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We demonstrate that the vortex state in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase may be very
different depending on the field orientation relative to the crystalline axes. We numerically calculate the upper
critical field near the tricritical point taking into account the modulation of the order parameter along the magnetic
field as well as the higher Landau levels. For s-wave superconductors with the anisotropy described by an elliptical
Fermi surface, we propose a general scheme for the analysis of the angular dependence of the upper critical field
at all temperatures on the basis of an exact solution for the order parameter. Our results show that the transitions
(with tilting magnetic field) between different types of mixed states may be a salient feature of the FFLO phase.
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I. INTRODUCTION

Recent experimental studies of the superconducting state
of CeCoIn5 (see Ref. 1 and references cited therein) provided
evidence in favor of the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) phase existence in the high-magnetic-field region
of the superconducting phase diagram. Originally,2,3 the
nonuniform FFLO state has been predicted to exist in
superconductors when the magnetic field is acting on the
electron spins only (the case of the paramagnetic effect),
but it is usually an orbital effect that is the most important,
and this makes difficult the experimental observation of
the FFLO phase. Moreover, the superconductor must be in
the clean limit because electron scattering is detrimental
for the FFLO phase in s-wave superconductors.4 In unconven-
tional (d-wave) superconductors, the nonuniform phase can be
relatively more robust,5 but impurities eventually suppress the
zero-field critical temperature. However, the orbital effect may
be weakened in heavy fermion superconductors or in quasi-2D
superconductors when magnetic field is applied parallel to the
superconducting planes. That is why in addition to CeCoIn5

and some other heavy fermion superconductors,6 quasi-1D
and quasi-2D organic superconductors are considered as good
candidates for the FFLO phase realization.8,9 Recent evidence
of the FFLO state has been revealed in organic quasi-2D
superconductors λ-(BETS)2 FeCl410 and κ-(BEDT-TTFS)2

Cu(NCS)2.11,12

In the framework of an isotropic model with s-wave pairing,
the critical field for the FFLO phase in the presence of the
orbital effect has been calculated by Gruenberg and Gunther.13

They demonstrated that the FFLO state may exist if the ratio
of pure orbital effect H orb

c2 (0) and pure paramagnetic limit
Hp(0) is larger than 1.28, i.e., the Maki parameter αM =√

2H orb
c2 (0)/Hp(0) is larger than 1.8. The pure paramagnetic

limit at T = 0 can be estimated as Hp(0) = �0/
√

2μB , where
�0 is the BCS gap at T = 0 and μB is the Bohr magneton.14

In Ref. 13, the exact solution for the order parameter was
described by an FFLO modulation along the magnetic field
and the zero Landau level function for the coordinates in the
perpendicular plane. Further analysis15 revealed that the higher

Landau level solutions (LLS) become relevant for large values
of Maki parameter αM > 9 and the Hc2(T ) curve may present
regions described by different LLS. These results obtained for
an isotropic model are readily generalized for the case where
the electron spectrum anisotropy is described by an elliptic
Fermi surface.16 In such a case, the Maki parameter becomes
angular dependent and the transitions between different LLS
may occur with a change of orientation of the magnetic
field. For a d-wave pairing, the exact solution of the upper
critical field is not known. However, numerical simulations
and approximations with trial functions permit to study the
Hc2(T ) behavior in the FFLO phase.

It happens that for an adequate description of the FFLO
state in real compounds, the form of the Fermi surface as
well as the type of the superconducting pairing (s-wave or
d-wave) play a very important role because they determine
the direction of the FFLO modulation. This circumstance
has been demonstrated7,17 in the framework of a general
phenomenological approach based on the modified Ginzburg-
Landau (MGL) functional.18 This approach is adequate near
the tricritical point (TCP) in the field-temperature phase
diagram. At the TCP, the three transition lines meet: the lines
separating the normal metal, the uniform superconducting
state, and the FFLO state. Near the TCP, the wave vector of
FFLO modulation is small and this situation may be described
by the MGL functional. For the case when the deviation of the
Fermi surface from the elliptical form is small, the method,17

which includes the orbital effect, permits to calculate the
critical field corresponding to different LLS. Note that even
in the absence of orbital effect, crystal anisotropy plays an
important role since it selects the preferential direction of
the FFLO modulation. It was shown that if the direction
is along the magnetic field then the zero LL solution with
modulation along the field is realized. On the other hand, if
the preferred direction is perpendicular to the field orientation
then the higher LL states should emerge without modulation
along the field. In a sense, the higher LL states realize the
modulation in the plain perpendicular to the field: the FFLO
state in such a situation is the vortex lattice formed by higher
LL solutions.
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Unfortunately, the approach17 is limited to weak deviations
from the elliptic Fermi surface. In Sec. II, we develop a
numerical method for the calculation of the upper critical
field applicable to any cases, using a general form of the
solution for the order parameter as a superposition of the
different LLS. Note that the single LLS is an exact solution
for the order parameter only in isotropic or quasi-isotropic
(elliptic Fermi surface) s-wave superconductors. Otherwise,
the order parameter is described by an infinite sum of the LLS.
However, there is usually some dominating LL n0 and the
amplitudes of other LL rapidly decrease with an increase of
|n − n0|. Our analysis qualitatively confirms the conclusions
of Ref. 17 and reveals the transitions between the FFLO states
with different dominating n0. The obtained results demonstrate
that the inhomogeneous state, depending on superconductor
parameters and/or magnetic field orientation, may take the
form of the higher LLS with or without a modulation along
the magnetic field. The transitions between these states result
in a very rich dependence of the transition temperature on the
magnetic field orientation.

The approach of Sec. II based on MGL is adequate
near the TCP. On the other hand, the case of anisotropic
s-wave superconductors with elliptic Fermi surface may
be treated exactly at all temperatures. In Sec. III, we use
the scaling transformation16 to obtain the solutions for the
higher LLS in s-wave superconductors. As an illustration, we
consider quasi-1D and quasi-2D superconductors. In quasi-2D
superconductors with the in-plane orientation of the magnetic
field, the higher LLS were recently studied by Shimahara.19

Note that higher LLS naturally appear in 2D superconductors
in tilted magnetic field20,21 and result in the oscillatory-like
angular dependence of the critical field in the FFLO state.
The vortex lattices formed by such higher LLS may have
very special structures different from the usual Abrikosov
lattice.22–24 They may carry several flux quanta per unit cell
and include vortices with different vorticity. The influence of
the orbital effect on the FFLO state in superconducting films
with finite thickness and parallel field orientation has been
studied in Ref. 25 and the role of fluctuations at the FFLO
transition was analyzed in Refs. 26–28.

II. FORMATION OF DIFFERENT FFLO STATES UNDER
THE INFLUENCE OF THE ORBITAL EFFECT

The usual GL functional contains only the first deriva-
tives of the order parameter, so it may be transformed by
simple coordinate scaling to the isotropic form (with the
corresponding renormalization of the magnetic field). That
is why in the framework of the GL approach one may
easily obtain the exact solution of the Hc2 problem for any
anisotropic superconductor—the order parameter is described
by the n = 0 LL function.29 The FFLO state near the TCP
point can be described by MGL theory, which takes into
account higher derivatives of the order parameter. In contrast
to the GL functional, a coordinate rescaling cannot generally
reduce the MGL functional into the isotropic form because of
the higher-order derivatives (this is possible only for s-wave
superconductivity with an elliptic Fermi surface).16 Therefore,
in this section, we provide a general numerical approach
for the calculation of the upper critical field. We consider a

second-order transition between the normal and the FFLO
state. This method is valid for both s-wave and d-wave
superconductivity. Keeping in mind CeCoIn5, we will consider
the case of the tetragonal symmetry.

A. Modified Ginzburg-Landau theory

To determine the critical field at a second-order transition,
it is enough to expand the free energy up to the second power
of the order parameter �. Near the TCP in the paramagnetic
limit the quadratic part of the MGL functional is

F = �∗(α + L̂)� (1)

with α = α0[T − Tcu(H )], where Tcu(H ) is the pure param-
agnetic transition temperature between the normal and the
uniform superconducting states (which would exist in the
absence of the orbital effect). The differential operator L̂

corresponds to the expansion in the order-parameter gradients,
which is taken to the fourth order in order to describe the FFLO
state and the tetragonal symmetry. As expected from symmetry
considerations, it has the same form for s- and d-wave order
parameters, which is

L̂ = −gx

(
�2

x + �2
y

) − gz�
2
z + γx

(
�4

x + �4
y

) + γz�
4
z

+ εxy

{
�2

x,�
2
y

} + εxz

({
�2

x,�
2
z

} + {
�2

y,�
2
z

})
. (2)

Here, the coordinates are chosen so that z is along the crystal
c axis and (x,y) are along the principal axes in the basal
plane. The gradient operator in a magnetic field is � =
−i∇r + (2π/�0)A, A is the vector potential, �0 is the flux
quantum, and the anticommutator {O1,O2} = O1O2 + O2O1.
In the clean limit (see Appendix and Ref. 30), the coefficients
in the s-wave case are

gi = −πN0K3
〈
v2

i

〉
/4, (3)

γi = −πN0K5
〈
v4

i

〉
/16, (4)

εij = −3πN0K5
〈
v2

i v
2
j

〉
/16, (5)

while for a d-wave order parameter �(k̂,r) = η(k̂)�(r), where
η(k̂) ∝ (k2

x − k2
y) and 〈|η(k̂)|2〉 = 1,

gi = −πN0K3
〈|η(k̂)|2v2

i

〉
/4, (6)

γi = −πN0K5
〈|η(k̂)|2v4

i

〉
/16, (7)

εij = −3πN0K5
〈|η(k̂)|2v2

i v
2
j

〉
/16. (8)

Here, v(k̂) is the Fermi velocity, N0 is the density of states at
the Fermi level. The unit convention h̄ = 1 is used. The angular
brackets stand for the averaging over the Fermi surface. The
coefficients

Kn = 2T �
+∞∑
ν=0

1

(ων − iμH )n
, (9)

where ων = πT (2ν + 1) are Matsubara frequencies and μ =
gμB/2 is the electron magnetic moment. It would be interest-
ing to calculate these coefficients for heavy fermion materials
such as CeCoIn5. Considering the complicated band structure
of this compound,31 the evaluation would require numerical
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FIG. 1. (Color online) In the tetragonal symmetry, when the
tensor gi is not isotropic, a coordinate rescaling z → z̃ along the
crystal c axis is necessary. The rescaling introduces a renormalized
field H̃, which is not “collinear” with the actual magnetic field H. In
the rescaled coordinate system, the FFLO modulation happens along
z′ direction defined by H̃.

integration from ab initio calculations, and this is beyond the
scope of the present article.

In order to use the method based on LLS, the gradient
expansion is transformed into a more isotropic form by rescal-
ing coordinate z. For this purpose, we work within rescaled
coordinates r̃ = (x̃,ỹ,z̃) = (x,y,z

√
gx/gz), and introduce a

renormalized vector potential Ã = (Ax,Ay,
√

gz/gxAz) and
the corresponding gradient operator �̃ = −i∇r̃ + (2π/�0)Ã.
Then in the expansion, the original gradient operators
(�x,�y,�z) are replaced by (�̃x,�̃y,

√
gx/gz�̃z) so that

gz�
2
z → gx�̃

2
z . Hence the differential operator with respect

to the rescaled coordinates can be written as

L̂ = −g�̃
2 + γ (�̃

2
)2 + εz�̃

4
z + εx

2

{
�̃2

x,�̃
2
y

}
+ ε̃

2

({
�̃2

x,�̃
2
z

} + {
�̃2

y,�̃
2
z

})
, (10)

where g = gx , γ = γx , εz = (gx/gz)2γz − γx , εx/2 = εxy −
γx , and ε̃/2 = (gx/gz)εxz − γx . Note that in order to re-
cover the functional used in previous work,17 the term
(2π/�0)2[ε̃(H̃ 2

x + H̃ 2
y ) + εxH̃

2
z ] must be added in our expres-

sion. The latter term only shifts the energy by a constant so the
solution for the order parameter is not modified.

It is important to notice that with the rescaling procedure,
the renormalized field H̃ = ∇r̃ × Ã is not “collinear” with the
actual magnetic field H = ∇r × A since

H̃ =
(√

gz

gx

Hx,

√
gz

gx

Hy,Hz

)
(11)

(beware that they are not in the same coordinate systems). The
angle θ̃ that H̃ makes with z̃ axis and the angle θ that H makes
with z axis (see Fig. 1) are then related by the equality

tan θ̃ =
√

gz

gx

tan θ. (12)

As it will be discussed below, in the rescaled coordinate
system (x̃,ỹ,z̃) the FFLO order parameter is modulated along
the direction of H̃. However, when expressing back this
solution with the actual coordinates (x,y,z), one finds that

the modulation direction makes the angle θFFLO with the c

axis, which is given by

tan θFFLO = gz

gx

tan θ. (13)

We may always perform the scaling transformation and
henceforth, to simplify the discussion, we may consider the
case of an isotropic tensor gj = g with the anisotropy of the
Fermi surface or the order parameter present only in the fourth-
order derivatives [see Eq. (10)]. In the following of this section,
we will directly operate in the rescaled coordinate system and
with the renormalized magnetic field H̃ [related to the applied
field by Eq. (11)], but we will omit the tilde superscript for
brevity. The coefficients εz, εx , ε̃ describe the deviation of
the actual Fermi surface from the elliptic one and/or a pairing
different from s-wave type. In contrast with previous work,17

they are not assumed to be small. For the appearance of the
FFLO state, the coefficient g must be positive otherwise, in
the absence of the orbital effect, the ground state corresponds
to the uniform phase.

B. Numerical method

The transition temperature is given by Tc(H ) = Tcu(H ) −
λmin/α0, where λmin is the smallest eigenvalue of the operator
L̂. For an arbitrary direction of the magnetic field relative to the
crystal axis, the eigenfunctions of L̂ can be looked for in the
form � = exp(iqz′)φ(x ′,y ′), where q is the FFLO modulation
vector along the field direction, z′ is the coordinate along the
field direction and (x ′,y ′) are the transverse coordinates. This
is because with this choice of coordinates, the operator �z′

commutes with both �x ′ and �y ′ .
In the absence of anisotropic fourth-order terms, φ can be

found exactly with an adequate choice of gauge. It is one of
the Landau levels ϕn defined in the orthogonal (x ′,y ′) plane.
The eigenvalues are then

λiso(q,n) = γ
{[

(2n + 1)ξ−2
H + q2 − q2

0

]2 − q4
0

}
, (14)

where the LL number n is a positive integer, the magnetic
length is

ξH =
√

�0

2πH
, (15)

and the maximum modulation vector is

q0 =
√

g

2γ
. (16)

In this case, λmin = −γ q4
0 = −g2/4γ with a degeneracy of

solutions (q,n). Note that the minimal eigenvalue is obtained
for (2n + 1)ξ−2

H + q2 = q2
0 , that is with high LL when q is

small and n = 0 LL when q is maximum. The degeneracy is
lifted when anisotropic fourth-order gradient terms are present
but, as shown below, the antagonistic behaviors of the LL
number and the FFLO modulation vector remain.

In the general case, we diagonalize L̂ in a (finite) sub-
space of functions ϕq,n = exp(iqz′)ϕn(x ′,y ′) in order to find
the smallest eigenvalue λ(q). The latter is then minimized
with respect to q to get λmin and the corresponding FFLO
modulation vector qc at the transition. We use the orthonormal
basis set composed by Landau levels ϕ2n = (b̂†)2nϕ0/

√
(2n)!
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and ϕ2n+1 = −i(b̂†)2n+1ϕ0/
√

(2n + 1)!. Here, b̂† = ξH√
2
(�y ′ −

i�x ′ ) is the operator of LL creation and ϕ0 is the normalized
lowest LL defined by b̂ϕ0 = 0. With b̂ = ξH√

2
(�y ′ + i�x ′ ),

one can easily check, for example, that b̂b̂† − b̂†b̂ = 1 and
�2

x ′ + �2
y ′ = ξ−2

H (2b̂†b̂ + 1).
As an example, we consider afterward the case when

the magnetic field is rotated in xz plane by an angle θ

from z axis. In the rotated coordinate frame, the gradient
operators are transformed as �x = cos θ�x ′ + sin θ�z′ , �y =
�y ′ , and �z = − sin θ�x ′ + cos θ�z′ . By expressing the
operator L̂ as a function of b̂ and b̂†, the matrix elements

Lm,n = ∫
ϕ∗

q,mL̂ϕq,n are found as

Lm,n = γ

ξ 4
H

{[(
2n + 1 + k2 − k2

0

)2 − k4
0

]
δm,n + L(ε)

m,n

}
(17)

with

k = ξHq and k0 = ξH

√
g

2γ
. (18)

They connect states that are separated by at most four levels.
Within the above choice of basis set, the matrix is real
symmetric nine-diagonal, and the non-zero terms above the
diagonal are given by the anisotropic contributions

L(ε)
n,n = εz

4γ
[4c4k4 + 12c2s2(2n + 1)k2 + 3s4(2n2 + 2n + 1)]

+ ε̃

4γ
[s2(3c2 − 1) + 2s2(1 + 3c2)(n2 + n) + 2(1 + c2 − 6c2s2)(2n + 1)k2 + 4c2s2k4]

+ εx

4γ
[c2(2n2 + 2n − 1) + 2s2(2n + 1)k2],

L
(ε)
n,n+1 = (−1)n

√
n + 1k sin2θ

{
εz

γ

(
3√
2
s2(n + 1) +

√
2c2k2

)
− εx(n + 1)

2
√

2γ
+ ε̃√

2γ

[
1 + 3 cos 2θ

2
(n + 1) − k2 cos 2θ

] }
,

(19)

L
(ε)
n,n+2 =

√
(n + 2)!/n!s2

{
εx

2γ
k2 − εz

γ

[(
n + 3

2

)
s2 + 3c2k2

]
+ ε̃

2γ
[−c2(2n + 3) + (6c2 − 1)k2]

}
,

L
(ε)
n,n+3 = (−1)n

√
(n + 3)!/n!

k sin2θ√
2

[(
ε̃

γ
− εz

γ

)
s2 − εx

2γ

]
,

L
(ε)
n,n+4 =

√
(n + 4)!/n!

1

4

[ (
εz

γ
− ε̃

γ

)
s4 − εx

γ
c2

]
,

with s = sin θ and c = cos θ .

C. Angle dependence of the critical field and of the structure of
the FFLO state

A previous work17 showed that due to the effect of
anisotropy three different types of solution for the inho-
mogeneous state can be realized: (a) the maximum FFLO
modulation occurs along the magnetic field with the zero
Landau level state, (b) both modulation and higher Landau
level state, and (c) the highest possible Landau level and
no modulation along the field (or a modulation with a very
small wave vector). Moreover, due to the specific form of
the Fermi surface, a variation of magnetic field orientation
may provoke transitions between states with different Landau
levels. However, a single-level approximation was used to get
analytical results for these solutions. Due to this approxi-
mation, the analytical results were valid for magnetic fields

higher than H � �0
g

γ

√
ε
γ

where ε = max (|εz|,|εx |,|ε̃|). In

the present work, we show using numerical calculations, that
taking into consideration the full set of Landau levels, the
results qualitatively remain true for arbitrary values of the
magnetic field H .

We calculate the transition temperature and the corre-
sponding FFLO state when the magnetic field is applied in

xz plane. Typical results are displayed in Fig. 2 where we
have set εx = ε̃ = 0. The form of the FFLO solution depends

only on the parameter ratios εz/γ and ξH

√
g

2γ
[see, e.g.,

expression (17) of the operator L̂ in the basis of LL]. As
illustrated in Fig. 2(a), the FFLO state can appear with the
FFLO modulation vector qc equal to the maximum value q0

and the n = 0 LL when the field is along z axis. In contrast,
for H along x axis, there is no longitudinal modulation and
the solution is composed by higher LL, which results in
transverse modulations of the order parameter. In the isotropic
case, the opposite variations of qc and of the LL number are
easily explained because (2n + 1)ξ−2

H + q2
c is equal to q2

0 [see
Eq. (14)]. Our numerical solutions show that anisotropy does
not modify these antagonistic behaviors. When the field is
rotated from one axis to the other, the state at the transition
is transformed with a continuous variation of the FFLO
modulation and a smooth evolution of its expansion over the
LL. However, for smaller values of ξHq0 or εz/γ , the variation
with the field orientation can be discontinuous with jumps of
vector qc [see Figs. 2(b) and 2(c)] and of the average LL.
The discontinuities occur when for the same field there are
several local minima of λ(q) or, equivalently, local maxima of
transition temperature Tc(q) = Tcu − λ(q)/α0. When rotating
the field, the critical temperature Tc = max Tc(q) can change
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FIG. 2. (Color online) Angle dependence of the critical temperature and of the corresponding FFLO state for parameters εx = ε̃ = 0, with
(a) εz = −0.1γ , g = 50γ ξ−2

H , (b) εz = −0.1γ , g = 15γ ξ−2
H , and (c) εz = −0.5γ , g = 4γ ξ−2

H . In the top plots, the critical temperature (solid
line) is obtained as the maximum of the temperatures of transition into states with different FFLO modulation vectors (dotted lines). The
vertical bars in the bottom plots show the mean-square deviation of the Landau levels composing the state from the average LL.

from one local maximum to another, and this is realized with
a jump of the modulation vector qc. These sharp transitions
are then manifested by kinks between bumps in the angle
dependence of Tc. Figure 3(a) shows that, for other anisotropy
parameters, the jump can occur between states separated
by more than one LL. As expected from the condition

of single-level approximation H � �0
g

γ

√
ε
γ

or equivalently

ξ 2
Hq2

0

√
ε
γ

 1, the number of LL that contribute significantly

in the expansion of the FFLO state increases with the inverse
of the field and/or the anisotropy (see Fig. 4). The broadening
of the expansion over the LL ends up in suppressing the
discontinuities. In addition, as illustrated in Figs. 3(b) and 3(c),
the FFLO modulation and the transition temperature can vary
nonmonotonously with the field angle. It is interesting to
note that at the angles when the average LL is maximum
the wave vector of modulation is minimal (and vice versa)
and it can even drop to zero [see Fig. 3(c)]. At these regions,
the inhomogeneous state corresponds to the highest LL states
only. The experimental observation of such a nontrivial angular
dependence of Tc would be a strong evidence of the FFLO
state.

III. HIGHER LANDAU LEVEL STATES IN THE
FRAMEWORK OF THE MODEL OF EFFECTIVE

MASS ANISOTROPY

In this section, we demonstrate how the higher LLS
naturally appear in the exactly solvable microscopic model of
the FFLO transition in s-wave superconductors in a framework
of anisotropic effective mass model. As it has been already
noted in the case of the pure paramagnetic limit, this model is
reduced by a scaling transformation to the isotropic one with an
arbitrary direction of the FFLO modulation.16 In the presence
of the orbital effect, the situation is different and we consider
here the uniaxial anisotropy (note that our results are readily
generalized to the arbitrary anisotropy case). We are interested
by a part of the Hamiltonian depending on the magnetic field
Horb +HPauli with

Horb = − 1

2m

(
∂

∂x
− ie

c
yH cos θ

)2

− 1

2m

(
∂

∂y

)2

− 1

2mz

(
∂

∂z
− ie

c
yH sin θ

)2

, (20)

HPauli = μBHσz, (21)
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FIG. 3. (Color online) Angle dependence of the critical temperature and of the corresponding FFLO state for parameters (a) ε̃ = εz = 0,
εx = 0.5γ , g = 40γ ξ−2

H , (b) εx = εz = 0, ε̃ = −0.5γ , g = 40γ ξ−2
H , and (c) ε̃ = εx = −0.3γ , εz = 0.2γ , g = 20γ ξ−2

H . Same conventions as
in Fig. 2.

where we consider the effective mass mx = my = m and the
magnetic field H is in xz plane making an angle θ with z

axis. Our treatment can be readily generalized to the case of
an anisotropic g factor.16 The gauge of the vector potential A
is chosen as Ax = yH cos θ, Ay = 0, Az = yH sin θ and the
spin quantization axis is along the magnetic field.

Performing the scaling transformation z = z̃
√

m
mz

the orbital

part becomes16

Horb = − 1

2m

(
∂

∂x
− ie

c
yH cos θ

)2

− 1

2m

(
∂

∂y

)2

− 1

2m

(
∂

∂z̃
− ie

c
yH

√
m

mz

sin θ

)2

, (22)

i.e., it corresponds to the isotropic metal with an effective mass
m at the orbital magnetic field H̃ = H

√
cos2 θ + m

mz
sin2 θ

(H̃z = Hz and H̃x = Hx

√
m
mz

). The Pauli contribution may be
written as

HPauli = μBHσz = μBH̃σz√
cos2 θ + m

mz
sin2 θ

= μ̃BH̃σz, (23)

with the angular dependent effective Bohr magneton μ̃B(θ ) =
μB/

√
cos2 θ + m

mz
sin2 θ.

In fact, we have reduced the problem of the FFLO critical
field calculation to that of the isotropic model with the field
H̃ and the effective Bohr magneton μ̃B(θ ). The corresponding
Maki parameter is αM = √

2H orb
c2 (0)/Hp(0) with, in our case,

H orb
c2 (0) that is determined by the effective mass m and then is

the pure orbital field along z axis, while Hp(0) = �0√
2μ̃B (θ)

. So
the Maki parameter becomes angular dependent:

αM (θ ) = 2μBHzorb
c2 (0)

�0

√
cos2 θ + m

mz
sin2 θ

= 0.54

[
dHc2(θ )

dT

]
T =Tc0

K

T
.

(24)

Remarkably, in the latter expression for αM (θ ) enters only the
slope of Hc2 at the same angle θ . As it was demonstrated in
Ref. 15 for large values of the Maki parameter, αM > 9, the
critical FFLO field at low temperature is determined by higher
LLS. In the case of a large quasi-2D anisotropy ( mz

m
� 1),

this situation is realized when the Maki parameter is strongly
increased as the field is tilted near xy plane. On the contrary,
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FIG. 4. (Color online) Weight |cn|2 of the nth Landau level ϕn

in the expansion of the FFLO state � = exp (iqz)
∑

n cnϕn at the
field angle θ = π/4, for parameters εx = ε̃ = 0, g = 50γ ξ−2

H , with
(a) εz = −0.01γ , (b) εz = −0.1γ , and (c) εz = −0.5γ .

for the quasi-1D anisotropy (mz

m
 1), the Maki parameter is

maximum for the field orientated along z axis.
The critical field may be numerically calculated from the

formula15

ln

(
T

Tco

)
= T

Tco
2π Re

+∞∑
ν=0

[
(−1)n

∫
βLn(2βy)√

q̃2 + y

× tan−1

(
Tco

ων + iμBH

)
e−βydy − Tco

ωn

]
, (25)

where Tco is the (zero-field) critical temperature, ων =
πT (2ν + 1) are the Matsubara frequencies, Ln are Laguerre
polynomials, and

β = Tco

H (θ )

7ζ (3)

12π2

[
dHc2(θ )

dT

]
T =Tc0

. (26)

The LL number n and the dimensionless vector of the FFLO
modulation q̃ = h̄vF q/2Tco are chosen in a way to give the
maximum critical field H (θ ).

The calculated values of the upper critical field at T = 0 K
as a function of the critical field slope at T = Tco are presented
in Fig. 5. The LLS with n > 0 appear at −( dHc2(θ)

dT
)T =Tc0 >

18 T/K. We see that with an increase of the slope the Landau
level number n increases, while the FFLO modulation vector
drops. For some slopes, it occurs to be zero, and then the
inhomogeneous state is purely higher LLS. In the upper panel
of Fig. 5, we observe the nonmonotonous behavior of the upper
critical field as a function of the slope (or the anisotropy mz

m
).

With the increase of the slope, the orbital effect is switched
off and we approach the pure paramagnetic limit for the 3D
case. However, at T = 0 K, the transition into FFLO state is
a first-order transition32 and then the calculated upper critical
field should be the overcooling field of the normal phase.

FIG. 5. (Color online) (Top) Zero-temperature critical field as a
function of the initial slope (

dH
c2

dT
)T =Tc0 . The transitions between the

higher LLS are clearly seen. (Below) FFLO modulation vector.

Large values of the Maki parameter suitable for the
observation of these higher LLS are mainly expected in
strongly (quasi-2D or quasi-1D) anisotropic systems. In such
systems, the formation of the higher LLS may be clearly
observed on the angular dependence of the critical field, which
will reproduce the dependence on the initial slope displayed
on Fig. 5. In Fig. 6, such an angular dependence is presented
for a maximum slope −[ dHc2(90◦)

dT
]T =Tc0 = 17 T/K, with a

ratio of effective masses mz

m
= 100, below the threshold of

higher LLS formation. We see in Fig. 6 the standard behavior
inherent to the anisotropic mass model. The situation is very
different in Fig. 7, where the slope −[ dHc2(90◦)

dT
]T =Tc0 = 60 T/K

is well above the threshold. At low temperature, the angular
dependence Hc2(θ ) clearly reveals the transition between the
higher LLS, making the overall shape of the Hc2(θ ) curve very
peculiar, and somewhat similar to the corresponding results of
Sec. II. Note that rounding of the angular dependence Hc2(θ )
in the FFLO phase was also observed in CeCoIn5/YbCoIn5

superlattices33 where a CeCoIn5 layer of three-unit-cell thick-
ness may be considered as a 2D superconductor.

Note that in isotropic systems the FFLO modulation
vector q is directed along the applied magnetic
field.13,14 In an anisotropic superconductor, the FFLO
modulation is described by exp[iq( H̃z

H̃
z̃ + H̃x

H̃
x)] ∼

exp[iq(H cos θ

H̃

√
mz

m
z +

√
m
mz

H sin θ

H̃
x)], that is,
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FIG. 6. (Color online) The angular dependence of the upper
critical field Hc2(θ ) at different temperature for the initial slope
−( dHc2(90◦)

dT
)T =Tc0 = 17 T/K. This case corresponds to the n = 0 LL

state.

∼exp[ iq√
cos2 θ+ m

mz
sin2 θ

(z cos θ + m
mz

x sin θ )]. Therefore

the angle θFFLO that the direction of the FFLO modulation
makes with z axis is given by

tan θFFLO = m

mz

tan θ. (27)

FIG. 7. (Color online) The angular dependence of the upper
critical field Hc2(θ ) at different temperature for the initial slope
−[ dHc2(90◦)

dT
]T =Tc0 = 60 T/K. At low temperature, the transitions

between the different LLS are responsible for the peculiar form of
Hc2(θ ) dependence.

This means that for quasi-2D anisotropy the FFLO modulation
vector deviates from the field direction toward z axis, while
for the quasi-1D anisotropy it lies closer to xy plane.

The appearance of the higher LLS in quasi-2D supercon-
ductors when the magnetic field direction approaches the xy

plane is consistent with the prediction of such states in 2D
superconductors in a tilted magnetic field.20,21,34 Note that
some organic superconductors are strongly anisotropic and,
for example, in λ-(BETS)2 FeCl4 the slope −[ dHc2(90◦)

dT
]T =Tc0 ∼

18 T/K was measured.35 At the same time, the slope 60 T/K
(see Fig. 7) practically corresponds to 2D superconductivity.
Bulk CeCoIn5 crystals reveal a moderate quasi-2D anisotropy1

and we believe that the details of the Fermi surface structure
should play an important role for the higher LL states
formation (see Sec. II).

IV. CONCLUSIONS

In real compounds, crystal structure plays a dominant role
in determining the type of FFLO state. Of course, it will
also influence the vortex structure. The FFLO state may be
characterized by an unidimensional modulation of the order
parameter, and/or by the emergence of higher Landau level
states. This is a crucial difference with superconductivity
without FFLO state, where the crystal structure influences only
the type of Abrikosov vortex lattice. The higher Landau level
FFLO states should be realized in systems with strong uniaxial
anisotropy and near the in-plane orientation of the magnetic
field. In such a case, the higher Landau level states should lead
to an unusual angular dependence of Hc2 with a cascade of
transitions between higher Landau level states. Our approach
based on the MGL theory is valid near the tricritical point
(otherwise higher order derivatives start to play an important
role). However, it shows that the higher Landau level states
should be taken into account for the adequate description of
the FFLO phase at all temperatures in real compounds.
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APPENDIX: MICROSCOPIC EXPRESSION OF THE
GRADIENT COEFFICIENTS IN THE MGL FUNCTIONAL

The expression for the MGL functional has been derived
from a microscopic theory at finite temperature in the vicinity
of TCP in Ref. 30. The case of a metal with arbitrary
concentration of pointlike impurities (i.e., s-wave scattering)
has been considered. For s-wave pairing superconductivity,
the functional quadratic in the order parameter � is

F = �∗
{
αs + πN0

[
K21

4
〈(v · �)2〉 − K23

16
〈(v · �)4〉

− K33

32τ
〈(v · �)2〉2

]}
�. (A1)
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Here, v(k̂) is the Fermi velocity, N0 is the density of states at
the Fermi level, and τ is the mean-free time of quasiparticle
scattering. The unit convention h̄ = 1 is used. The angular
brackets stand for the averaging over the Fermi surface. The
coefficients

Knm = 2T �
+∞∑
ν=0

1

(ων − iμH )n(ω̃ν − iμH )m
, (A2)

where ων = πT (2ν + 1), are the Matsubara frequencies, ω̃ν =
ων + sign(ων)/2τ , and μ = gμB/2 is the electron magnetic
moment.

For a d-wave superconductor with an order parameter
�(k̂,r) = η(k̂)�(r), where η(k̂) ∝ (k2

x − k2
y) and 〈|η(k̂)|2〉 =

1, the quadratic part of the MGL functional is

F = �∗
{
αd + πN0

[
K03

4
〈|η(k̂)|2(v · �)2〉

− K05

16
〈|η(k̂)|2(v · �)4〉

− K15

32τ
〈η(k̂)∗(v · �)2〉〈η(k̂)(v · �)2〉

]}
�. (A3)
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