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We consider two weakly coupled Richardson models to study the formation of a relative phase and the
Josephson dynamics between two mesoscopic attractively interacting fermionic systems. Our results apply to
superconducting properties of coupled ultrasmall metallic grains and to Cooper-pairing superfluidity in neutral
systems with a finite number of fermions. We discuss how a definite relative phase between the two systems
emerges and how it can be conveniently extracted from the many-body wave function, finding that a definite
relative phase difference emerges even for very small numbers of pairs (∼10). The Josephson dynamics and
the current-phase characteristics are then investigated, showing that the critical current has a maximum at the
BCS-BEC crossover. For the considered initial conditions a two-state model gives a good description of the
dynamics and of the current-phase characteristics.
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I. INTRODUCTION

A major issue in mesoscopic physics is the study of the
sample sizes for which macroscopic properties emerge in finite
systems.1 A typical context for such a study is provided by
systems exhibiting quantum coherence, e.g., superconductivity
or superfluidity, in samples with restricted size or number of
particles: The general question is then to determine when
and how quantum coherence takes place. The subsequent
study is relevant in a number of situations, ranging from the
investigation of superfluidity of He droplets2 to Bose-Einstein
condensation in atomic gases with small numbers of particles.3

A prototypical example of these studies of quantum
coherence in mesoscopic interacting systems is given by the
investigation of the limit size of a metallic grain needed
for the occurrence of superconductivity.4 This and related
questions are conveniently studied by using the Richardson
model (RM).5,6 The RM describes a system of attractively
interacting fermions and is paradigmatic in characterizing
pairing in systems with a finite number of fermions.5 Its
relevance is also due to the remarkable feature of being exactly
solvable7 and to the fact that it is possible to derive the
thermodynamic limit of its exact solution and show that it
precisely coincides with the BCS solution.8,9

The RM has been first studied in the context of nuclear
physics,7,10 where the attraction leading to the pairing is due
to the short-range nature of the effective nucleon-nucleon
interaction.11 It was subsequently shown to be deeply con-
nected with the exactly solvable Gaudin magnets,12 through
the relation between the respective integrals of motion.13 Using
such relation, the RM was then extended to more general
classes of exactly solvable pairinglike models.14–18

The RM is particularly relevant for the study of finite-size
scaling effects in the BCS theory of superconductivity.19–27

The reason is that the classic BCS approach to
superconductivity28 in the presence of a pairing interaction
violates particle number conservation.3 Number fluctuations
are negligible in the thermodynamic limit, but important for
small numbers of particles.5 For this reason, the RM is used

in the analysis of ultrasmall metallic and superconducting
nanograins.6 Experiments on such systems are actually per-
formed at a fixed number of electrons29 due to their large
charging energy. The RM was successfully used in clarifying
many features of the tunneling spectra of Al nanograins,29–31

where, for instance, the spectroscopic gap between grains with
an odd or even number of electrons was explained with the
existence of pairing correlations among these.32

It is a known general fact that when two superconducting
or superfluid systems are weakly coupled a supercurrent flows
between the two systems, with the current depending on the
relative phase between the two superconducting or superfluid
systems.33,34 The importance of this Josephson effect stems
from the fact that it describes coherent tunneling between
superfluid/superconducting systems, and this description is
in most cases independent of the details of the microscopic
description of the uncoupled systems and of the concrete
physical realization of the weak link between them. In
this paper we intend to investigate how a definite relative
phase emerges between two mesoscopic finite-size attractively
interacting systems modeled by RMs and how it is possible to
extract it from the time-dependent many-body wave function:
We find that this happens even for very small total number of
pairs (∼8–10). This occurs when the “bulk” interaction (i.e.,
the paring interaction of the uncoupled systems) is such that
the equilibrium properties of the uncoupled models are rather
well approximated by the large-N BCS theory. Once the phase
is formed and extracted from the many-body wave function,
it is then possible to determine the current-phase portrait and
study the Josephson effect in such mesoscopic weakly coupled
fermionic systems.

Our results can be primarily applied to weakly coupled
ultrasmall metallic grains,6 but they could be also useful in
connection with cold atom experimental setups in which the
trapping potential contains a small number of fermions (like
Ref. 35) and such traps are set at a distance that allows tunnel-
ing: This would be the atomic counterpart of superconducting
ultrasmall grains coupled by tunneling terms. A study of the
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Josephson effect between small superconducting grains was
presented in Ref. 36, studying the dependence of the Josephson
energy as a function of the level spacing and focusing on a
parameter regime where the notion of a superconducting phase
variable is not valid.

Another application of the RM is to the study of the
BCS-BEC crossover in finite size fermionic systems.37 The
BCS-BEC crossover is a subject which has been thoroughly
investigated, also in connection to experimental realizations
with ultracold fermions.38–40 Increasing the (bare) attractive
interaction among fermions, the chemical potential decreases
with respect to the noninteracting Fermi energy value, so
that a crossover between a BCS state, characterized by
loosely correlated, widely overlapping Cooper pairs, to a
Bose-Einstein condensate (BEC), in which pairs are tightly
bound and minimally overlapping, can be identified.38–40

Within the formalism of the RM, the corresponding finite-N
version of the BCS-BEC crossover,37 as well as the Josephson
effect, can be studied.

In this paper we numerically investigate the Josephson
dynamics of two weakly coupled Richardson Hamiltonians.
Our motivation for such an investigation is threefold. From
one side we are interested in characterizing the superfluid
behavior of the system at finite number of particles, with regard
to its phase coherence, and in investigating for which values
of the number of particles a definite relative phase between
the two systems is formed. We find that the system behaves
coherently even for a rather small total number of pairs (as low
as ∼8–10). We introduce and discuss a way to extract from the
many-body wave function the relative phase and its variance,
so to quantify in a precise manner whether a well-defined
relative phase emerges.

When the relative phase is well defined, we are then
interested in understanding and characterizing the effects of the
pairing interaction coefficient g (giving rise in the uncoupled
models to the BCS-BEC crossover) on the coupled dynamics
while varying the pairing interaction coefficient. We are mostly
interested in values of coupling g such that the uncoupled
models have level occupation amplitudes close to the large-N
results.

Finally, our work aims at providing the exact Josephson
dynamics between two weakly coupled Fermi systems with
small number of fermions across the BCS-BEC crossover.
Theoretical studies of tunneling of ultracold fermions across
the BCS-BEC crossover recently appeared.41–49 In Ref. 42 the
tunneling across a barrier potential was studied by solving
numerically the Bogoliubov–de Gennes equations at zero
temperature: The Josephson current was found to be enhanced
around the unitary limit. For vanishing barriers (i.e., large
coupling between the two Fermi systems), the critical current
approaches the Landau limiting value.42 Results obtained from
the numerical solution of the Bogoliubov–de Gennes equations
were compared with the analytical predictions derived from a
hydrodynamic scheme, in the local density approximation:46

Whenever such approximation is valid (small and intermediate
barriers), good agreement was found. In general, it is instead
more difficult to obtain solutions of the Bogoliubov–de Gennes
equations for very large barriers,47 i.e., when the coupling
between the two Fermi systems is weak. Furthermore, one
would also like to explore the exact tunneling dynamics

and eventually compare it with the time-dependent solution
of the Bogoliubov–de Gennes equations, which has been
successfully used to study the dynamics of soliton solutions in
trapped superfluid Fermi gases.50

The model which is studied in the present paper, although
necessarily restricted to small numbers of particles, exploits
the integrability of the two uncoupled Richardson systems
and makes it possible to compute the exact dynamics when
a state with nonvanishing initial number imbalance and/or
relative phase is prepared, offering the opportunity to extract
the dynamical phase portrait. Another advantage is that
it is possible to investigate, in a simplified setting, how
the Josephson energy depends on the interaction and the
tunneling strength. We find that the Josephson energy has a
maximum around the unitary limit, in agreement with results
in literature obtained at T = 0 in the large-N limit for small
and intermediate barriers.42,44

The plan of the paper is as follows. In Sec. II we review the
main properties of a single (i.e., uncoupled) RM. The model
with two coupled Richardson Hamiltonians is introduced in
Sec. III, where we also discuss the main properties of the
spectrum. The Josephson dynamics is studied in Secs. IV and
V. In Sec. IV we introduce the considered initial states for the
dynamics and we discuss the emergence of a definite relative
phase among the two Richardson systems. In Sec. V we discuss
the dynamical phase portrait, plotting the trajectories in the
space of the relative phase and the population imbalance, and
we present our results for the critical current as a function of
the coupling. We draw our conclusions in Sec. VI.

II. THE RICHARDSON MODEL

The Richardson Hamiltonian is written in terms of the
operators cασ destroying fermionic particles in the energy
levels α = 1, . . . ,N with spin σ = ↑,↓:

H =
N∑

α=1

εα(c†α↑cα↑ + c
†
α↓cα↓) − 2g

N∑
α,β=1

c
†
α↑c

†
α↓cβ↓cβ↑. (1)

In Eq. (1) the εα are the single-particles energies of the N

levels and g is an interaction coefficient with the dimensions
of an energy. In the following, g is assumed to be positive
(corresponding to attraction among fermions) and it models
the matrix element of the scattering among Cooper pairs of
spin-reversed fermions. The model is integrable for any choice
of the set of energies εα; in the following we consider them to
be equally spaced, according to

εα ≡ αd, (2)

where α = 1, . . . ,N and d is the level spacing. This is indeed
the choice usually done in order to recover the BCS physics in
the thermodynamic limit (see more details below).5,8

The Richardson Hamiltonian (1) conserves the number of
fermions and, separately, of fermion pairs (doubly occupied
levels). An essential feature of the spectrum is the so-called
“blocking” effect.5 The states which are singly occupied, i.e.,
those in which there is only one electron with either ↑ or ↓
spin, are unaffected by the interaction and the net effect arising
from their presence is that of “blocking” the level by preventing
the scattering of the other pairs on it. The full Hilbert space
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is then divided into sectors with a given number of unpaired
fermions and in each of these subspaces the Hamiltonian (1)
only couples the doubly occupied (“unblocked”) levels among
them, while leaving singly occupied levels effectively decou-
pled from the dynamics. Denoting the number of pairs by M , it
is customary to write a reduced Hamiltonian for the Nf = 2M

paired fermions in the N unblocked levels as

H = 2
N∑

α=1

εαb†αbα − 2g

N∑
α,β=1

b†αbβ, (3)

where we introduced the (hardcore) pair creation and annihi-
lation operators

b†α = c
†
α↑c

†
α↓, bα = cα↓cα↑. (4)

Notice that the Hilbert spaces on which the Hamiltonian (3)
acts are subspaces of the full space of Eq. (1), characterized
by given configurations of blocked levels.

A Hamiltonian equivalent to Eq. (3) can be written by
introducing the Anderson pseudospin- 1

2 operators:51 S−
α = bα ,

S+
α = b†α , 2Sz

α = c
†
α↑cα↑ + c

†
α↓cα↓ − 1. In terms of the su(2)

algebra generators, up to a constant, one has

H = 2
N∑

α=1

εαSz
α − 2g

N∑
α,β=1

S+
α S−

β . (5)

Explicit solutions of the dynamics generated by the Hamilto-
nians (3) and (5) have been presented and discussed in Ref. 52.

The exact (not normalized) eigenstates of Eq. (3) are
constructed by applying a set of generalized creation operators
B̃ on the reference state |0〉 as follows:

|{w}〉 =
M∏

j=1

B̃(wj )|0〉, (6)

where the reference state is the one in which no hardcore
bosons are present:

bα|0〉 = 0, (α = 1,2, . . . ,N ). (7)

The explicit form of the creation operators is

B̃(w) =
N∑

α=1

b†α
w − εα

(8)

and the set of complex number {wj } (referred to as rapidities)
satisfies the set of algebraic equations

1

g
+

N∑
α=1

1

wj − εα

−
N∑

k �=j

2

wj − wk

= 0, (j = 1, . . . ,M).

(9)

The number of rapidities corresponds to the number of
Cooper pairs in the state and the action of the operator (8) is
that of creating a boson, with a given amplitude on each level
α, as results from the interaction with all the other Cooper
pairs, which in turn is encoded in the system (9). In the limit
g → 0 all the roots of the Richardson equations (9) are real
and coincide with a given subset of fields, so that each boson
is localized on a definite energy level. On the other hand,

when g is moved to nonzero values, roots can be present in
complex conjugated pairs. In particular, for g → 0, the ground
state for a given number M of pairs is the one in which the
lowest M levels are filled; in the strong coupling limit g → ∞
all the roots of this state come in complex pairs (except for
the most negative one, when M is odd) and their absolute
value diverges. The BCS equations can be obtained from this
solution in the limit N → ∞ while keeping constant filling
M/N , energy range Nd, and effective coupling strength gN .
In this limit, the root configuration associated with the ground
state assumes the shape of an arch in the complex plane, whose
extrema are at

μ ± i�BCS. (10)

As shown in Refs. 5,8,12, and 22, the link of the finite-N
results with the large-N BCS theory is provided by the fact
that �BCS and μ satisfy in the scaling limit previously defined
the BCS equations

2M =
∑

α

⎛
⎝1 − εα − μ√

(εα − μ)2 + �2
BCS

⎞
⎠ (11)

and

1

g
=

∑
α

1√
(εα − μ)2 + �2

BCS

. (12)

The Richardson mode is integrable by means of al-
gebraic Bethe ansatz.13,17 Not only the spectrum and the
eigenstates, but also matrix elements53 and correlation
functions18,25–27,54,55 are exactly computable. In particular,
given two states |{v}〉 and |{w}〉 defined as in Eq. (6) with
M rapidities, one can make use of

〈{w}|b†αbα − 1

2
|{v}〉

= −
M∏
l=1

wl − εα

vl − εα

1∏M
k>j (vk − vj )(wj − wk)

det[H̃ − 2P̃α],

(13)

where H̃ is a M × M matrix defined as

H̃j,k =
∏M

l=1(wl − vk)

(wj − vk)2

⎛
⎝− 1

g
−

N∑
α=1

1

vk − εα

+
∑
l �=j

2

vk − wl

⎞
⎠ .

(14)

P̃ is given by

[P̃α]j,k =
∏

l �=k(vk − vl)

(wj − εα)
. (15)

Moreover, the relation

〈{v}| bα |{w}〉 = 〈{w}| b†α |{v}〉 =
∏M

l=1 (wl − εα)∏M−1
l=1 (vl − εα)

× det H̃−∏M−1
j<k (vk − vj )

∏M
j<k(wj − wk)

,

(16)

174506-3



FRANCESCO BUCCHERI AND ANDREA TROMBETTONI PHYSICAL REVIEW B 87, 174506 (2013)

will be also used, in which the state |{v}〉 has now M − 1
rapidities and the M × M matrix H̃− is defined as

H̃−
j,k =

{
H̃j,k k < M

1
(wj −εα )2 k = M.

(17)

A. BCS-BEC crossover in the Richardson model

The RM exhibits two types of crossover behavior. First is the
crossover from bulk to few fermions, i.e., from large to small
N (Ref. 8). In this case the RM is used to study the corrections
to the large-N BCS theory9 and in general how the physical
quantities are modified when the number N is not large and the
energy scale d explicitly plays a role. Since we numerically
study the spectrum and the dynamics of coupled RMs, the size
of the considered systems are necessarily finite. Moreover, we
need to solve Eqs. (9) to determine the eigenstates, which is
best done when the spacing d of the levels is kept finite while
increasing the number of levels. It is then convenient to define
an intensive Richardson gap,25 which is related to the BCS gap
�BCS by

�BCS = N�, (18)

in which the quantity �BCS can be extracted from the ground
state solution of the Richardson equations (9): It is found
that �BCS ≈ Ng (Ref. 5). In the large-N limit, the correlation
functions are given by

〈b†αbα〉 = v2
α, 〈bαb†α〉 = u2

α,
(19)

〈b†αbβ〉 = uαvαuβvβ, (α �= β),

where the u,v’s enter the BCS variational ansatz for the
ground state |GS〉 = ∏

α(uα + vαb†α)|0〉 (Ref. 3). The study
of the comparison between the correlation functions given
by Eq. (19) with those directly from the RM shows that
with increasing g the agreement becomes better and better;
e.g., as one can see from Fig. 5 of Ref. 25 one has a rather
good agreement already for N ∼ 10 for g � 0.3. We can then
conclude that for values of N considered in the rest of the
paper one has for uncoupled systems a rather good agreement
with large-N results.

The behavior of μ, the real value of the extremes (10) of
the arch formed by the Bethe roots in the complex plane for
large values of N and g, depends in general on the filling,

0.2 0.4 0.6 0.8 1.0 1.2
g N

2.0

1.5

1.0

0.5

0.5

Μ N

N 22
N 20
N 18
N 16
N 14
N 12
N 10
N 8

FIG. 1. (Color online) Chemical potential μ per level versus g/N ,
as computed from Eqs. (11) and (12) for M = N/2 − 1. Here and in
the captions of the following figures the pairing coefficient g and the
energies are expressed in units of d .

and it is μ ∝ −g for fixed values of the initial population
imbalance, below half filling. An important point to be stressed
is that in the thermodynamic limit the quantity μ, as defined
from the root configuration, tends to the chemical potential
obtained for attractively interacting fermions in the BCS-BEC
crossover.37

We then can argue that the other crossover taking place
in the RM is the BCS-BEC one. For large N the parameters
�BCS and μ satisfy Eqs. (11) and (12). Since the chemical
potential changes sign for g larger than a critical value,
therefore a BCS-BEC crossover takes place.40 A description
of the BCS-BEC crossover in the framework of the integrable
RM was given in Ref. 37, where the model (3) was considered
in the thermodynamic limit and it was argued there that
root configurations at strong-enough coupling can be used
to identify the boundaries of the crossover. In Fig. 1 we plot
μ as a function of g for different values of N as determined
from Eq. (11): For the considered values of N one sees that
μ changes sign for g/N ∼ 0.25d for M close to N/2 (notice
that exactly at half-filling μ does not change sign). Note that
whenever M < N/2 the chemical potential becomes more and
more negative while increasing g: At some point, it crosses the
real axis to negative values, signaling the crossover. Notice that
in the BCS scaling,5 in which the level spacing goes to zero as
the inverse of the size, the crossing point tends to a finite value
of g in the thermodynamic limit, whereas in the considered
equally spaced model (2) the crossing occurs at a value of g,
which is instead ∝N .

III. COUPLED RICHARDSON HAMILTONIANS

In this section we introduce the model studied in the rest of
the paper featuring two RMs coupled by a tunneling term:33,34

H = HR + HL + HT , (20)

where HR and HL are the “right” and “left” Richardson
Hamiltonian, written in terms of the right and left operators
bα,R,bα,L (the fermionic operators will be denoted by cασ,R

and cασ,L with σ = ↑,↓). We consider the simpler setting in
which the two models have the same value of the coupling g

and the same energy levels εα:

Hs = 2
N∑

α=1

εαb†α,sbα,s−2g

N∑
α,β=1

b†α,sbβ,s, (s = L, R), (21)

with the εα’s equally spaced and given by Eq. (2). The number
of levels is taken to be equal to N both for the left and
the right systems. The total number of pairs in the system
is denoted by MT ; we will also denote by ML and MR the
operators of the number of pairs in the left and right system:
Ms = ∑N

α=1 b
†
α,sbα,s (with s = L,R).

We write the tunneling term describing the hopping of a
single fermion from one system to the other in the form

HT = −η
∑

σ=↑,↓

N∑
α,β=1

(c†ασ,Lcβσ,R + H.c.) (22)

(with η having the dimension of an energy). Following the
usual approach initially introduced by Josephson,33 using
second-order perturbation theory one can derive an effective
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Hamiltonian for small values of λ (corresponding to the
regime of weakly coupled Richardson Hamiltonians). It turns
out the this effective Hamiltonian can be written only in terms
of the pair operators,36 greatly simplifying the study of the
dynamics.

Since the uncoupled Hamiltonians (21) contain only inter-
actions among pairs, the eigenstates of Eq. (1) can be classified
in terms of their seniority ν, i.e., the number of the unpaired
electrons. The second-order effective tunneling term can be
written as

H (2) = −
∑

ν

∑
σ=↑,↓

N∑
α,β=1

HT

|αLβRσ ; ν〉〈αLβRσ ; ν|
EαLβRν

HT ,

(23)

in which the sum runs over all the possible intermediate states
that can be reached from a ν-seniority couple of states |N/2 +
ν〉L ⊗ |N/2 + ν〉R , by removing an electron of spin σ from
the level βR of the right grain and adding it on the level αL on
the left grain (or vice versa). In Eq. (23) the quantity EαLβRν is
the corresponding excitation energy relative to the initial state.

Following Ref. 36, it is possible to limit the space of states
on which the intermediate sum runs over to the lowest energy
ones, when acting with Eq. (23) on the lowest-energy states of
the two uncoupled systems in which all fermions are bound into
Cooper pairs. In fact, the energy EαLβRν includes the energy
needed to break a pair and the effect of the blocking of the
states on the collective excitations on both subsystems.

Across the whole BCS-BEC crossover, the breaking of
a pair associated with the tunneling of a single electron is
energetically depressed. Processes like the ones depicted in
Figs. 2(a) and 2(b) are suppressed by a factor 1/�BCS in the
dynamics, since they involve both the breaking of a pair, with
an energy cost equal to the BCS gap �BCS and the blocking of
a level, which affects all the levels and has therefore an energy
cost roughly proportional to N . At second order in the fermion
tunneling, it is more convenient to reach a final state in which
only Cooper pairs are present.33 Moreover, single-fermion
tunneling does not produce a current in the absence of an
applied driving force, so they will not affect the current. This
is true in particular for processes like the one in Fig. 2(c), which
reproduces the initial state and can be included in a redefinition
of the energies of the unperturbed system. We are therefore
led to consider as dominant the coherent pair tunneling, which
involves both the electrons of a Cooper pair and can be directly
written in terms of the bosonic operators b

†
α,L,bβ,R or bα,Lb

†
β,R ,

as in Fig. 2(d). Assuming the two systems to have a definite
relative phase (as checked and discussed in Sec. IV), the
coherent tunneling involves a phase shift on the state in which

it takes place and a corresponding variation of the relative
number of fermions δNf = ±2 [see Fig. 2(d)].

We therefore focus on coherent pair tunneling, for which
the effective Hamiltonian is33,36

H (2) ≈ −λ�BCS

∑
α,β

b
†
α,Lbβ,R + bα,Lb

†
β,R

Eα + Eβ

, (24)

where Eα =
√

ξ 2
α + �2

BCS, ξα = εα − μ, and λ = 2η2/�BCS.
As can be seen in Eq. (24), we decided to scale the tunneling
coefficient with �BCS since this is the relevant scale throughout
the crossover and it is a finite quantity in the thermodynamic
limit; furthermore, the form (24) ensures that the tunneling acts
as a perturbation also on the BCS side and for small values
of g.

The form (24) is particularly relevant since it formalizes
the fact that preparing the system in its ground state and
adding a weak fermionic tunneling term to the uncoupled
Richardson Hamiltonians does not destroy the Cooper pairs
picture. This provides a major simplification in the problem,
allowing for the study of the Josephson problem only in terms
of hardcore bosons since the subspaces with different seniority
will not be accessed neither by the “single-site” dynamics
of the uncoupled Richardson systems, nor by the coupling
between different sites (see a discussion on the single-fermion
tunneling effects at the end of Sec. IV).

The ground-state state of Hamiltonian H = HL + HR +
H (2) was studied in Ref. 36 and the behavior of the Josephson
energy investigated as a function of the level spacing. Inte-
grable versions of coupled pairing Hamiltonians was proposed
and studied in Refs. 56–59, while an analysis of the spectrum
of two weakly coupled Richardson Hamiltonians with HT ∝∑

α,β(b†α,Lbβ,R + bα,Lb
†
β,R) was presented in Refs. 36 and 60.

In the following we consider the Hamiltonian H = HL +
HR + H (2), with H (2) given by Eq. (24) and we investigate the
properties of its spectrum and the dynamics starting from an
state at time t = 0 having an initial relative phase difference
and/or an initial population imbalance. We are interested to
ascertain for what values of N a relative phase difference δφ

is well defined and to study the dynamics in terms of the
time evolution of δφ(t) and δM(t), where δM is the difference
between the number of pairs of the two systems defined by
Eq. (31). Note that, in general, the gap and the chemical
potential appearing in Eq. (24) will be functions of time as
well. However, for the sake of simplicity, we consider them as
constant, which in the present case stands as an approximation
valid for small fractional population imbalance.

The initial state is prepared in the following way (see more
details in Sec. IV): The uncoupled system (λ = 0) is initially

FIG. 2. (Color online) Second-order processes associated to the Hamiltonian (23).
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in the ground state, characterized by a definite occupation
number on the left and on the right parts; then, at time t = 0,
the coupling λ � d is turned on and the quantum dynamics is
studied.

Integrability plays an important role in the study of both
spectrum and dynamics, since it gives the exact eigenstates
of the two uncoupled systems and, most importantly, the
exact hopping matrix elements. It also provides an efficient
truncation mechanism to select the most important eigenstates
in the dynamics. As we discuss in the following, one can avoid
diagonalizing the Hamiltonian written on a basis of the full
Hilbert space of the coupled problem and instead limit its size
by restricting only to a subset of states.

Operatively, we start from the basis of the exact eigenstates
of the two uncoupled models, with λ = 0, with the number
of pairs on the left (ML) and on the right (ML) separately
conserved. Once the total number MT of pairs is fixed, the
factorized basis SMT

is split into subsectors, each of them
characterized by the occupation number of the left model ML

and that of the right one MR , such that ML + MR = MT .
Denoting by SM a basis of eigenstates of Eq. (3) for the
subspace with given number M of pairs, the fixed-number
subspaces are spanned by

SML,MR
= {



(ML)
L ⊗ 


(MR)
R

∣∣
(ML)
L ∈ SML

,

(MR )
R ∈ SMR

}
,

(25)

so that the factorized basis is

SMT
=

min(N,MT )⋃
M=max(0,2N−MT )

SM,MT −M. (26)

It is possible to show that many states in SM are effectively
not involved in the dynamics and consequently reduce the
space of quantum states to a computationally manageable size.
To see this, let us first consider the limits g → 0 and g → ∞.
In the noninteracting case, the single-level occupation numbers
are good quantum numbers for the system. It follows that all
the excitations above the Fermi sea ground state induced by
the coupling, in the regime in which the tunneling coupling
is small (λ/d � 1), are the states in which one particle is
missing from the Fermi sea or one particle is added above it.
These are a subset of the “particle-hole” states, obtained from
exciting one pair from below to above the Fermi level, which
are instead there at second order.

In the opposite limit g → ∞, it is useful to rewrite Eq. (3)
in terms of spins, obtaining the spin Hamiltonian (5). In the
strong coupling limit g → ∞, the Hamiltonian (5) reads23

H ≈ −2g(�S · �S − (Sz)2 − Sz) (27)

(�S = ∑
α

�Sα) and it conserves the total spin of the state and its
z projection. Numerical solutions of the Richardson equations
show that the rapidities can either diverge proportionally
to g or remain finite, with real part which lies “trapped”
between two energy levels. In the strong coupling limit, the
tunneling Hamiltonian. Consequently, the states group into
highly degenerate total spin subspaces.23 In the strong coupling
limit, the tunneling Hamiltonian (23) simplifies as well: The
BCS gap diverges linearly with g and all the pairs of levels in

Eq. (24) factorize a common term, yielding

H (2) ≈ − λ�BCS√
�2

BCS + μ2
S+

tot,LS−
tot,R + H.c. (28)

(where �SL = ∑
α

�Sα,L and �SR = ∑
α

�Sα,R). The ground state
is the unique state in which all the rapidities diverge in the
strong coupling limit and it is the one with highest (total) spin.
The relation between the number r of diverging roots at strong
coupling and the eigenvalues of the spin Hamiltonian (27)
is r = s − sz (Ref. 23), s(s + 1) and sz being the total spin
projection along the z axis. One then sees that it is sufficient to
restrict the single-site Hilbert space to the root configurations
with one less (or one more) rapidity and the same number of
rapidities which diverge at large g, i.e., again the ground state
of the new sector: Therefore, no new state is needed. Although
the previous arguments are valid in the two limiting regimes
g → 0 and g → ∞, we numerically compared the results with
exact diagonalization (for N = 6) or the effect of adding more
total spin subspaces to the dynamics (for N = 8). In all the
tests we performed, results in excellent agreement were found.

Algorithms for connecting the number of roots that eventu-
ally diverge to the initial state configurations have been given
in Refs. 25,61. The included states are exemplified in Fig. 3
and consist of the evolution in g of all the configurations in
which, in the weak coupling limit, one particle is excited from
the Fermi sea to right above its surface or from the Fermi
energy to one more energetic state.

The algorithm used for solving the Richardson equations
numerically is based on the one described in Ref. 62. To
obtain eigenstates at a given g, one starts from g = 0, where
the rapidities that solve the Richardson equations are known
within good approximation. It is therefore possible to solve
numerically (9) for some values of g around zero: The
coefficients of the polynomial having these rapidities as roots
are computed. One then extrapolates these coefficients to a new
value of the pairing, in steps δg � 0.01d, and computes the
roots of the extrapolated polynomial, using them as a starting
guess for the numerical solution of the Richardson equations.
The procedure is iterated up to the desired value of g62 (see
more details in Ref. 63). This algorithm makes it possible to
solve every configuration for sizes N � 10, which we use in
this paper. A numerical procedure for dealing with general

FIG. 3. (Color online) Particle-hole states.
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Gaudin models is presented in Ref. 64. Once the factorized
basis has been determined, we write the tunneling term by
using Eq. (16) and diagonalize the resulting Hamiltonian.

A. Properties of the spectrum

In Fig. 4 we plot the energy spectrum for two coupled RMs
as a function of the tunneling parameter λ for three different
values of g. It is seen that the effect of a weak tunneling on the
spectrum depends essentially on the coupling among fermions:
One can clearly identify a regime of nearly noninteracting
particles, in which the quasidegeneracy of the levels is given
by the number of ways of promoting one or more particles
in an excited level to obtain a given energy (degeneracy is a
consequence of the choice of equally spaced levels). In this
regime, the perturbation splits the levels of one band as far as
the band spacing, hence giving rise to a spectrum in which the
original degeneracies are not seen any more.

On the other hand, in the strong coupling regime states
group into eigenstates of the total angular momentum, as seen
from the spin representation (27). Since the distance among
the energies of these subspaces is of order g, in this regime,
even a tunneling term of several times the gap cannot mix the
different subspaces among them.

In the crossover region, the strong coupling subspaces are
already quite defined, but not far one from the other. It follows
that a sufficiently strong perturbation can still hybridize them.
To better illustrate this point, we may evaluate how much the
levels are shifted by turning on λ. However, the absolute value
of the shift should be compared with the level spacing in a
situation where levels are well-distinguishable (intermediate
couplings) and the band spacing in the presence of strong
degeneration (g → 0 or g → ∞).

A convenient way to proceed is to divide the all spectrum in
a certain number of intervals (let Nbin this number) and count
how many levels lie in each interval. We define the quantity

χm ≡ (# levels in the mth interval) (λ)

− (# levels in the mth interval) (λ = 0). (29)

The average of this quantity with respect to the interval
index m is obviously zero. The relevant quantity is instead
its standard deviation σχ . The result is plotted in Fig. 5, left
panel. The quantity σχ has a maximum around g/d ∼ 1,
corresponding to the point in which the degeneracies of
the noninteracting picture are already destroyed, while the
energy bands of the strong coupling regime are not evident

yet. This result is, of course, related to the occurrence of
a crossover between weakly attracting fermions and tightly
bound pairs. For the uncoupled systems, from the point of
view of the energy spectrum the crossover reflects itself on
the creation of energy bands out of the pair levels, which are
more and more separated by increasing g. This is also seen
at the level of the coupled spectrum. The doublet structure
characterizing coupled noninteracting systems is melted into
an highly degenerate band structure.

In the right part of Fig. 5, we plot the energy difference
between the first excited state and the ground state in a system
with an odd number of particles as a function of g. It turns
out that, as long as the gap opens more and more, the energy
difference between the components of the level doublet reaches
a maximum splitting.

IV. EMERGENCE OF A DEFINITE RELATIVE PHASE

In this section we explain what initial states have been
considered and discuss how a definite relative phase emerges
for small numbers of particles and our algorithm for obtaining
it from numerical data.

The initial state |�(t = 0)〉 is prepared in a linear com-
bination of ground states of the uncoupled systems having a
different number of pairs and therefore a population imbalance.
This state is evolved in time with the dynamics generated by
Eq. (20), with λ �= 0 in the tunneling term. More precisely,
at t = 0 the system is generically in a linear superposition of
two states with a given number of pairs (we choose M0 in a
system and M0 − D in the other). The total number of pairs is
conserved during the time evolution and is MT = 2M0 − D.
Denoting by |
(L,R)

M 〉 the lowest-energy state with M pairs of
either the left or the right system, we prepare the system in the
state

|�(t = 0)〉 = 1√
1 + ξ 2

(∣∣
(L)
M0

〉 ⊗ ∣∣
(R)
M0−D

〉
+ eiφ0ξ

∣∣
(L)
M0−D

〉 ⊗ ∣∣
(R)
M0

〉)
; (30)

given the limitation on the total number of pairs (MT � 10),
we most consider D = 1, therefore creating an initial state by
a linear superposition of M0 pairs in a system and M0 − 1
in the other, and D = 2 (typically we choose M0 = N/2 or
M0 = N/2 ± 1).

0.1 0.2 0.3 0.4 0.5
λ

18

17
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E

0.1 0.2 0.3 0.4 0.5
λ
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45

40

35

E

0.1 0.2 0.3 0.4 0.5
λ

220

200

180

160

E

FIG. 4. (Color online) Energy spectrum vs λ for N = 8 and MT = 8, with g = 0.1 (left), g = 1.2 (center), g = 6.2 (right); for simplicity,
thereafter also λ is expressed in units of d .
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FIG. 5. (Color online) (Left) Standard deviation σχ vs g associated with the level structure, given by (Nbin = 100, λ = 0.05, N = 8,
MT = 6). (Right) Energy difference between the first excited state and the ground state as a function of g for the same values of the parameters.

Given |�(t)〉, one can compute the pair population imbal-
ance as

δM(t) ≡ 〈�(t)|ML − MR|�(t)〉
= 〈�(t)|

∑
α

(b†α,Lbα,L − b
†
α,Rbα,R)|�(t)〉 (31)

(the population imbalance δNf is just δNf = 2δM). Notice
that with ξ = 0 it is 〈�(t = 0)|ML|�(t = 0)〉 = M0.

According to the notation of Ref. 65, we denote by z(t) the
fractional population imbalance:

z(t) = δM(t)

MT

. (32)

Using the state (30) one simply obtains

δM(t = 0) = D
1 − ξ 2

1 + ξ 2
;

therefore, varying the parameter ξ one can choose different
initial population imbalances (with |δM(t = 0)| � D). The
dynamics is then studied turning on a small perturbation
(λ/d = 0.01–0.1 in our runs) and compute the time evolution
of the state after exact diagonalization the Hamiltonian. The
main limitation of this protocol arises from the consume of
RAM by diagonalization subroutines. By limiting subspaces
appropriately, as discussed in Sec. III, one can study systems
up to N = 10 levels (both on left and right systems).

An important issue we want to address in this section,
arising from the fact that we can treat the exact quantum
dynamics of the coupled model only for a limited number
of pairs, is whether a definite relative phase emerges at small
sizes. In the presence of the tunneling term (23), eigenstates
will, in principle, be written as a combination of many of
the factorized states of the two uncoupled Hamiltonians.
Nevertheless, as we will see, when the initial population
imbalance is small, the number of involved states is rather
small. Moreover, even for higher particle imbalance, when the
tunneling is weak and the pairing strength is strong enough, the
Hilbert space of each system organizes in subspaces, labeled
by eigenvalues of the total spin (see Sec. II). It follows that
in most cases, even if the exact states involved are many,
the corresponding energy eigenvalues are not very different;
therefore, the time evolution takes place with nearly definite
phase.

Note that in our canonical setting the expectation value
〈�(t)|bα,L/R|�(t)〉 is always vanishing, since the b’s operators
does not conserve the number of particles. However, we can
define time-dependent phase differences between one level in
a system and a level in the other system systems by the use of
the formalism of Sec. II evaluating the dynamical two-point
functions (for the uncoupled systems, dynamical two-point
correlations have been studied26,66).

From the correlation function 〈�(t)|b†α,Lbβ,R|�(t)〉 one can
extract how much the phases of two distinct levels differ
at a given time. In particular, we considered two different
procedures for the choice of the levels, which can be tested
one against the other, and define

wα(t) = 〈�(t)| b†α,Lbα,R |�(t)〉 (33)

and

zα(t) ≡ 〈�(t)| b†α,LbN/2,R |�(t)〉 . (34)

In Eq. (34) the subscript refers to the level on the left system
and a reference state is taken on the right system (arbitrarily
chosen to be the level N/2); conversely, in Eq. (33), the level
is chosen to be the same on both systems. We define a relative
phase between levels as

wα(t) ≡ |wα(t)| eiδφw(t ;α) (35)

and

zα(t) ≡ |zα(t)| eiδφz(t ;α). (36)

The functions δφw(t ; α) and δφz(t ; α) are functions of both
time and level index. It is then necessary to verify whether the
levels have small phase difference: To do this, we define the
level average

δφw,z(t) = 1

N

N∑
α=1

δφw,z(t ; α) (37)

and their standard deviation σw,z(t) [with σ 2
w,z(t) = (1/N )∑N

α=1 (δφw,z(t ; α) − δφw,z(t))
2]. The time evolution of the

mean values δφw,z(t) is reported in Fig. 6. One sees that already
for MT = 8, one has relatively small values of g where the
two definitions of the relative phase are in good agreement for
most of the times. The two definitions δφw(t) and δφz(t) are
expected to agree only when the two systems show coherent
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FIG. 6. (Color online) Phase differences δφw(t) (solid blue line)
and δφz(t) (dotted red line) vs t for the coupled systems with N = 8
levels each, total number of pairs MT = 8, pairing strength g = 0.6,
tunneling parameter λ = 0.1, D = 2 (corresponding to M0 = 5), and
initial imbalance z(t = 0) = 0.25. Time here and in the following
figures is in units of h̄/d .

behavior, and the phase difference between them is, within a
good approximation, given by the phase difference between
any two levels chosen. We checked that choices other than
Eqs. (33) and (34) give practically the same results when a
relative phase is well defined.

To have a definite relative phase one has to check that the
average values δφw,z(t) should be (possibly for most of the
considered times) much larger than their standard deviations
σw,z(t). As shown in Figs. 7 and 8 (done, respectively, for
g = 0.2d and g = 0.6d) this condition is rather well verified
also for a number of pairs MT = 8. One also sees that for
g = 0.2d the agreement is less good, as expected also from the
fact that—as discussed in Sec. II—the uncoupled systems have
significant deviations from the large-N limit. We also observed
for the considered values of g a significant degradation of the
relative phase for even smaller total number of pairs, e.g., as
low as MT = 4.

Information about the phase difference averages and their
standard deviations at every given time is useful, but we can
complement it with their averages in time. To this purpose, we

consider the mean of the standard deviation presented above
over sufficiently long times (several periods)

Cδφ
w,z = 1

tmax

∫ tmax

0
σw,z(t

′)dt ′.

To establish a comparison, we need to evaluate also the mean
phase difference among the condensates. This is an oscillating
quantity, having vanishing average on time: We then compute
the average of its square:

Sφ
z,w =

√
1

tmax

∫ tmax

0
δφ2

z,w(t ′)dt ′.

In Fig. 9 we plot Cδφ and Sδφ with both the definitions (33)
and (34). One sees already for g � 0.3d a very good agreement
Cδφ

w and C
δφ
z , and both significantly larger than the time

averages S
δφ
w,z. For this reason we are going to denote as δφ

the relative phase difference, omitting the indexes w,z. One
also sees that for small g the relative phase is not defined,
as expected, since the relative phase is comparable with its
variance.

As a function of the pairing parameter g, from Fig. 9 one
sees that the higher the value of g, the more the system shows
a definite relative phase. We also observed that the smaller
the tunneling parameter, the sooner (in g) a definite phase
is established. Similarly, a small initial imbalance allows for
a definite phase to emerge for relatively small values of g,
while—for the considered values of N—stronger pairing is
necessary if states with larger initial imbalances are selected.
This is due to the fact that the initial state is projected on
few states in the lowest part of the spectrum when the initial
population difference is small. Conversely, larger population
imbalances at t = 0 are projected to many states in the middle
of the spectrum, each having its own energy.

We pause here to comment about fermion tunneling. As
a matter of fact, the original tunneling Hamiltonian (22) is
written in terms of fermionic operators, while the result that
the phase coherent behavior is established with relatively small
pairing and/or total number of pairs is obtained with the
bosonic approximation (24), acting on the restricted subspace
of blocked levels. Since at small g pair-breaking excitations
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ΔΦw,Σw

10 20 30 40 50 60 70
t
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2

3

ΔΦz,Σz

FIG. 7. (Color online) Phase difference means δφw,z(t) (dashed blue lines) and standard deviations σw,z (red solid lines), as determined
from the correlation functions w (left) and z (right), for two coupled grains with the same parameters as in the previous figure.
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FIG. 8. (Color online) Same quantities as in Fig. 7 with g = 0.2 (other parameters unchanged).

may play an important role, a natural question to ask is whether
the presence of fermionic degrees of freedom, aside of bosonic
pairs, may spoil the phase-coherent behavior of the systems
for sufficiently large pairing. The issue can be rephrased into
the question of whether the initial state, during the evolution
generated by the coupled Hamiltonian, containing a fermionic
tunneling term, may give rise to a huge number of states
in which two or more electrons are not paired, evolving
incoherently with respect to the states in which only pairs
appear.

These states have to be written as linear combinations of the
factorized states of the two uncoupled Hamiltonians. On each
site, the energy of such states can be exactly computed for any
value of g. In order to have an estimation of a lowest bound for
the energy, we can consider a state in which the most energetic
pair is broken and one electron is promoted into the next level,
which reduces the number of pairs by 1 and the number of
unblocked levels by 2, as seen in Sec. II. The energy of the
lowest pair-breaking excitation has been considered in Ref. 23
and it reads

Epair � εM + εM+1

2
− g(M − 1)((N − 2) − (M − 1) + 1).

(38)

FIG. 9. (Color online) Cδφ
w (lower dashed line), Sδφ

w (upper dashed
line), Cδφ

z (lower solid line), and Sδφ
z (upper solid line) vs g.

Parameters are as in Figs. 6–8: N = 8, MT = 8, λ = 0.1, D = 2
(moreover, tmax = 1000).

The bare energies in the first term of Eq. (38) do not depend
on g, unlike the ground-state energy, all the pair-conserving
excitations, and the second term in the previous equation. It
follows that, by taking the pairing strength sufficiently high,
all pair-breaking excitations can be made to lay at arbitrary
energy above the ground state and are therefore suppressed
with respect to pair-conserving excitations.

Checking explicitly that the insertion of states with unpaired
electrons does not spoil the phase relation requires much
larger computational effort, in that the Hilbert space should
be enlarged to the ( N

m )( N − m

M ) configurations in which the
m electrons can “block” part of the N levels, with a fixed
number M of pairs. We can therefore qualitatively rely on the
standard argument based on the presence of a gap preventing
single-fermion tunneling. Note that this should already hold
for values of g � 0.25, as previously discussed.

We also mention that, even if the phase is quite well defined,
residual fluctuations can still be observed, in such a way that the
widest, slowest oscillations are superimposed with faster and
narrower ones. We find it convenient to isolate the former ones
by computing time averages on intervals much smaller than
the period of the largest oscillations. This makes it possible
to better understand the structure of the dynamical diagrams
discussed in the next section. An example of the procedure is
provided in Fig. 10.

V. PHASE PORTRAIT AND CURRENT-PHASE
CHARACTERISTICS

In this section we first draw the population-phase dy-
namical portrait z(t)–δφ(t) as it has been done for bosonic
Josephson junctions65,67 and we determine the current-phase
characteristics, which is a typical tool used to characterize the
behavior of a Josephson junction.34,68 From the solution for
the quantum dynamics one can extract the dominant period
of the population oscillations and determine the Josephson
frequency. We also comment on the determination of a
two-state model giving a good description of the dynamics
and of the current-phase characteristics for the considered
initial conditions. We observe that most of our simulations
are done for the initial state (30) with D = 1 built by a linear
combination of a state with M0 = N/2 pairs on a system
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FIG. 10. (Color online) (Left) Phase difference, as a function of time, for N = 8, MT = 6, δM0 = 2, g = 5, λ = 0.05. (Right) Averaging
over short times tav (here, tav = 6) to remove fluctuations.

and M0 = N/2 − 1: This state has a maximum value for
|δM(t = 0)| equal to 1. For this initial state the relative phase
difference δφ is well defined for a total number of pairs �6 and
for g � 0.3 (see Fig. 9), where the expectation values for the
correlation functions are already rather similar to the large-N
BCS findings.25 We can then explore the crossover region
(which is around g/d ∼ 0.25N ). In the final part of the section
we consider D = 2 and initial imbalance δM(t = 0) = 2. The
phase turns yet to be again rather well defined (but at larger
values of g), but we cannot practically explore larger initial
imbalances (i.e., larger values of D) since with our maximum
value of pairs MT ∼ 10 the relative phase is well defined
only for very large values of g (well beyond the crossover
point).

In Fig. 11 we plot the number-phase portrait where we plot
as a function of time both δφ(t) and δM(t) for different values
of δM(t = 0). It is also possible to study the diagram while
varying the initial phase in the initial state (30), as shown in
Fig. 12.

One sees from Figs. 11 and 12 that even for a small total
number of pairs (MT = 7) the phase diagram in the plane
δφ − z shows a remarkable agreement with a “pendulum” law
of motion in the small oscillations regime when the initial
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FIG. 11. (Color online) Dynamical phase-portrait z–δφ for dif-
ferent values of the parameter ξ in the BCS regime, with N = 8,
MT = 7, D = 1, g = 0.57, λ = 0.05. The chosen values of ξ are
ξ = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, corresponding, respectively
to δM(t = 0) = 0.98,0.92,0.83,0.72,0.60,0.47,0.34,0.22,0.10.

imbalance is small. Furthermore, as the initial displacement
or phase difference becomes larger, significant corrections are
seen.

A way to understand such results is to introduce a two-
state model.34,69 Computing the overlaps of the initial state
(30) having D = 1 and |δM(t = 0)| � 1 with the many-body
eigenfunctions of the full Hamiltonian (with λ small), one
sees that the largest overlaps are with the ground and the first
excited states. Given this one expects that the dynamics is
well explained by a simple linear two-mode model involving
such two states. The dynamical equations of the Feynman
two-state model are reviewed in the Appendix. For the linear
two-state model here considered the phase difference δφ does
not overcome the value π/2; i.e., if |φ(t = 0)| < π/2, then
|φ(t)| < π/2. As seen in Figs. 11 and 12, this property is
clearly observed in the numerical results (we also checked
it with exact diagonalization). The property is typical of the
linear two-mode model and it is connected with the fact that
the main contributions to the time-dependent wave function
arise from the first two lowest-lying states of the interacting
system with equal weights.

We now focus on the pair current between the models. We
define the current I as the time derivative of the occupation
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FIG. 12. (Color online) Phase portrait for different initial phases
in the BEC regime [N = 8, MT = 7, D = 1, δM(t = 0) = 1,
g = 9.7, λ = 0.05].
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FIG. 13. (Color online) (Left) Fit for the I–δφ characteristics with g = 2.3, λ = 0.05, D = 1, δM(t = 0) = 1, N = 8, MT = 7; blue circles
are numerical points obtained from the quantum dynamics, and the red line is the fit according Eq. (41). (Right) Critical current fit; the blue
circles are numerical results, while the red line is Eq. (42) with c � 0.27.

number of the left subsystem,

I (t) ≡ d

dt
〈�(t)|ML|�(t)〉 = d

dt
〈�(t)|

∑
α

b
†
α,Lbα,L|�(t)〉.

(39)

From Eq. (39) one finds

h̄I (t) = i[H,ML] = i[H (2),ML] = i
∑
α,β

bα,Lb
†
β,R−b

†
α,Lbβ,R

Eα + Eβ

.

(40)

As discussed in the Appendix, for the linear two-state
model the current is proportional to the tangent of the phase
difference: I ∝ tan δφ [see Eq. (A11)]. The current-phase
characteristic can be therefore written as

I (δφ) = Ic(g,λ) tan δφ (41)

and the critical current Ic can be fitted from numerical data.
An example is given in the left part of Fig. 13. We find that the
critical current has a maximum around a finite value of g, as
shown in the right part of Fig. 13. For the considered values
of N the maximum is at g � 1, close to the unitary regime. Ic

can be fitted in the form

Ic(g,λ) = I0λ
e−c/g2

g
; (42)

I0 depends mostly on N . Notice that the relation (42) has a
maximum at g∗ = √

2c. For the parameters of Fig. 13 we find
c � 0.27, nearly independent on λ.

We stress that the fit needed to identify the critical current
is done using the linear two-mode model. The validity of
the fit relies on the fact the two lowest levels are the ones
mainly involved in the dynamics, which is the case for small
imbalances (D = 1). Deviations are observed for larger values
of D, as we are going to discuss.

It is an interesting issue to explore what happens when
more levels, inserted in a band structure as the one described in
Sec. III A, participate the dynamics: With D = 2 and δM(t =
0) = 2 the phase diagram shows a typical ellipsoid form. An
example of number-phase portrait is given in Fig. 14. We see

that the phase range depends only on the interaction, while the
amplitude of the population oscillations depends on the initial
relative phase given to the system through Eq. (30).

The numerical study of the current phase characteristics
reveals that for D = 2 the relation (41) does not provide
a good way of fitting the critical current: The numerical
results are plotted in the left part of Fig. 15. We find that
a good approximation of the current-phase characteristics is
given by

I (δφ) = Ic(g,λ) sin
δφ

2
, (43)

with Ic given by Eq. (42) (Ref. 70), as can be seen in the right
part of Fig. 15. We observe that such a dependence for the
current-phase characteristics was found for a weak, pointlike
barrier in the WKB approximation in the Bogoliubov–de
Gennes equation.71 Since for large N we expect a dependence
∝ sin δφ (Ref. 47), we attribute the result (43) to the small
N considered. Further numerical investigations with larger
number of levels are needed in order to obtain the current-phase
characteristic for intermediate and large N for the coupled
RMs.
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z

FIG. 14. (Color online) Number-phase diagram for N = 8,
D = 2, δM(t = 0) = 2, MT = 6, λ = 0.05, and g = 0.4.
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FIG. 15. (Color online) (Left) Current-phase characteristics for g = 3.8, λ = 0.05, D = 2, δM(t = 0) = 2, N = 8, MT = 7; blue circles
are numerical points obtained from the quantum dynamics, and the red line is the fit according Eq. (43). (Right) Critical current vs g; the blue
circles are the numerical results, while the red line is Eq. (42).

A check of Eq. (43) and of the data presented in Fig. 15
can be obtained by doing the Fourier transform of δM(t) with
D = 2. As a function of g, to a very good approximation the
dominant frequency of δM(t) (i.e., the Fourier component with
the highest weight) turns out to be proportional to the critical
current given by Eq. (42).

An important prediction of the nonlinear two-state model is
that there is a critical initial imbalance for which self-trapping
occurs.65 Given the limitation on the maximum value of D,
we cannot explore larger initial imbalances. What is observed,
instead, is that the amplitude of the fastest oscillations of δM(t)
is increased and that the period of the slowest ones is decreased
more and more, as 1/g. The time period of both δM(t) and
δφ(t) become larger and the oscillations exhibited by δφ(t) (as
the ones seen in the left part of Fig. 10) become as well larger.
The scenario is that of a large crossover to a confined regime, in
which the occupation oscillations have infinite period at very
large g. This may be a finite-N effect, and one could expect
that this eventually leads to a transition in the thermodynamic
limit.

The initial phase can also be varied with initial imbalance
δM(t = 0) = 2. It is interesting to note that the for most
of the values of g, the phase runs. Nevertheless, the time
evolution of the mean phase locks it around some large-period
oscillations. We conclude by observing that similar results
are found decreasing the coupling λ. Further investigations to
study self-trapping effects at very small values of the coupling
are needed. An analysis of larger imbalances and larger N

(eventually with very small coupling) is therefore needed
to study self-trapping effects, and more in general nonlinear
effects, through the crossover.

VI. CONCLUSIONS

We have studied the emergence of a definite relative phase
between ultrasmall metallic grains (and in general finite-size
systems of attractively interacting fermions) modeled by
weakly coupled RMs. We have introduced and discussed a
way of extracting the relative phase and its variance from

the many-body wave function, in order to precisely quantify
whether a definite relative phase emerges.

We have also related the coherent behavior to the spectrum
of the coupled systems and suggested a criterion to characterize
the crossover between the BCS and BEC regimes, showing that
these regimes are clearly distinguishable by the spectrum of
the coupled models.

Moreover, we have performed a numerical analysis of
the exact dynamics of the two weakly coupled Richardson
Hamiltonians, after a weak tunneling term is turned on. We
used a linear superposition of the eigenstates of the two
uncoupled systems, with a different number of pairs (D being
such difference), as initial states. These states are then evolved
according to the full Hamiltonian including the tunneling
Hamiltonian, weakly coupling the two systems. We found
that a definite relative phase difference emerges even for a
small numbers of pairs (∼8–10). Therefore, the current-phase
characteristics could be obtained for values of the bare pairing
strength for which the equilibrium properties of the uncoupled
models are well approximated by the BCS theory. We showed
that, for small initial imbalances (D = 1), a two-state model
gives a reasonably good description of the dynamics and of
the current-phase characteristics.

Finally, we have presented the critical current as a function
of the pairing parameter, finding that it has a maximum
around the unitary regime, even with a number of pairs ∼8.
The phase portrait was studied for small initial imbalances
(D � 2).

The requirement of having a definite phase difference
among the two systems with a limited total number of pairs
(�10) prevented us from analyzing values of the initial pop-
ulation imbalance (D > 2). For these large initial imbalances
the relative phase appears to be well defined only for very
strong pairing interaction, well beyond the unitary limit and
deep in the BEC regime. Further numerical investigations are
required to consider larger sizes and larger initial imbalances
(eventually with very small tunneling couplings), which
may generate a definite relative phase across the BCS-BEC
crossover. It is expected that a proper finite-size scaling may be
crucial to identity nonlinear self-trapping effects. We moreover
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regard as interesting the investigation of the effects on the
relative phase of single-fermion tunneling terms: These terms
might give a contribution on the BCS side of the crossover
and produce a degradation of the relative phase, which
should eventually form for larger sizes. Similarly, it would
be stimulating to compare (eventually for larger systems) the
results obtained from exact dynamics with the ones obtained
using time-dependent mean-field approaches.

The rapid growth of the computational cost with the size
of the systems represents a limitation on the total number
of pairs as well: The Hilbert space could be further reduced
in the strong coupling regime, yet not throughout the whole
crossover. We conclude that it stands as an open issue, certainly
deserving future work, how our findings scale with the size of
the system.

Our results can be applied to weakly coupled ultrasmall
metallic grains and to cold atom experiments in which traps
with few fermions are set at a distance that allows tunneling.
The individuation of the relative phase between nearest
neighboring sites makes it possible, in perspective, to study
Josephson dynamics and self-trapping systems also for larger
imbalances and to check the validity of two- and multi-mode
ansätze.

We finally observe that in this paper we focused our
attention on weakly coupled RMs, discussing the formation
of a relative phase and the Josephson dynamics for a class of
considered initial conditions. The extension of our method
of defining a relative phase to the problem of the forma-
tion of a relative phase between general interacting (both
integrable and nonintegrable) mesoscopic systems could be
relevant in a rather broad class of physical systems, including
weakly coupled ultracold finite Bose gases, and it is, in
our opinion, an interesting problem, worthwhile of future
studies.
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APPENDIX: DYNAMICAL EQUATIONS
FOR THE TWO-STATE MODEL

A general description of the tunneling in super-
fluid/superconducting systems is provided by the Feynman
two-state model.69 The macroscopic wave functions ψL and
ψR of the left and right systems obey the equations

ih̄
∂ψL

∂t
= ELψL − KψR, (A1)

ih̄
∂ψR

∂t
= ERψR − KψL. (A2)

The two-state model also describes also the tunneling of Bose-
Einstein condensates in double-well potentials.65 The effect
of the interactions between atoms in the wells results in cubic
terms of the form U |ψL|2ψL and U |ψR|2ψR added to the right-
hand sides of Eqs. (A1) and (A2). In our case, since the D = 1
initial state (30) has mostly projections on the ground and first

excited many-body states, we limit ourself to Eqs. (A1) and
(A2) (with U = 0).

Setting ψs = √
Mse

iφs (with s = L,R), the equations for
z ≡ (ML − MR)/(ML + MR) and φ ≡ φR − φL read

h̄
∂z

∂t
= −2K

√
1 − z2 sin φ, (A3)

h̄
∂φ

∂t
= 2Kz√

1 − z2
cos φ, (A4)

for the symmetric case EL = ER .
The system (A3) and (A4) can be derived from the

Hamiltonian

H = −2K
√

1 − z2 cos φ, (A5)

in which the time evolution of the conjugated variables φ,z is
found from

h̄ż = −∂H
∂φ

, (A6)

h̄φ̇ = ∂H
∂z

. (A7)

By defining the angular variable θ such that z = sin θ ∈
[−1,1], one finds from Eq. (A5)

h̄θ̇ = ∓2K sin φ, (A8)

h̄φ̇ = 2K tan θ cos φ, (A9)

where the ∓ sign accounts for the determination of the square
root. The time-dependent relative occupation is a function of
time only through the relative phase φ. Starting from Eqs. (A8)
and (A9) and identifying with a prime the derivative with
respect to φ, one has

h̄
dθ

dt
= h̄

dθ

dφ

dφ

dt
= ∓2K sin φ,

from which

tan θ
dθ

dφ
= ∓ tan φ.

By integration one obtains

cos θ = A0

cos φ
, (A10)

where the constant A0 = ∓ cos φ0 cos θ0 is fixed by the initial
conditions. Defining the current I as I = ṀL, one has
I = MT ż/2, where MT = ML + MR is the total number of
particles (pairs, in our case). Using (A3) one has

I (φ) = MT

2
θ̇ cos θ = −KMT A0

h̄
tan φ. (A11)

We conclude the Appendix by observing that for the
linear two-state model here considered (U = 0) the phase
difference does not overcome the value π/2 [more precisely, if
|φ(t = 0)| < π/2, then |φ(t)| < π/2].
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