 states that s-wave spin singlet superconductivity is
immune to weak time reversal invariant disorder. However,
disorder is widely believed to suppress all other forms of
superconductivity. The Abrikosov-Gorkov theory2 provides a
framework for analyzing the suppression of superconductivity
by disorder. More recently, it has been pointed out that
mesoscopic fluctuation effects4–6 can render superconductivity
more robust to weak disorder than the Abrikosov-Gorkov
theory would predict, but disorder nevertheless suppresses
superconductivity.

The recent discovery of two-dimensional (2D) Dirac
fermion systems, such as graphene7 or the surface of a 3D
topological insulator,8 has opened a new avenue of research
into the interplay of disorder and superconductivity. The study
of disordered Dirac fermions began almost 30 years ago9–11

and it is believed that a single species of Dirac fermions
is protected against localization,8 although a random scalar
potential disorder generates a nonzero density of states.11,12

Meanwhile, it is also known that Dirac fermion systems
at charge neutrality do not develop superconductivity for

arbitrarily weak attractive interactions, and that there is a
quantum critical point at a critical attraction strength which
separates the Dirac semimetal from the superconductor.13–18

In a recent stimulating development, it has been pointed out
that this quantum critical point has an interesting effective
field theory description, which displays emergent dynamical
supersymmetry.19,20 However, while disorder and attractive
interactions have been studied in isolation for topological
insulator surface states, the combination of disorder and
attractive interactions has not been studied.

In this paper we study Dirac fermions with attractive
interactions, in the presence of disorder. We show that
the combination of scalar potential disorder and attractive
interactions is particularly deadly to the Dirac semimetal,
driving a transition into a superconducting phase for arbitrarily
weak attraction strengths. Remarkably, for Dirac fermion sys-
tems disorder actually enhances superconductivity, allowing
superconductivity to develop where the clean system would
have been semimetallic. We also show that while the disorder
enhancement of superconductivity can be estimated using a
mean field theory à la Abrikosov-Gorkov, this treatment dra-
matically underestimates the strength of the superconductivity.
A proper treatment of mesoscopic fluctuations is necessary to
determine the strength of superconductivity in the disordered
Dirac fermion system. Our results may also have implications
for Dirac fermion systems with repulsive interactions and
disorder.21 Dirac fermion systems with repulsive interactions
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are described by a Gross-Neveu model, which also has
a quantum critical point22 which may be destabilized by
disorder. However, we do not pursue this line of research in
this paper, leaving it as a topic for further work. We note too
that, whereas this paper is focused on Dirac semimetals, the
interplay of disorder and superconductivity in normal metals
has been studied in Ref. 23.

While Dirac fermions arise both on the surface of a topolog-
ical insulator and in graphene, in graphene the Dirac fermions
are fourfold degenerate, coming in two spin and two valley
flavors. On the surface of a topological insulator, however,
there is just a single species of Dirac fermion. In this paper
we focus our analysis on the case of a topological insulator,
with a single species of Dirac fermion. This captures the
essential physics of Dirac fermions with attractive interactions
and disorder, but is easier to treat analytically because of the
smaller number of degrees of freedom. The basic conclusions
should also apply to graphene, insofar as disorder will generate
a nonvanishing density of states and enable superconductivity
to develop for arbitrarily weak interactions. However, the
existence of a valley degree of freedom in graphene, and the
fact that disorder can cause intervalley scattering, may lead to
additional features not present in the problem studied here. We
leave the generalization of this analysis to graphene as a topic
for future work.

In this work we consider a model of Dirac fermions with
purely attractive, phonon mediated interactions, neglecting the
Coulomb repulsion. In principle, the (unscreened) Coulomb
interaction can prevent superconductivity,24 and the study of
superconductivity in the presence of Coulomb interactions
is a subject we leave for future work. However, we note
that in experiments on graphene or topological insulators, the
Coulomb interaction can always be screened by metallic gates,
so the neglect of the Coulomb repulsion can be justified.

We also emphasize that our work has important implications
for ongoing experiments attempting to induce superconduc-
tivity in graphene and topological insulators by means of
the proximity effect. In the context of the proximity effect,
the disorder enhancement of Tc which we identify can
be read as a disorder enhancement of the superconducting
susceptibility. Thus, even in materials where there may not
be an intrinsic attraction or intrinsic superconductivity, the
proximity induced superconductivity in the disordered system
will be dramatically stronger than than in the clean system, for
reasons we explain in this paper.

This paper is structured as follows. In Sec. II we discuss the
zero temperature phase diagram of the clean Dirac fermion
system in the presence of attractive δ function interactions.
While the phase structure at the Dirac point (chemical potential
μ = 0) as a function of attraction strength g has previously
been understood,15,16,25–28 the full phase diagram in the
g-μ plane has not been presented as far as we are aware.
Indeed, the μ → ∞ limit remains controversial, with the
existing literature25–27 in apparent disagreement. We resolve
this disagreement by means of a careful analysis that takes
into account the finite ultraviolet cutoff for the interaction,
which justifies use of a projected Hamiltonian. The projection
operation introduces a gauge redundancy, which must be dealt
with carefully. We also show how the system interpolates
between the μ = 0 and large μ limits, and present the full

zero temperature phase diagram. The zero temperature phase
diagram contains two phases: a Dirac semimetal along the
μ = 0, g < gc line segment, and a superconductor everywhere
else. There is a single superconducting phase, which is fully
gapped and preserves time reversal symmetry everywhere. For
small doping, the superconductivity is mostly spin singlet and
s wave.

In Sec. III we discuss the influence of disorder. First, we
discuss disorder in the attraction strength g. We show that this
form of disorder is a relevant perturbation at the μ = 0,g = gc

critical point, and must necessarily change the universality
class. However, we expect disorder in the attraction strength
to be weak at the bare level, and thus the effect of attraction
strength disorder may not manifest itself until very low energy
scales. However, in any realistic experimental sample, there is
likely to be significant disorder in the chemical potential μ.
We show that smooth chemical potential disorder destroys the
semimetal phase, producing a network of electron and hole
doped puddles. In the presence of attractive interactions, this
system develops percolating superconductivity for arbitrarily
weak attractive interactions, with a critical temperature that is
exponentially small in the typical doping. We also show that
short range disorder (which we model in terms of δ function
impurities) also destroys the semimetal phase, introducing a
low energy density of states that is exponentially small in the
disorder strength. A uniform mean field analysis of the pairing
problem suggests that the short range disordered Dirac fermion
system should display superconductivity for arbitrarily weak
interactions, but with a critical temperature that is doubly
exponentially weak in the disorder.

In Sec. IV we analyze the influence of mesoscopic fluctua-
tions on superconductivity for short range disorder, in the weak
coupling limit. Our analysis suggests that mesoscopic fluctua-
tions dramatically enhance superconductivity. In particular, the
analysis suggests that small puddles of local superconductivity
appear at temperatures that are linearly small in weak disorder,
and the Josephson coupling between these puddles establishes
global phase coherence at a temperature that is exponentially
small in weak disorder. This represents a dramatic enhance-
ment over the uniform mean field theory, which predicts
a critical temperature that is doubly exponentially small in
weak disorder. The application of a transverse magnetic field
frustrates the global phase coherence, driving a phase transition
into a gauge glass phase.

In Sec. V we analyze the interplay of disorder and
attraction within a renormalization group (RG) framework, in
the vicinity of the quantum critical point μ = 0,g = gc. The
construction of an RG for the attractive interaction requires us
to work in an ε expansion about the upper critical space-time
dimension D = 4. Meanwhile, disorder is taken into account
through a replica field theory approach. The discussion in
this section complements the discussion in Secs. III and IV.
Whereas Sec. III discussed the interplay of disorder and
interactions near the free fermion point, the renormalization
group analysis studies the interplay of disorder and interactions
near the quantum critical point. We find that, whereas chemical
potential disorder is a marginally relevant perturbation at the
Gaussian point, it is a (power law) irrelevant perturbation at
the quantum critical point. Thus, one might naively expect
the quantum critical point to be stable in the presence of
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weak chemical potential disorder. However, a careful analysis
reveals that in fact chemical potential disorder is a dangerous
irrelevant perturbation, in that it generates disorder in the BCS
coupling, which is a relevant perturbation to the critical point.
Thus, the supersymmetric critical point of Refs. 19 and 20 is
in fact unstable in the presence of disorder. We expect that the
flow away from the critical point leads to the superconducting
phase, although firm conclusions cannot be drawn since the
RG flows to strong coupling.

Finally, in Sec. VI we discuss the prospects of observing sig-
natures of the supersymmetric quantum critical point identified
in Refs. 19 and 20, given the inevitability of disorder. We point
out that even though the quantum critical point will be buried
under the superconducting phase in any realistic experimental
sample, in a sufficiently clean sample some signatures of the
critical point may survive in the finite temperature quantum
critical regime. We conclude by discussing future directions
for the study of disorder and attractive interactions in Dirac
fermion systems.

We note that previous studies of Dirac quasiparticles in
nodal superconductors have found a (secondary) supercon-
ducting transition in the disordered system, when no such
transition occurs in the clean one.29–32 There is some mathe-
matical resemblance between these results and the discussion
in Sec. III. However, the colossal enhancement of supercon-
ductivity by rare region effects discussed in Sec. IV, as well as
the strong coupling physics discussed in Secs. V and VI, have
no analog in these works. The discussion in Sec. III also has
important differences, in that it belongs to a different Cartan
symmetry class,33 with very different localization physics, and
also in that we are discussing a true superconducting instability
in a semimetal, whereas the works29–32 are discussing the
appearance of a secondary s-wave component of the order
parameter in a d-wave superconductor.

II. PHASE DIAGRAM OF CLEAN DIRAC FERMIONS
WITH ATTRACTIVE INTERACTIONS

We begin by considering a single species of Dirac fermions
in the absence of disorder, with short range attractive in-
teractions. The creation operator for Dirac fermions with
momentum h̄k is ψ

†
k. The spinor structure of the Dirac

fermions is implemented by defining ψ
†
k = (c†↑,k,c

†
↓,k), where

c
†
σ,k creates a fermion with spin σ and wave vector k. It is

convenient to introduce the Pauli matrices σi which act in the
spin space, and to also define σ0 to be the two-dimensional
identity matrix acting in spin space. The second quantized
Hamiltonian may then be written as H = H0 + H1, where

H0 =
∑

k

ψ
†
k(−μσ0 + vkxσ1 + vkyσ2)ψk, (1)

H1 =
∑
k,p,q

V (q,k,p)ψ†
kσ0ψk+qψ

†
pσ0ψp−q, (2)

where v is the Fermi velocity, μ is the chemical potential
(which controls the doping level), and we have assumed a
purely “density-density” interaction, which has no intrinsic
spin structure. The interaction is assumed to be attractive,
V < 0. Although we have taken σ to be a spin index for
simplicity, we are aware that for generic topological insulator

surfaces it may be a composite spin-sublattice index.34 The
distinction makes no difference to our analysis, which involves
pairing between time reversed states (not necessarily opposite
spin states). The Pauli matrices should thus be understood as
acting in the spin/pseudospin space relevant for the surface
states, such that σ and −σ are time reversed states.

We now project onto the Cooper channel, by restricting
the interaction Hamiltonian (2) to p = −k. The projection
is appropriate for studying the superconductivity of Dirac
fermions. The projection leads to a Hamiltonian of the form
H0 + H ′

1, where H0 is given by (1) and

H ′
1 =

∑
k,q

V (q,k)ψ†
kσ0ψqψ

†
−kσ0ψ−q. (3)

We further restrict ourselves to a short range, δ function
interaction. In this case, V is independent of momenta and
we obtain the BCS Hamiltonian for Dirac fermions

HBCS =
∑

k

ψ
†
k(−μσ0 + vkxσ1 + vkyσ2)ψk

− g
∑
k,q

ψ
†
kσ0ψqψ

†
−kσ0ψ−q, (4)

where g = −V is the superconducting coupling. The rest of
this section will be devoted to solving (4).

We proceed as follows. First, we provide a general dis-
cussion aimed at classifying potential solutions of (4) into
distinct phases. Then we solve (4) along the line μ = 0.
The solution along this line is well known, but we present it
for completeness sake. Next, we discuss superconductivity in
the limit |μ| → ∞. Our discussion resolves a disagreement
between Ref. 25 and Refs. 26 and 27 as to the nature
of superconductivity in this limit, and highlights subtleties
connected with UV cutoffs and gauge ambiguities which must
be properly taken into account to understand this limit. Finally,
we solve (4) for arbitrary doping, and construct the full phase
diagram in μ-g space.

We show that the entire μ-g plane has a ground state
that belongs to a single superconducting phase, with the
exception of a single line segment along the μ = 0 line,
which is semimetallic. This follows because the Hamiltonian
(4) has a superconducting ground state for any system
with a nonvanishing density of states, for arbitrarily weak
interactions, and the low energy density of states vanishes only
on the μ = 0 line. More nontrivial is the fact that the μ > 0 and
μ < 0 superconducting regions belong in the same phase—a
phase which is fully gapped and time reversal invariant, with
an order parameter that is a real linear combination of spin
singlet and spin triplet parts. A spin triplet component emerges
because the spin singlet order induces spin triplet order at any
nonzero doping μ �= 0.

A. Symmetries and superconductivity

The most general order parameter contains spin singlet and
triplet pieces, and can be written as

� =
∑

k

〈ψk(�s,k + dk · σ )iσ2ψ−k〉.

Fermi statistics demand that �s,k = �s,−k and dk = −d−k.
The Hamiltonian is invariant under time reversal (TRS), which
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is implemented by complex conjugation, taking k → −k, and
acting with the operator iσ2. Thus, we conclude that TRS
is preserved if and only if dk/�s is a vector with purely
real components (i.e., if the superconductivity is a real linear
combination of singlet and triplet). There is also a particle
hole symmetry along the μ = 0 line and we will discuss
this symmetry when appropriate. However, this symmetry
is broken by scalar potential disorder (our primary focus in
this paper), and so we do not attach much weight to this
symmetry. However, there is a second meaningful distinction
between superconducting phases,25,35 namely whether there
exist gapless Bogoliubov–de Gennes (BdG) quasiparticles. As
we shall see, the superconducting solutions to (4) are always
fully gapped and invariant under time reversal, so the phase
diagram contains a single superconducting phase.

We assume that spin singlet superconductivity is the
primary superconducting instability. We now discuss whether
spin singlet order can induce spin triplet order. At nonzero μ,
the only symmetries are TRS (discussed above), and also a
continuous rotation symmetry implemented by the generator
Jz = Lz + 1

2σ3. Spin singlet order is even under TRS, and
has Jz = 0. Time reversal symmetry prohibits the spin singlet
order from coupling to any spin triplet order parameter with
complex dk/�s , whereas rotation symmetry prohibits it from
coupling to any spin triplet order with Jz �= 0. However, a spin
triplet order parameter with dk/�s = k is even under TRS,
has Jz = 0, and can thus couple directly to the spin singlet
order parameter. Thus, in general we expect a solution of the
form

� =
∑

k

〈ψk[�s + F (μ)k · σ ]iσ2ψ−k〉, (5)

where k = (kx,ky) and the spin triplet piece of the order param-
eter is induced by the spin singlet piece. The proportionality
constant F (μ) remains to be determined.

The Dirac point μ = 0 is special, in that a large number
of extra symmetries appear. In particular, the theory becomes
Lorentz invariant, and also there exists at μ = 0 a particle
hole symmetry,33 under which spin singlet and spin triplet
pairing are even and odd, respectively. Thus, the spin singlet
and spin triplet orders cannot couple at μ = 0, and it follows
that F (μ = 0) = 0.

The remainder of this section will be devoted to explicitly
obtaining and solving BdG equations leading to Eq. (5).
We will show that F (μ → ±∞) = sign(μ) and F (μ → 0) ∼
g′μ, where g′ is the (μ dependent) attraction in the triplet
channel. Readers uninterested in the clean system details may
skip directly to Sec. III.

B. Superconductivity along the μ = 0 line

We wish to solve HBCS at μ = 0. Since the Pauli principle
ensures that two fermions with the same spin cannot interact
through a δ-function potential, we can rewrite the Hamiltonian
as

H =
∑

k

ψ
†
k(vkxσ1 + vkyσ2)ψk

− g
∑
k,q

ψ
†
k(−iσ2)ψ†

−kψqiσ2ψ−q. (6)

Superconductivity is necessarily spin singlet, and is character-
ized by the order parameter

�s =
∑

k

〈ψk(iσ2)ψ−k〉. (7)

It is now convenient to introduce the Euclidean time
path integral representation of the partition function Z =∫
D[ψ†,ψ] exp(− ∫ β

0 dτ
∫
d2xL[ψ†,ψ]), where β is the inverse

temperature and the Lagrangian takes the form

L =
∫

d2k

(2π )2
ψ

†
k∂τψk + H,

where we have replaced the sum over momenta by an integral.
Since we are working in the path integral representation, ψ†

and ψ now represent Grassman valued fields rather than second
quantized operators. We define the four component Nambu
spinor � = (ψk,ψ

†
−k). After decoupling the four-fermion

interaction in (6) by means of a Hubbard-Stratonovich
transformation, the partition function can be rewritten as
Z = ∫

D[�†,�,�∗,�] exp(− ∫ β

0 dτ
∫

d2xL[�†,�,�∗,�]),
where � is a complex valued (bosonic) field, and

L = T
∑
ωn

∫
d2k

(2π )2
�

†
ωn,kGωn,k�ωn,k + |�s |2

2g
,

Gωn,k =

⎛
⎜⎝

iωn − μ vk+ 0 �s

vk− iωn − μ −�s 0
0 −�∗

s iωn + μ vk−
�∗

s 0 vk+ iωn + μ

⎞
⎟⎠ ,

where we have introduced the Matsubara frequencies ωn =
(2n + 1)πT , and have assumed that the s-wave order param-
eter �s is isotropic in momentum space.

We can now integrate out fermions exactly to obtain a
Lagrangian that only involves the order parameter fields. This
Lagrangian takes the form

L = −T
∑
ωn

∫
d2k

(2π )2
Tr ln Gωn,k + |�s |2

2g

= −T
∑
ωn

∫
d2k

(2π )2
ln(ω2 + v2k2 + |�s |2)2 + |�s |2

2g
.

Variation with respect to |�|2 then yields the gap equation,

2T

2π

∑
n

∫
kdk

ω2
n + v2k2 + |�s |2 = 1

2g
.

The momentum integrals carry an implicit cutoff at the
scale vk = ωD , where ωD is the Debye frequency. At zero
temperature T

∑
ωn

→ ∫
dω
2π

, and the gap equation can be
solved as √

ω2
D + |�s |2 − |�s | = 2πv2/g,

which has solutions only for

g > gc = 2πv2/ωD.

Thus we recover the well known result that superconductivity
for Dirac fermions along the μ = 0 line is a threshold
phenomenon, with the order parameter developing a nonzero
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expectation value only if interactions are strong enough. The
solutions (assuming |�s | � ωD) take the form

|�s | = ωd − 2πv2

g
≈ 2πv2

g2
c

δg,

where the approximate equality holds close to the threshold
δg = g − gc � gc, but not so close as to be governed by the
critical point. Thus, we conclude that along the μ = 0 line, the
system has spin singlet superconducting order for g > gc and
is a semimetal for g < gc. As has been pointed out in Refs. 19
and 20, the critical point g = gc has some unusual features, and
is described by an effective field theory that exhibits emergent
dynamical supersymmetry.

C. Superconductivity at large doping, μ � ωD

At large doping, the spin basis is not the most convenient
basis to work with, since the low energy states are linear
superpositions of spin up and spin down states. Instead, we
transform to a basis of + and − helicity states (upper and
lower Dirac cones) by performing a unitary transformation,
according to


k =
(

c+,k
c−,k

)
= Uψk, U = eiGφk

√
2

(
eiφk/2 e−iφk/2

eiφk/2 −e−iφk/2

)
,

(8)

where kx + iky = |k|eiφk . The requirement that U should be
single valued demands that G should be a half integer. We
wish to stress that the choice of unitary matrix in (8) is not
unique, since we can freely choose G to be any half integer.
This “gauge ambiguity” makes no difference if we work with
the full Hamiltonian. However, we will shortly be projecting
onto a single helicity basis, and the projected Hamiltonian
will look different with different gauge choices. The different
projected Hamiltonians should be understood as being gauge
equivalent.

We now use the unitary transformation (8) to express the
Hamiltonian in the helicity basis. Defining τ0 to be the identity
matrix in helicity space, and τi to be the Pauli matrices in
helicity space, we can rewrite the Hamiltonian in the helicity
basis as

H =
∑

k



†
k(−μτ0 + vkτ3)
k − g

∑
k,q

e2iG(φq−φk)

4

×

†
k

[
2 cos

(
φk − φq

2

)
τ0 + 2i sin

(
φk − φq

2

)
τ1

]

q

×

†
−k

[
2 cos

(
φk − φq

2

)
τ0 + 2i sin

(
φk − φq

2

)
τ1

]

−q,

(9)

where we have not yet specified the choice of gauge G.
It is intuitively obvious that at large doping, only states

close to the Fermi surface need to be considered, and thus one
can project onto the states with helicity sign(μ). To justify
this projection, we note that the interaction implicitly has an
ultraviolet cutoff on the scale ωD . Thus, it cannot couple states
near the Fermi surface to states further than ωD away from the
Fermi surface. If the doping |μ| > ωD , then one can project
onto states with a single helicity. The apparent neglect of this

UV cutoff in Ref. 25 explains the discrepancy between the
large doping results in Ref. 25 and Refs. 26 and 27.

We consider electron doping μ > 0. The case of hole
doping μ < 0 follows by analogy. After projection onto states
with positive helicity, the Hamiltonian becomes

H =
∑

k

c
†
+,k(−μ + vk)c+,k

− g
∑
k,q

e2iG(φq−φk) cos2

(
φk − φq

2

)
c
†
+,kc+,qc

†
+,−kc+,−q.

Now cos2 x/2 = 1
2 [1 + cos(x)] = 1

4 (2 + eix + e−ix). Thus,
note that the projected interaction has harmonics with angular
momentum 2G,2G + 1,2G − 1, where G can be any half
integer. It is most convenient to make the gauge choice
G = 1/2. Then the attractive potential has harmonics with
angular momenta l = 0, 1, 2. Note that an effective “p-wave”
(l = 1) harmonic has been generated by the projection, even
though we started with a purely s-wave interaction.36

Now since after projection we are dealing with a standard
one band BCS problem for spinless fermions, Fermi statistics
demand that the superconductivity has to be odd parity, i.e.,
�−k = −�k. Thus, the l = 0, 2 harmonics do not introduce
superconductivity, and may be projected out. We need retain
only the p = 1 harmonic, which gives us a Hamiltonian36

H =
∑

k

c
†
+,k(−μ + vk)c+,k

− g
∑
k,q

ei(φq−φk)

2
c
†
+,kc+,qc

†
+,−kc+,−q.

Proceeding to the path integral representation, and decou-
pling the four fermion interaction using an order parameter
field �+ = g

2

∑
q〈cqc−q〉eiφq , we obtain the Euclidean time

Lagrangian

L =
∑

k

c
†
+,k(∂τ − μ + vk)c+,k

+
∑

q

(�+cqc−qe
iφq + c.c.) + 1

g
|�+|2.

After integrating out the fermions, we obtain an action purely
in terms of order-parameter fields, which takes the form

L = −Tr ln
[
ω2

n + (vk − μ)2 + |�+|2] + 1

g
|�+|2,

where Tr denotes summation over Matsubara frequencies and
integration over momenta. Variation with respect to |�+|2
yields the gap equation

Tr
1

ω2
n + (vk − μ)2 + |�+|2 = 1

g
,

and summing over fermonic Matsubara frequencies gives∫
d2k

(2π )2

1

2
√

(vk − μ)2 + |�+|2 tanh

(
ξk

2T

)
= 1

g
,

where the integral goes over μ − ωD < vk < μ + ωD , and
we are working in the limit μ � ωD and we have used the
shorthand ξk =

√
((vk − μ)2 + �2). In this limit, the zero
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temperature gap equation can be solved as

ln

(ωD +
√

ω2
D + |�+|2

�+

)
= 2πv2

gμ
.

In the weak coupling limit 2πv2/gμ � 1, this gives us

|�+| = 2ωD exp

(
−2πv2

gμ

)
. (10)

Thus one concludes that there is an order parameter �+(k) =
g

2

∑
q〈cqc−q〉eiφq with expectation value given by (10). For

a different gauge choice, the expression (10) still holds,
but the order parameter instead has the form �+(k) =
g

2

∑
q〈cqc−q〉ei2Gφq . The calculation for μ < 0 is analogous,

with the only difference being that the projection is now on
the band with negative helicity. Thus, we conclude that in the
helicity basis, the order parameter takes the form

� =
∑

k

e2iGφk
〈

T

k [τ0 + sign(μ)τ3]
−k
〉
.

The BdG spectrum is fully gapped. Meanwhile, trans-
forming back to the spin basis, the order parameter

becomes

� =
∑

k

〈
�T

k [1 + sign(μ)(cos φkσ1 − sin σ2)]iσ2�−k
〉
.

(11)

Note that this is a real linear combination of spin singlet and
spin triplet terms, and thus preserves time reversal symmetry.
Thus, the superconducting state at large doping is in the
same phase (fully gapped, time reversal invariant) as the
superconducting phase at μ = 0. It seems likely that the system
should smoothly interpolate between the μ = 0 and large μ

limits. We confirm this in the next section.

D. Superconductivity at small, nonzero μ

We have solved the Hamiltonian (4) in the μ = 0 and large
μ limits. We now turn to the small μ regime. We have seen that
a finite UV cutoff ωD on the interaction generates a spin triplet
component to the interaction away from μ = 0. We therefore
introduce a weak spin triplet component into the action by
hand, and write the Lagrangian (after Hubbard-Stratanovich
decomposition) as

L =
∑

k

�
†
k

⎛
⎜⎝

iωn − μ vk+ −d1(k) + id2(k) �s + d3(k)
vk− iωn − μ −�s + d3(k) d1(k) + id2(k)

−d∗
1 (k) − id∗

2 (k) −�∗
s + d∗

3 (k) iωn + μ vk−
�∗

s + d∗
3 (k) d∗

1 (k) − id∗
2 (k) vk+ iωn + μ

⎞
⎟⎠ �k + |�s |2

2g
+

∑3
i=1 |di |2
2g′ ,

where g′ is a function of |μ|. Consistency with the μ = 0 and large μ limits requires that g′(0) = 0 and g′(|μ| > ωD) = g. We
assume that g′ interpolates smoothly in between, so that 0 < g′ < g in the small μ regime. Meanwhile, the Matsubara frequencies
are implicitly summed over, and d1,2,3 are odd functions of k.

After integrating out fermions, we obtain

L = −Tr ln

(
(ω2 + k2)2 + 2(ω2 + k2)|�s |2 + 2(ω2 − k2)|d3(k)|2 + 2

(
ω2 − k2

x + k2
y

)|d2(k)|2 + 2
(
ω2 + k2

x − k2
y

)|d1(k)|2

− 4kxky(d1(k)d∗
2 (k) + d∗

1 (k)d2(k)) + 4wkx(d3(k)d∗
2 (k) + c.c.) + 4wky(d3(k)d∗

1 (k) + c.c.) + |�s |4 +
3∑

i=1

|di(k)|4

− {
�2

s [(d∗
1 (k))2 + (d∗

2 (k))2 + (d∗
3 (k))2] + c.c.

} + [d1(k)2d∗
3 (k)2 + d1(k)2d∗

2 (k)2 + d3(k)2d∗
2 (k)2 + c.c.]

− 4kyμ(�∗
s d2(k) + �sd

∗
2 (k)) + 4kxμ(�∗

s d1(k) + �sd
∗
1 (k)) + 2μ2

(
|�s |2 +

∑
i

d2
i + ω2 − k2

)
+ μ4

)

+ |�s |2
2g

+
∑3

i=1 |di |2
2g′ , (12)

where we have set v = 1 for simplicity. Now, g > g′ in this
regime, so that �s is the primary instability. Thus, we first set
d = 0 and solve for �s , and then use this value of �s to solve
for d. Setting d = 0 in the above action, varying with respect
to |�s |2, and linearizing in small |�s | by working near Tc, we
obtain the linearized gap equation,

Tc

π

∑
n

∫
kdk

(
ω2

n + k2 + μ2
)

(
ω2

n + k2 + μ2
)2 − 4μ2k2

= 1

2g
,

where ωn are fermonic Matsubara frequencies ωn = (2n +
1)πTc. In the strong coupling limit g → ∞ the presence of
a nonzero μ is inessential and we can just use the strong
coupling solution at μ = 0. However, in the weak coupling
limit g → 0 the chemical potential is vitally important. At
μ = 0 there is no superconductivity, but as we shall discover,
superconductivity develops for any nonzero μ. To see this,
we sum over Matsubara frequencies to obtain the new gap
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equation,∫ ωD

0
kdk

[
tanh(|k + μ|/2Tc)

|k + μ| + tanh(|k − μ|/2Tc)

|k − μ|
]

= π

g
,

which defines Tc. Assuming μ � ωD , and working in the weak
coupling regime gμ � 1, this has solution

Tc ∼ ωD exp

(
− π

g|μ|
)

. (13)

Thus, we find there is a weak coupling instability to spin singlet
superconductivity at nonzero temperature for any nonzero μ.
However, the dependence on μ is strongly nonanalytic. The
expression (13) can be understood by noting that it is just the
solution of the standard BCS Hamiltonian for a system with
a low energy density of states proportional to μ. The zero
temperature gap |�s(T = 0)| is proportional to Tc.

Thus, we have determined the magnitude of the primary
superconducting order parameter �s . We now determine what
happens to the triplet fields d in the presence of the nonzero
|�s |. To see this, we expand the Lagrangian (12) in small d.
Close to Tc (13), the expansion takes the form

L = L0 +
∑
ij

αij d
∗
i dj + Tr F4kyμ(�∗

s d2(k) + �sd
∗
2 (k))

− Tr F4kxμ(�∗
s d1(k) + �sd

∗
1 (k)),

where L0 is the Lagrangian at d = 0, the matrix αij has positive
definite eigenvalues ∼1/g′, and F is a strictly positive function
of frequencies and momenta, which is even in ω and k. The
positivity of the eigenvalues of αij ensures that the critical
temperature for spin triplet order to develop in the absence
of spin singlet order is lower than the Tc (13). This condition
must be satisfied in order for �s to be the primary instability.

Now note that at finite μ, a nonzero �s automatically
generates a nonzero d1,2 ∼ μ�s . This can be straightforwardly
verified by minimizing with respect to di . In effect, �s

acts as a symmetry breaking field for the di at nonzero
chemical potential. Moreover, the structure of the Landau
expansion picks out d1 ∼ kx/k = cos θk and d2 ∼ ky/k =
sin θk, so that the integrals when multiplied by kx and ky ,
respectively, are nonvanishing. Thus, we find that at small μ,
the superconducting order parameter takes the form

�+ =
∑

k

〈
�T

k [1 + Kg′μ(cos φkσ1 − sin σ2)]iσ2�−k
〉
,

(14)

where K is some undetermined positive constant and where
g′ is a function of g, μ, and ωD . The attraction in the triplet
channel g′ may already be nonzero at the bare level, and it can
be verified that a g′ interaction is also generated at second order
in perturbation theory in small g. If g′(μ = 0) = 0, then the
leading contribution to g′ appears to scale as g′ ∼ μ2g2/ω3

D .
However, we have not verified this result and a rigorous
determination of g′(g,μ,ωD) lies beyond the scope of this
work. Moreover, the behavior of g′(g,μ,ωD) at strong coupling
and near the critical point g = gc lies beyond the reach of
perturbation theory in g, and may be a interesting topic for
further work. Near the critical point g = gc, the expression
(14), which is based on mean field theory, may also be invalid,
and the nature of the singlet-triplet coupling near the critical

point is an interesting topic for future study. For our present
purposes, it is sufficient to note that we can smoothly go from
the time reversal symmetric, gapped superconducting state at
μ = 0 to the time reversal symmetric, gapped state at large μ,
according to (14).

The phase diagram follows straightforwardly. The line
segment μ = 0,g < gc is semimetallic, and everywhere else
in the μ-g plane there is a single superconducting phase, which
is gapped and time reversal symmetric. The structure of the
order parameter evolves smoothly according to

�+ =
∑

k

〈
�T

k [1 + F (μ)(cos φkσ1 − sin σ2)]iσ2�−k
〉
,

(15)

where F (μ) interpolates smoothly between the limits F (μ) =
Kg′(g,μ,ωD)μ for small μ and F (μ) = sign(μ) for large
|μ| > ωD .

III. MEAN FIELD SUPERCONDUCTIVITY
OF DISORDERED DIRAC FERMIONS

In this section we discuss the superconductivity of Dirac
fermions in the presence of disorder. The section is structured
as follows: First, we discuss disorder in the strength of the
attraction g. We discuss the Harris criterion for determining
the relevance of disorder, and show that the disorder is Harris
relevant at the critical point μ = 0 and g = gc. Thus, any
disorder in the attraction strength must change the universality
class of the critical point. Next, we consider disorder in the
chemical potential μ. We show that disorder in the chemical
potential is relevant for g < gc on the μ = 0 line, and that it
destroys the semimetal phase (Fig. 1) by introducing a nonzero
density of states. The nonvanishing density of states in turn
introduces a weak coupling instability to superconductivity.
In the presence of chemical potential disorder, the zero
temperature phase diagram in the entire μ-g plane thus
contains a single phase—a superconductor. We are thus driven
to the remarkable conclusion that at μ = 0 and g < gc the
presence of disorder actually enhances superconductivity. By
introducing a nonvanishing density of states, disorder allows

FIG. 1. (Color online) Phase diagram of clean Dirac fermion
system. Along the line segment μ = 0, g < gc the semimetal phase
(SM) is stable. Everywhere else the ground state is a superconductor
(SC) which has a fully gapped Bogolioubov–de Gennes spectrum
and which preserves time reversal symmetry. There is a single
superconducting phase, with an order parameter that is given by (15).
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superconductivity to develop in what would have been a
semimetallic phase had disorder not intervened.

The rest of this section is focused on understanding
the behavior along the μ = 0 line, in the weak coupling
regime, in the presence of disorder. We show that for smooth
chemical potential disorder, where the disorder is correlated
over length scales large compared to the superconducting
coherence length, the superconducting critical temperature Tc

may be extracted from the clean system results by treating
the system as being “locally doped.” Meanwhile, for short
range correlated chemical potential disorder (which we model
using “δ function impurities”), we derive an estimate for
Tc based on a “uniform mean field” calculation similar in
spirit to the standard Abrikosov-Gorkov theory2 for disordered
superconductors. This estimate for Tc is doubly exponentially
small in the disorder strength.

A. Disorder in g

First, we consider static disorder in g, i.e., we allow g to be
spatially nonuniform, fluctuating about some mean value 〈g〉.
The fluctuations in g are assumed to be independent of time.
The only critical point in the phase diagram Fig. 1 that is tuned
by g is the critical point on the μ = 0 line at g = gc, which
was argued to display emergent supersymmetry in the clean
system.19,20 Whether disorder changes the universality class
depends on whether the Harris criterion is satisfied.37 The
Harris criterion states that disorder changes the universality
class if

νd < 2, (16)

where d is the spatial dimension and ν is the critical exponent
for the correlation length ξ , which diverges near the critical
point as ξ ∼ (g − gc)−ν . Intuitively, if the Harris criterion is
satisfied, then the typical fluctuation in g, averaged over a box
of size ξd , is greater than the remaining distance to the critical
point.

For the particular critical point under consideration here,
ν ∼= 3/4 (to leading order in an ε expansion) and d = 2.38

The Harris criterion is therefore satisfied, and disorder in the
interaction strength is a relevant perturbation. It thus follows
that disorder in g should change the universality class of
the interaction. A determination of the “true” critical point
is beyond the scope of this paper.

B. Disorder in μ

Static disorder in μ has an even more dramatic effect: It
destroys the semimetal phase by producing a nonvanishing
density of states. The Harris criterion is the wrong framework
for analyzing the effect of chemical potential disorder. The
Harris criterion applies at a critical point which separates
regions that are in distinct phases. Meanwhile, the semimetal
phase along the μ = 0 line separates two regions which
are in the same phase. As a result, all fluctuations about
the semimetal phase place us in the same superconducting
phase. The relevance of chemical potential disorder was also
established using renormalization group arguments in Ref. 12.
In this paper we will consider two distinct models of disorder:

smooth disorder and δ function disorder. We discuss each in
turn.

1. Smooth disorder

The first model we will consider is of smooth disorder.
Smooth disorder may be modeled by taking the Hamiltonian
(4) at μ = 0 and adding a term Hd , where

Hd =
∫

d2rμrψ
†
r σ0ψr, (17)

〈μr〉 = 0, 〈μrμr′ 〉 = μ2
0 exp

(
− |r − r′|2

2R2

)
. (18)

The correlation length for the disorder R is assumed to be much
longer than the superconducting coherence length specified in
(20). In this limit, the system can be thought of as “locally
doped,” and consisting of a network of large electron and hole
puddles. In each puddle, superconductivity develops as if the
system were doped with chemical potential μ0. In the weak
coupling limit, the local order parameter at zero temperature
is

�0 ∼ ωD exp(−πv2/gμ0), (19)

which sets a coherence length

ξ = v

�
= v

ωD

exp(πv2/gμ0). (20)

This coherence length must be much smaller than the puddle
size R to be in the smooth disorder regime.

Thus, smooth potential disorder destroys the semimetal
phase, replacing it by a network of large electron and
hole doped puddles, each of which individually becomes
superconducting, with a critical temperature of order (19).
However, for the sample to be globally superconducting, it is
essential that the various electron and hole doped puddles be
phase coherent.

2. Phase coherence of locally superconducting puddles

To estimate the critical temperature for phase coherence of
locally superconducting puddles, we consider a specific model
for disorder, which takes the form

μr = μ0 sin(x/R) sin(y/R), (21)

where R is much greater than the coherence length (20). This
has electron and hole doped regions, as well as intermediate
regions which are close to undoped. The local coherence length
scales as

ξr = ξ
μ0/μr
0 (ωD/v)−1+μ0/μr ,

where ξ0 is defined by (20). Now the region near x = 0
with x < ξ (x) can be thought of as an undoped “barrier”
region separating electron and hole doped islands. From this
we conclude that the undoped barrier regions have width
R/ ln(R/ξ0).

Crucially, electron and hole doped puddles enter the same
superconducting phase (Fig. 1), which is mostly spin singlet
� ∼ 〈ψiσ2ψ〉 for weak disorder μ0 � ωD . The Josephson
coupling between regions of size R × R and local order
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parameter �0, separated by a barrier region of width W is39

J = �0
ξ0R

2

W 3
. (22)

Global phase coherence survives up to temperatures of
order T ≈ J . Substituting W ≈ R/ ln(R/ξ0) into the above
equation, we obtain an estimate for the critical temperature for
global phase coherence,

Tc ≈ �0
ξ0 ln3(R/ξ0)

R
, (23)

where �0 is defined by (19). Thus, global superconductivity
is weaker than local superconductivity by the small parameter
ξ0/R � 1.

Note that the global Tc increases as R is made smaller,
and appears to diverge as R → 0. However, the analysis is
only valid in the smooth disorder regime ξ0/R � 1 (and also
in the weak disorder regime μ0 � ωD). Thus, the global Tc is
always smaller than the local puddle Tc by the small parameter
ξ0/R � 1.

3. δ function disorder

In the strict weak coupling limit, g → 0, the coherence
length (20) diverges, and disorder cannot be modeled as
being smooth. There is therefore a need for a theory of
superconductivity in the presence of short range disorder. The
simplest possibility is to consider the limit R → 0 in (18). This
may be modeled by adding to the Hamiltonian (4) N randomly
placed positive δ function impurities with impurity strength V ,
and an equal number of randomly placed negative δ function
impurities

H = HBCS + V
∑

i

ηiδ(xi), (24)

where ηi = ±1, and V is the strength of the disorder.
We assume that the “impurities” are placed at random, so

that the disorder concentration in a box of size L is Poisson
distributed,

PL(n±) = 1√
2πn0/L2

exp

[
−L2 (n± − n0/2)2

n0

]
. (25)

Here PL(n±) is the probability that an L × L square box
contains ± impurities with a concentration n±, n0 is the mean
total density of impurities. L must be much bigger than the
typical distance between impurities, l0 = 1/

√
n0.

C. Density of states from short range disorder

In this section we discuss the density of states arising from
short range disorder, in the absence of any interaction (g = 0).
The density of states depends strongly on energy. For the clean
system, the density of states scales as

νclean = ε

2πv2
. (26)

Meanwhile, an energy scale ε also sets a wavelength λ = v/ε.
An electron with wavelength λ “probes” all impurities within a
box of size λ × λ, and sees a local imbalance δn = n+ − n− �=
0, which give rise to a local chemical potential μ = V δn. This

in turn enhances the density of states according to

δν = V |δn|
2π (h̄vF )2

.

Now the probability distribution for δn is

P (δn) =
∫

dnP (n+ = n + δn/2)P (n− = n − δn/2)

= 1√
4πn0/λ

exp

(
− λ2 δn2

2n0

)
,

which can be turned into a probability distribution for the
correction to the density of states coming from a local
imbalance

P (δνλ) = λ4π

V
√

2πn0
exp

[
−λ2 (2πv2)2δν2

λ

V 22n0

]
. (27)

The root mean square density of states from local imbalance
scales as

δν imbalance
rms = V

√
n0

λ2πv2
.

Thus, at the energy scale ε = v/λ, the correction to the density
of states from local shifts of the chemical potential is

δν imbalance
rms (ε) = V

√
n0

2πv3
ε.

This scales with energy in the same way as (26). Thus, the
“local chemical potential” merely changes the coefficient in
(26) and does not qualitatively alter the energy dependence of
the density of states. However, there is a second contribution
to the density of states, which comes about due to scattering
of the electrons.

1. Density of states from scattering

The density of states can be extracted from the electron
Green function according to

ν(ω) = − 1

π
Tr Im G(ω),

where G is the retarded Green function. Now, the Green func-
tion for a Dirac fermion at μ = 0, after ensemble averaging
over disorder, takes the form

〈k|G(ω)|k〉 = 1

ω − vF k + i/τ
,

where the scattering time τ may be estimated using the self-
consistent Born approximation (SCBA) as in Ref. 40. This
gives rise to a density of states equal to

νSCBA(ω → 0) = �

n0V 2
exp

(
− v2

n0V 2

)
, (28)

where � is an ultraviolet cutoff of order the electronic
bandwidth and n0 is the mean density of impurities. Note
that there is a nonvanishing density of states even at zero
energy. Thus, scattering on disorder destroys the semimetal
phase, in agreement with Ref. 12. The SCBA applies in the
weak disorder limit n0V

2/v2 � 1. In the strong disorder limit
the zero energy density of states scales linearly with impurity
concentration, and can be thought of as coming from low
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energy bound states. In this paper we will focus on the weak
disorder limit.

D. Superconductivity from short range disorder

We observed that in the presence of short range disorder,
the system develops a nonvanishing density of states. In the
presence of a nonvanishing density of states, there is a weak
coupling instability to superconductivity. In this section we
search for a spatially uniform superconducting phase in the
weakly disordered Dirac fermion system.

We have a disordered system of Dirac fermions. The exact
single particle eigenstates of the disordered system are |ψα〉.
The disorder is time reversal preserving. Thus, Kramer’s
theorem holds and all states come in Kramer’s doublets |ψα,σ 〉,
where σ is a Kramer’s index. Let τ be Pauli matrices acting in
the space of the Kramer’s doublet. The BCS Hamiltonian can
then be written as

H =
∑

α

εαψ†
ατ0ψα − gαβ(ψ†

αiτ2ψ
∗
α )

(
ψT

β iτ2ψβ

)
,

where repeated indices are summed over. As usual, we have
projected the interaction onto the BCS channel. We introduce
a pairing field

�β =
∑

α

gβα

〈
ψT

α iσ2ψα

〉
by going to the path integral and using a Hubbard Stratanovich
transformation. After decoupling the four fermion interaction,
we obtain a Lagrangian of the form

L = ψ†
α(iωn − εα)σ0ψα + �∗

αψαiσ2ψα + c.c.

+
∑
αβ

�∗
αg−1

αβ �β

2
,

where ωn is a fermionic Matsubara frequency. Upon going
to the Nambu spinor basis and integrating out the fermions
exactly, we obtain an action purely for the order parameter
fields, which takes the form

L = −Tr ln
[
ω2

n + ε2
α + |�α|2] +

∑
αβ

�∗
αg−1

αβ �β

2
.

From this we obtain the gap equation, which after integration
over Matsubara frequencies (at zero temperature) takes the
form ∑

α

�α√
ε2
α + �2

α

=
∑

β

g−1
αβ �β. (29)

Note that we have not made any approximations in deriving
(29) (except for projecting the interaction on the BCS channel).
So far, everything is exact, for a given realization of disorder.

Now we ensemble average over disorder. After ensemble
averaging over disorder, translation invariance is restored, and
the eigenstates are indexed by momentum. The interaction is
a constant in momentum space, so that the gap equation takes
the form ∫

ν(ε)dε√
ε2 + �2

α

= 1

g̃
, (30)

where ν is the disorder averaged density of states and g̃ is
the disorder averaged interaction. This “disorder averaged gap
equation” is the naive Dirac fermion analog of the “Abrikosov-
Gorkov” theory for superconductivity in disordered metals.2

Now, the vertex correction to g arising from disorder at the
one loop level is convergent, so that disorder does not produce
a singular renormalization of g. We have g̃ = Ag, where A is
some O(1) prefactor. We drop this prefactor for compactness,
and use g̃ = g. Substituting (28) into (30) and solving, we
obtain

Tc ≈ � ∼ ωD exp

(
−τ

g

)

∼ ωD exp

[
−n0V

2

gv
exp

(
v2

n0V 2

)]
, (31)

where the scattering time τ is exponentially sensitive to
disorder strength. Note that there is a nonzero Tc for any
value of g, however small. However, the critical temperature
is doubly exponentially small in the disorder strength. As we
shall see later in the paper, (31) is a gross underestimate of the
strength of the superconducting instability in the disordered
system. The true Tc is actually only exponentially small in
weak disorder, not doubly exponentially small. However, we
stress that Tc is nonzero even in (31), i.e., even though the
clean system does not superconduct, the introduction of weak
short range disorder introduces a weak coupling instability
to superconductivity. This disorder has the surprising effect of
enabling superconductivity by destroying the semimetal phase.

IV. SUPERCONDUCTIVITY FROM RARE PUDDLES

In this section we investigate the possibility that supercon-
ductivity may actually develop at a temperature much higher
than (31), because of mesoscopic fluctuation effects that are
ignored in the uniform mean field analysis. The analysis in
this section is inspired by the work4–6 on superconductor
to metal transitions in the presence of disorder, but with
important differences arising from the different nature of the
order parameter, and the fact that the “critical point” μ = 0
now separates two regions in the same phase rather than two
regions in different phases.

The specific possibility that we investigate is the following:
In a sample where disorder is weak and the density of states
is small, there may nonetheless be regions where disorder
is stronger, and the local density of states is larger. These
regions will have strongly enhanced local superconductivity.
Even small fluctuations in the disorder concentration will
have large effects on the local Tc, because of the double
exponential sensitivity of Tc to disorder concentration (31).
Thus, one expects that in any disordered sample there will
be regions where the local Tc is much higher than (31). If
the Josephson coupling between these locally superconducting
regions is strong enough to establish global phase coherence,
then the sample will superconduct. The critical temperature for
this “puddle based superconductivity” will be the temperature
at which the locally superconducting regions lose phase
coherence (Fig. 2). As we will show, this temperature is only
exponentially sensitive to disorder concentration, unlike the
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FIG. 2. (Color online) Schematic illustration of puddle based
superconductivity. There are rare puddles which develop supercon-
ductivity, and Josephson coupling then establishes phase coherence
between these puddles. Although the energy scale for Cooper pairing
on each superconducting puddle is of order ωD , thermal fluctuations
destroy long range phase ordering when the temperature becomes
of order the typical Josephson coupling. This leads to an estimated
critical temperature which is exponentially small in weak disorder,
Eq. (42).

double exponential dependence in (31). Thus, it represents a
strong enhancement over (31).

This section is structured as follows: First we discuss the
probability that a region of size L is locally superconducting,
and find the most likely size of superconducting puddle L∗.
Then we discuss the Josephson coupling between supercon-
ducting regions, and the temperature at which global phase
coherence is established. The discussion assumes that disorder
is weak and dilute, i.e., the sample is “almost clean.” We
conclude by making a few comments on the “gauge glass”
behavior that arises when external magnetic field is applied.

A. Optimum size of superconducting puddles

What is the probability that a puddle of a given size L

displays local superconductivity at a given temperature T ?
Maximizing this probability by varying L will tell us the
optimal size of the superconducting puddle.

We assume that the following equation is true:

Tc(r) ≈ ωD exp[−1/gν(r)],

where Tc(r) is the local Tc in a region of size of order the
coherence length, and ν(r) is the local density of states in this
region. A puddle of size L will be locally superconducting
if and only if the following two conditions are satisfied:
(i) The local Tc � T and (ii) the puddle is bigger than the
local coherence length L � (h̄vF /ωD) exp(1/gν).

We can reformulate this as a condition on the density
of states of the puddle. A puddle of size L will be locally
superconducting if and only if the density of states per unit
area on the puddle

ν � νmin = max

[
1

g ln ωD/T
,

1

g ln(ωDL/h̄vF )

]
. (32)

The probability that the puddle is superconducting is given by∫ ∞
νmin

dνP (ν).
It is useful to define the thermal length

LT = v/T . (33)

For puddles bigger than the thermal length, the temperature is
the key cutoff,

PSC(L > LT ) =
∫ ∞

1/(g ln LT /a)
dνP (ν). (34)

Meanwhile, for puddles smaller than the thermal length, the
puddle size is the key cutoff,

PSC(L < LT ) =
∫ ∞

1/(g ln L/a)
dνP (ν). (35)

Now, the density of states arises from disorder, and we can
reexpress

PSC(L) =
∫ ∞

νmin

dν P (ν) =
∫ ∞

nmin

dnP (n), (36)

where νmin = 1
g

max( 1
ln LT /a

, 1
ln L/a

), and ν is related to the local
disorder concentration n by Eq. (28). In the weak disorder
regime, Eq. (28) tells us that νmin sets

nmin = v2

V 2 ln(�/n0V 2νmin)
. (37)

Meanwhile, P (n) is given by

PL(n) = 1√
2πn0/L2

exp

[
−L2 (n − n0)2

n0

]
. (38)

It is easier to integrate over P (n) since this distribution is just
Gaussian.

Upon substitution into (35) we find that the probability of
superconductivity is

PSC(L) = 1

2
erfc

[
L(nmin − n0)√

n0

]
,

where we assume nmin � n0, otherwise we are just dealing
with uniform mean field superconductivity. Now nmin is given
by (37) and νmin is given by (32). Thus, nmin has a log(log)
dependence on L. Substituting into the above equation and
plotting, we find that PL(SC) is a monotonically decreasing
function of puddle size over the entire range of sizes satisfying
n0L

2 � 1, with smaller puddles being exponentially more
likely to be superconducting.

Thus, smaller sized puddles are much more likely to
superconduct. The smallest sized puddle that it is meaningful
to talk about is a puddle with size of order l0 ≈ 1/

√
n0, where l0

is the typical spacing between impurities (which is assumed to
be large in the weak disorder regime). Thus, the most probable
superconducting puddle has a size of order l0. The local Tc

for this puddle may be determined by remembering that this
puddle has a local coherence length (at zero temperature) of
order l0. Thus v/� ≈ v/Tc ≈ l0. This gives rise to a local
critical temperature

T loc
c ∼ v

√
n0. (39)

In the weak disorder regime n0 → 0 this is small, but it is
only linearly small in weak disorder, not doubly exponentially
small. Thus, the local Tc for the superconducting puddles is
enormously enhanced over the uniform mean field Tc.

174511-11



NANDKISHORE, MACIEJKO, HUSE, AND SONDHI PHYSICAL REVIEW B 87, 174511 (2013)

The probability that a given region of size l0 superconducts
is

PSC(l0) ≈ erfc

[
l0(nmin − n0)√

n0

]

= erfc

[
v2

n0V 2 ln
( gv ln(ωD/v

√
n0)

n0V 2

) − 1

]
.

Now v2/n0V
2 � 1 to be in the weak disorder regime, so the

above probability is much less than one. We can approximate
it as

PSC(l0) ∼ exp

[
− v4

n2
0V

2 ln2
(

gv

n0V 2

)
]

,

where we have neglected double log terms. The typical
separation between superconducting puddles is then R, where

R ∼ l0 exp

[
1

2

v4

n2
0V

2 ln2
(

gv

n0V 2

)
]

� l0. (40)

In order for the sample to be globally superconducting, the
Josephson coupling between distant puddles must be strong
enough to establish phase coherence.

B. Josephson coupling between distant puddles

In order for the puddles to be phase coherent, the thermal
length must be larger than the typical interpuddle spacing,
otherwise thermal decoherence will destroy the Josephson
coupling. This sets a bound on the temperature for global
phase coherence:

TKT � v
√

n0 exp

[
−1

2

v4

n2
0V

2 ln2
(

gv

n0V 2

)
]

= T loc
c exp

[
−1

2

v4

n2
0V

2 ln2
(

gv

n0V 2

)
]

. (41)

This is exponentially smaller than the local Tc (39), but note
that it is still only exponentially small in weak disorder, not
doubly exponentially small.

As long as the bound (41) is satisfied, we can model the
Josephson coupling between puddles using the zero tempera-
ture results obtained by Ref. 39. In Ref. 39 it was determined
that the Josephson coupling between distant puddles at zero
temperature scales as

J = vW 2

R3
,

where W ≈ l0 is the size of the puddle and R is the typical inter-
puddle separation (40), and the intervening region is modeled
as being at the Dirac point. Note that the Josephson coupling is
power law with distance, and hence long ranged. Taking into
account the finite density of states in the intervening region
will alter the power, making the Josephson coupling decay
more slowly with distance, but we use the above result to be
conservative. Taking into account the finite density of states in
the intervening region will just add an O(1) prefactor to the
exponent in (42) (and will enhance the critical temperature).

Note that since the superconductivity is mostly s wave close
to the Dirac point, the Josephson coupling is unfrustrated. This

is a major difference to Refs. 4–6, where frustration arising
from the d-wave nature of the order parameter dramatically
impacted the physics.

The unfrustrated Josephson coupling will be strong enough
to establish phase coherence up to a temperature TKT ∼ J .
This tells us that the maximum temperature up to which global
phase coherence can be expected to occur is

TKT = v
√

n0 exp

[
−3

2

v4

n2
0V

2 ln2
(

gv

n0V 2

)
]

= T loc
c exp

[
−3

2

v4

n2
0V

2 ln2
(

gv

n0V 2

)
]

. (42)

This is a smaller temperature than the thermal bound (41), so
we conclude that this is the true critical temperature at which
global phase coherence is lost. Note that this temperature is
only exponentially small in weak disorder, not doubly expo-
nentially small as in (31). Thus, the critical temperature arising
from rare superconducting puddles with phase coherence is
enormously higher than the critical temperature for uniform
superconductivity.

C. Magnetic field and gauge glass behavior

In the above discussion, the Josephson coupling between
superconducting puddles was unfrustrated because each pud-
dle is mostly s wave. The application of a transverse magnetic
field frustrates the Josephson coupling, introducing a random
phase difference

∫
A · dr to each Josephson link, where A

is the magnetic vector potential and the integral goes along
the line connecting two puddles. At zero temperature, this
turns the globally phase coherence superconductor into a
gauge glass.41,42 At finite temperature, vortex creep (i.e., phase
slips across the Josephson junctions) will introduce a nonzero
resistance. Increasing temperature at nonzero magnetic field
then drives a smooth crossover to the high temperature
semimetallic phase.

D. Fate of the triplet pairing mode

In Sec. II we showed that in the clean system away from
charge neutrality μ �= 0, s-wave pairing induces spin triplet
“p-wave” pairing, with the p-wave amplitude being small
when μ � ωD . Insofar as a particular puddle has μ �= 0, s-
wave pairing will also induce some local p-wave component of
the order parameter. However, this p-wave component will be
small, and moreover the Josephson couplings between p-wave
pieces will be strongly frustrated, and so we do not expect any
long range ordered p-wave component to the order parameter.

V. REPLICA RENORMALIZATION GROUP

In this section we examine the interplay of disorder and
superconductivity using a perturbative renormalization group
(RG) treatment. This technique is appropriate for studying
what happens close to the supersymmetric critical point μ = 0,
g = gc. The clean critical point is perturbatively accessible
in the ε expansion38,43 close to four space-time dimensions.
To take the disorder into account we use the replica trick.44

We first show in Sec. V A using a one-loop RG analysis that

174511-12



SUPERCONDUCTIVITY OF DISORDERED DIRAC FERMIONS PHYSICAL REVIEW B 87, 174511 (2013)

chemical potential disorder is perturbatively irrelevant at the
supersymmetric critical point. However, this result is deceptive
because chemical potential disorder generates disorder in the
BCS coupling at the two-loop level, and this type of disorder
turns out be relevant at the critical point as shown in Sec. V B.

A. Chemical potential disorder

We consider the problem of Dirac fermions ψ coupled to
the bosonic s-wave superconducting order parameter φ ≡ �s .
The Euclidean Lagrangian is19,20

L = iψ(γ0∂τ + cf γi∂i)ψ + 1

2

(|∂τφ|2 + c2
b|∂iφ|2)

+ r

2
|φ|2 + λ

4!
|φ|4 + h(φ∗ψT iγ2ψ + H.c.) + μ(x)ψ†ψ,

where ψ = ( ψ↑ ψ↓ )T is a two-component spinor, cf is
the fermion velocity, cb is the boson velocity, λ > 0 is a
contact four-boson interaction, h is a boson-fermion coupling,
and r ∼ (gc − g) is a parameter which drives the quantum
phase transition between the Dirac semimetal (r > 0) and the
superconductor (r < 0). The Dirac conjugate is ψ = −iψ†γ0,
where we choose the Dirac matrices to be γ0 = σ3, γ1 = σ1,
and γ2 = σ2, where σi , i = 1, 2, 3 are the Pauli matrices. Short
range chemical potential disorder is modeled by a random
variable μ(x) with Gaussian distribution centered at zero,

P [μ(x)] ∝ e− ∫
ddx μ(x)2/2�μ,

where �μ ∼ n0V
2 is the disorder strength. The disorder can be

integrated out using the replica trick.44 The replicated action
takes the form

S = Sf + Sb + Sbf + Sdis, (43)

with

Sf =
n∑

a=1

∫
dDx iψa(γ0∂τ + cf γi∂i)ψa,

Sb =
n∑

a=1

∫
dDx

[
1

2

(|∂τφa|2 + c2
b|∂iφa|2

)

+ r

2
|φa|2 + λ

4!
|φa|4

]
,

(44)

Sbf =
n∑

a=1

∫
dDx h

(
φ∗

aψ
T
a iγ2ψa + H.c.

)
,

Sdis = −�μ

2

n∑
a,b=1

∫
ddx

∫
dτ

∫
dτ ′

× (ψ†
aψa)(x,τ )(ψ†

bψb)(x,τ ′),

where n is the replica index to be set to zero at the end of the
calculation. We denote the number of space-time dimensions
by D = 4 − ε and the number of spatial dimensions by d =
D − 1. The clean supersymmetric critical point is accessible
with a one-loop calculation,38,43 hence we perform a one-loop
calculation including disorder. The one-loop diagrams for the
boson and fermion two-point functions are given in Fig. 3, and
those for the four-boson vertex are given in Fig. 4(a), the unique
one-loop diagram for the boson-fermion vertex is given in

FIG. 3. One-loop diagrams in the theory with chemical potential
disorder for (a) boson mass, field, and velocity renormalization and
(b) fermion field and velocity renormalization. The dashed lines
represent boson propagators and the solid lines represent fermion
propagators. The φ4 coupling λ is represented by four dashed
lines meeting at a point, and the disorder-induced coupling �μ is
represented by four solid lines meeting at a point. A dashed line
ending on a solid line corresponds to the boson-fermion coupling h.

Fig. 4(b), and the one-loop diagrams for the disorder-induced
four-fermion vertex are given in Fig. 5. The lack of Lorentz
invariance in the bare theory (cf �= cb) leads to anisotropic
momentum integrals which are handled using an approach
similar to that of Ref. 45. We write the space-time momentum

as (p0,p) = pn, where p is the magnitude p =
√

p2
0 + p2 and

n is a unit vector. The angular integral
∫

d�n only contains
information about the anisotropy cf �= cb and does not diverge.
We evaluate it in four dimensions, i.e., over the unit three
sphere. The integral over the magnitude p typically diverges in
four dimensions and is evaluated in D = 4 − ε dimensions. In
Fig. 5 only the first three diagrams contribute. The remaining
diagrams cannot generate an effective interaction which is
nonlocal in time, and therefore do not renormalize �μ. On
the critical hypersurface r = 0, the one-loop RG equations are
obtained as follows:

dcf

d�
= 32h2(cb − cf )

3cb(cb + cf )2
− �μ

cf

,

dcb

d�
= −2h2

(
c2
b − c2

f

)
cbc

3
f

,

dλ

d�
=

(
ε − 8h2

c3
f

)
λ − 5λ2

3c3
b

+ 192h4

c3
f

,

dh2

d�
= εh2 −

[
1

c3
f

+ 8

cb(cb + cf )2

]
4h4,

FIG. 4. One-loop diagrams in the theory with chemical potential
disorder for renormalization of (a) the four-boson coupling λ and
(b) the boson-fermion coupling h.

174511-13



NANDKISHORE, MACIEJKO, HUSE, AND SONDHI PHYSICAL REVIEW B 87, 174511 (2013)

FIG. 5. One-loop diagrams in the theory with chemical potential
disorder for renormalization of the disorder strength �μ.

d�μ

d�
=

[
−1 + ε − 32h2

cb(cb + cf )2

]
�μ,

to O(ε). We search for the clean supersymmetric critical
point and linearize the RG equations around that fixed point.
We indeed find a clean fixed point (�∗

μ = 0) with emergent
Lorentz invariance (c∗

f = c∗
b = c = 1) and emergent N = 2

supersymmetry [(h2)∗ = ε
12 , λ∗ = ε] corresponding to the

Wess-Zumino model with one chiral multiplet.20 A study of
the full RG equations including the flow of r shows that the
fixed point is indeed at r∗ = 0. Linearizing the RG equations
at the critical point, we find one relevant direction, one
marginal direction, and four irrelevant directions. The relevant
direction corresponds to the mass parameter r with eigenvalue
yr = 2 − ε + O(ε2), which gives an order parameter exponent
ν = 1

2 + ε
4 + O(ε2) in agreement with Ref. 43. This is the

direction which drives the transition. The difference of fermion
and boson velocities cf − cb as well as the couplings λ and h2

have a nonzero projection only along irrelevant directions.
(The sum of fermion and boson velocities cf + cb has a
nonzero projection along the marginal direction.) The only
direction along which the disorder strength �μ has a nonzero
projection is also irrelevant, with eigenvalue

y�μ
= −1 + ε

3
+ O(ε2), (45)

which is negative and thus irrelevant for small ε, and even in
the limit ε → 1 corresponding to the physical case of 2 + 1
dimensions [although corrections of O(ε2) cannot be neglected
in this case]. Therefore disorder in the chemical potential
appears to be an irrelevant perturbation at the supersymmetric
critical point.

B. Disorder in the BCS coupling

The analysis in the previous section could lead us to believe
that the supersymmetric critical point is stable against disorder
in the chemical potential. However, disorder in the chemical
potential will induce randomness in the coefficient of the |�s |2
term in the Landau-Ginzburg action (12) as can be seen from
the presence of a μ2|�s |2 term in the clean case. In other
words, an interaction of the form (44) but for the bosonic order
parameter φ will be generated at two loops, with a coefficient
�V ∝ h4�μ. This was missed in our one-loop calculation

FIG. 6. One-loop diagrams in the theory with boson mass
disorder for (a) boson mass, field, and velocity renormalization and
(b) fermion field and velocity renormalization. The disorder-induced
four-boson coupling �V is represented by a square box.

for chemical potential disorder. However, this interaction is
perturbatively relevant at the Gaussian fixed point and should
be included in the calculation. More generally, randomness in
the BCS coupling g also gives rise to a random coefficient
for the |�s |2 term. As a result, at the critical point, chemical
potential disorder is a dangerous irrelevant perturbation, which
generates a relevant four-boson term. We therefore repeat the
one-loop RG analysis but replace Eq. (44) by this four-boson
term. The Euclidean action again takes the form (43), but with
Sdis given by

Sdis = −�V

2

n∑
a,b=1

∫
ddx

∫
dτ

∫
dτ ′

× (φ∗
aφa)(x,τ )(φ∗

bφb)(x,τ ′),

where �V ∝ h4�μ ∼ n0V
2 is the disorder strength. The one-

loop diagrams for the boson and fermion two-point functions
are given in Fig. 6, and those for the boson four-point functions
are given in Fig. 7. Four-fermion interactions will be generated
under the RG but are irrelevant for small ε. In contrast with the
time reversal symmetry breaking transition for Dirac fermions
where the order parameter is in the particle-hole channel,45,46

here there is no renormalization of the boson-fermion vertex
at one loop. On the critical hypersurface r = 0, the one-loop

FIG. 7. One-loop diagrams in the theory with boson mass
disorder for renormalization of (a) the four-boson coupling λ and
(b) the disorder strength �V . In this case there is no renormalization
of the boson-fermion vertex at one loop.
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RG equations are

dcf

d�
= 32h2(cb − cf )

3cb(cb + cf )2
,

dcb

d�
= −2h2

(
c2
b − c2

f

)
cbc

3
f

− �V

c3
b

,

dλ

d�
=

(
ε − 8h2

c3
f

+ 20�V

c4
b

)
λ − 5λ2

3c3
b

+ 192h4

c3
f

,

dh2

d�
=

(
ε − 2�V

c4
b

)
h2 −

[
1

c3
f

+ 8

cb(cb + cf )2

]
4h4,

d�V

d�
=

(
1 + ε − 8h2

c3
f

− 4λ

3c3
b

)
�V + 12�2

V

c4
b

,

to O(ε). We find the same clean (�∗
V = 0) supersymmetric

fixed point as before. Linearizing the RG equations around
this fixed point, this time we find two relevant directions, one
marginal direction, and three irrelevant directions. One of the
relevant directions corresponds to the mass parameter r with
the same eigenvalue yr = 2 − ε + O(ε2) as before. The other
relevant direction is the only one with a nonzero component
along the disorder strength �V , and has the eigenvalue

y�V
= 1 − ε + O(ε2),

which is greater than zero and thus relevant for small ε. In
fact, all couplings (including the difference between boson and
fermion velocities) have a nonzero projection onto this relevant
direction. The criterion for the relevance of disorder y�V

> 0
is equivalent to the Harris criterion, which in the context of
the ε expansion should be written as d < 2yr with d = D −
1 = 3 − ε and both sides of the inequality are expanded to
O(ε). Although y�V

appears to vanish if ε is naively set to
one to reach the physical case of two spatial dimensions, this
is most likely only true at linear order in ε, and for ε → 1
corrections of O(ε2) and higher cannot be neglected. To the
extent that the behavior at small ε is representative of the
physical problem, the signatures of the clean quantum critical
point with emergent supersymmetry will be visible above a
crossover temperature

T ∗ ∼ ��
1/(1−ε)
V 0 , (46)

where � is a high-energy cutoff which for the surface state of a
topological insulator can be taken as the bulk energy gap, and
�V 0 ∼ n0V

2 is the bare disorder strength. For temperatures
T < T ∗, the clean quantum critical behavior will be washed
out by disorder and the disorder �V flows to strong coupling.
Such a strong disorder fixed point cannot be reliably studied
within the present perturbative RG scheme. However, from
a general standpoint we propose two possible scenarios.
In the first scenario, the effective four-fermion interaction
induced by chemical potential disorder, which is irrelevant
in 4 − ε dimensions at the clean supersymmetric critical point
[Eq. (45)], becomes relevant at the strong disorder fixed point.
In this case, we expect that a nonzero density of states would
be generated for the fermions, and superconductivity would
develop as a result of the Cooper instability below a nonzero
critical temperature Tc < T ∗. In that sense, the crossover

temperature (46) can be seen as an upper bound for Tc at
the critical point g = gc in the disordered system.

In the second scenario, the chemical potential disorder
remains irrelevant at the strong disorder fixed point. The
density of states for the Dirac fermions remains zero at
μ = 0, and Tc is zero at g = gc. The behavior at g = gc

would be controlled by the strong disorder fixed point. This
would correspond to a nonmonotonic dependence of the
superconducting Tc on g, where Tc is zero at g = 0 and
g = gc, but nonzero for 0 < g < gc and for g > gc. Since
such a nonmonotonic dependence seems counterintuitive, we
expect this second scenario to be unlikely, and expect that the
RG does eventually flow to a superconducting phase. However,
we cannot exclude this possibility since the RG flows to strong
coupling.

We note that the replica field theoretic analysis assumes
translation invariance and neglects mesoscopic fluctuation
effects, which were shown to dominate the physics at weak
coupling. If the true physics near the clean critical point is
also dominated by mesoscopic fluctuations, then the replica
field theory approach will dramatically underestimate Tc.
Conversely, if superconductivity near the clean critical point is
spatially uniform, and puddles are unimportant, then the nature
of the superconductivity changes between weak coupling and
strong coupling. This change in the nature of superconductivity
may then be controlled by a strong disorder fixed point.
Similar ideas have been discussed for disordered bosons in
one dimension in Refs. 47 and 48. We defer an investigation
of these ideas to future work.

VI. QUANTUM CRITICALITY IN
THE DISORDERED SYSTEM

It has been pointed out that the quantum critical point in the
ideally clean system is described by an unusual effective field
theory displaying emergent supersymmetry.19,20 However, we
have also pointed out that the semimetal phase is itself unstable
to disorder. Thus, disorder has the effect of destroying the
quantum critical point discussed in Refs. 19 and 20 by inducing
superconductivity at arbitrarily weak interaction strengths. In
this section we discuss to what extent it is possible to observe
signatures of the (destroyed) quantum critical point.

We assume that the system has been fine tuned to the
Dirac point μ = 0. This assumption was also made in Refs. 19
and 20. The phase diagram of the clean system takes the form
of Fig. 8. Note the existence of a “quantum critical regime”
at finite temperature. In this regime one can detect signatures
of the proximate quantum critical point. The signatures of the
quantum critical point gradually phase out as we move further
from the quantum critical point. The dashed line indicates
the existence of a crossover between quantum critical and
semimetallic behavior. Note that the quantum critical and
semimetallic regions are not different phases. Rather, the
system evolves smoothly from one to the other.

Where should one place the boundary of the quantum
critical regime? We can answer this question for the clean
system as follows. In general, the system may start anywhere
in the basin of attraction of the quantum critical point, but it
will only start to display quantum critical behavior when all the
irrelevant couplings λi become smaller than some threshold
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FIG. 8. (Color online) Phase diagram of the clean Dirac fermion
system at μ = 0. The system has only two phases—a superconductor
and a semimetal, with a boundary between them which scales as
Tc ∼ (g − gc)zν , where z = 1 from Lorentz invariance, and ν = 1

2 +
ε

4 + O(ε2) in 4 − ε space-time dimensions. Within the semimetallic
phase there is a quantum critical regime, which is controlled by
the critical point at g = gc. The dashed line indicates a crossover
between semimetallic and quantum critical behavior, and is given
approximately by Eq. (47).

small scale λ∗. The RG flow equations for the irrelevant
couplings λi take the form

dλi

dl
= −yiλi,

where the scaling dimensions yi were calculated in Sec. V, and
l = ln �0/�f . The RG is started at the initial scale �0 ≈ ωD

(below which we have an attractive interaction), and stops at
the scale �f ≈ T , where the temperature T supplied the IR
cutoff. From this, one obtains the criterion for quantum critical
behavior,

T < T∗ = ωD min
[
1,

(
λ∗/λi

0

)1/yi
]
, (47)

where λi
0 is the bare coupling of the ith irrelevant operator,

yi is its scaling dimension, and λ∗ is a small threshold. One
should include only those irrelevant couplings which start far
away from the critical point λ0 > λ∗. The precise choice of
λ∗ is somewhat arbitrary. For definiteness, we suggest using
λ∗ = 0.1 as a threshold for quantum critical behavior.

How does the phase diagram change in the presence of
disorder? We have argued that in the presence of chemical
potential disorder, the semimetal phase is unstable to su-
perconductivity, with a critical temperature given by either
(23) or (42) depending on whether or not the disorder is

FIG. 9. (Color online) Phase diagram of the disordered Dirac
system, with very weak disorder. The quantum critical point has been
buried under the superconducting phase. However, signatures of the
quantum critical point may still be visible in the finite temperature
quantum critical regime.

FIG. 10. (Color online) Phase diagram of the disordered Dirac
system, with less weak disorder. The quantum critical point and
the quantum critical regime have both been buried under the
superconducting phase.

smooth. Meanwhile, the critical point is also unstable to
disorder, although the behavior at g = gc is controlled by
a strong disorder fixed point which we were not able to
access in any controlled manner. Although we cannot make
definite predictions about the critical theory, since the RG
flows to strong disorder, we anticipate that the superconducting
Tc should interpolate smoothly between weak and strong
coupling. This leads to a phase diagram of the form shown
in Fig. 9. Note that the “quantum critical point” has now been
buried inside the superconducting phase.

It is not possible to directly probe the quantum critical
point since it has been buried by the superconducting phase.
However, at a temperature above the superconducting critical
temperature TKT, one can probe the quantum critical regime,
to look for finite temperature signatures of the emergent super-
symmetry. Since no real world sample is ever perfectly clean,
it follows that signatures of the “emergent supersymmetry”
identified in Refs. 19 and 20 can only ever be probed by
experiments conducted in this relatively high temperature
quantum critical regime.

We note that although the critical temperature for onset of
quantum critical physics is of order ωD (47), this boundary
can be strongly suppressed if the bare theory starts a long way
away from the critical point. In principle, it is possible that
the quantum critical regime may be entirely buried beneath
the superconducting phase, in which case no signatures of the
quantum critical point would be detectable in experiments. The
resulting phase diagram would then look like Fig. 10. This
scenario would arise if the critical temperature for quantum
critical behavior (47) were less than the critical temperature
for superconductivity.

VII. CONCLUSIONS

We have calculated the phase diagram for a single species of
Dirac fermions with attractive δ function interactions. We have
shown that the zero temperature phase diagram in the coupling-
doping (g-μ) plane consists of a single superconducting phase,
except for a line segment along μ = 0 and g < gc, which
is a semimetal. We have shown that the introduction of
disorder destroys the semimetal phase, introducing a finite
density of states and triggering onset of superconductivity.
Remarkably, disorder actually induces superconductivity by
introducing a nonvanishing density of states. This is a striking
departure from the usual scenario, where disorder suppresses
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superconductivity. We note that such a disorder enhancement
of superconductivity has already been observed in numerical
simulations.49

The critical temperature at which disorder enhanced super-
conductivity develops is given by Eq. (19) if the disorder is
smooth. The case of short range disorder is more complex.
A naive estimate based on a uniform mean field solution
for superconductivity gives an estimate (31), which is doubly
exponentially small in weak disorder. However, superconduc-
tivity is strongly enhanced by mesoscopic fluctuation effects,
such that the true critical temperature is actually given by
Eq. (42), which is only exponentially small in weak disorder.
The superconducting phase consists of locally superconduct-
ing islands, which establish global phase coherence through
the Josephson coupling between them (Fig. 2). Application
of a sufficiently strong transverse magnetic field destroys the
global phase coherence by frustrating the Josephson couplings,
driving the system into a gauge glass phase.

The region near the critical coupling g = gc was treated
within a replica field theoretic approach. While this approach
neglects mesoscopic fluctuations, it is useful for understanding
the interplay of disorder and interactions in the strongly
coupled theory. We find that chemical potential disorder
is a dangerous irrelevant perturbation at the critical point,
generating (relevant) disorder in the BCS coupling. This drives
an RG flow to strong disorder. While we cannot definitely
answer what happens at strong disorder, continuity with
the weak coupling results suggests that the RG flow ends
up in a superconducting phase. As a result, the quantum
critical point identified in Refs. 19 and 20 will be buried
under a superconducting phase for any nonvanishing value of
disorder. However, for sufficiently weak disorder, signatures
of the quantum critical point may still be visible in the finite
temperature quantum critical regime.

This work also suggests some promising future directions
for research. Our analysis was focused on the problem with
a single Dirac fermion species, but graphene, a popular
experimental material, actually possesses four species of Dirac
fermions. A generalization of the analysis to graphene would
be a useful and worthwhile task. Another potential direction
of research would be to further develop the analysis of

mesoscopic fluctuations presented in Sec. IV. While highly
suggestive, this analysis was based on the assumption that the
SCBA expression for the density of states could be applied at
small length scales, to obtain a local density of states from a
local concentration of impurities, and that this density of states
could be inserted into the BCS calculation. A more rigorous
treatment of this issue would be an important addition to the
present work. Meanwhile, the analysis at the critical point also
opens up some avenues for further research. While we deter-
mined that the clean critical point is unstable to weak disorder,
we found that the RG flowed to strong disorder. Determining
what happens at strong disorder is a worthwhile topic for future
work. In addition, the replica symmetric RG analysis ignored
the effect of mesoscopic fluctuations, which were known to
be important at the Gaussian point. Investigating the effect
of mesoscopic fluctuations at the critical point is another
topic for future work. Finally, an experimental investigation
of the ideas outlined in this paper would present an excellent
opportunity to compare theory with experiment. Given the
rich phenomenology associated with superconductivity and
disorder in Dirac fermion systems, and given the popularity
of topological insulators as experimental materials, we urge
experimentalists to search for superconducting topological
insulators, and eagerly anticipate further developments in this
field.

Note added. After completion of this work, we became
aware of Ref. 50. This work looked at the surface states of
a topological superconductor with spin SU(2) symmetry, and
concluded that they were unstable in the presence of vector
potential disorder and interactions. It complements our present
work, which looks at the interplay of scalar potential disorder
and interactions on the surface states of a topological insulator.
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