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Monte Carlo simulations of the three-dimensional XY spin glass focusing on chiral and spin order
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The ordering of the three-dimensional isotropic XY spin glass with nearest-neighbor random Gaussian coupling
is studied by extensive Monte Carlo simulations. To investigate the ordering of the spin and the chirality, we
compute several independent physical quantities including the glass order parameter, the Binder parameter,
the correlation-length ratio, the overlap distribution, and the non-self-averageness parameter, etc., for both the
spin-glass (SG) and the chiral-glass (CG) degrees of freedom. Evidence of spin-chirality decoupling, i.e., that
the CG and SG order occur at two separate temperatures, 0 < TSG < TCG, is obtained from the glass order
parameter, and is fully corroborated by the Binder parameter. By contrast, the CG correlation-length ratio
yields a rather pathological and inconsistent result in the range of sizes we studied, which may originate
from the finite-size effect associated with a significant short-length dropoff of the spatial CG correlations.
Finite-size-scaling analysis yields the CG exponents νCG = 1.36+0.15

−0.37 and ηCG = 0.26+0.29
−0.26, and the SG exponents

νSG = 1.22+0.26
−0.06 and ηSG = −0.54+0.24

−0.52. The exponents obtained are close to those of the Heisenberg SG, but are
very different from those of the Ising SG. The chiral overlap distribution and the chiral Binder parameter exhibit
the feature of a continuous one-step replica-symmetry breaking (1RSB), consistently with previous reports. Such
a 1RSB feature is again like that of the Heisenberg SG, but is different from the Ising SG, which may be the cause
of the difference in the CG critical properties from those of the Ising SG despite the common Z2 symmetry.
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I. INTRODUCTION

In spite of a long history of research, spin glasses (SGs)
are still a hot topic in statistical physics.1 The SG is a typical
system possessing both strong frustration and randomness,
leading to several unusual behaviors such as slow dynamics
and the rejuvenation-memory effect. In a theoretical treatment
of SGs, Edwards and Anderson (EA) proposed as early
as in 1972 a simple model,2 the so-called EA model, in
which the spins are put on each site of a regular lattice
and interact via random coupling taking both positive and
negative signs. The infinite-range or mean-field version of
the EA model, first presented by Sherrington and Kirkpatrick
(SK),3 was solved by Parisi, revealing the intriguing concept
of replica-symmetry breaking (RSB).4 For both the Ising and
the Heisenberg SK models, the relevant RSB turned out to
be of hierarchical nature. In spite of such success of the
mean-field theory, understanding the nature of the ordering
of the finite-range EA model in three dimensions (3D) still
remains incomplete. Numerical simulations have been the
main tool in attacking the issue. Although the existence of
a finite-temperature SG transition was established in the 3D
Ising EA model,5–11 earlier numerical simulations on the 3D
XY and the Heisenberg EA models suggested the absence
of a finite-temperature transition,12–18 in apparent contrast to
experiments.19–26

Some time ago, in discussing the ordering of frustrated
vector spin systems, Villain suggested the possible significance
of the “chirality” degree of freedom, an Ising-like scalar
quantity which represents the handedness of the noncollinear
spin structure. Villain made the conjecture that the 3D XY
SG might exhibit a finite-temperature SG ordering, noting the
Ising nature of the chirality and invoking the occurrence of a
finite-temperature SG transition in the 3D Ising SG.27

Numerical simulations of the vector SG, i.e., the two-
component XY SG or the three-component Heisenberg SG,

investigating both the spin and chirality degrees of freedom,
have been performed since 1985.28 A crucially important
concept which emerged from these studies is the possible
“spin-chirality decoupling” phenomenon.29–31 In 3D, this
means that the chirality orders at a temperature higher than
the spin, with an intermediate “chiral-glass” (CG) phase
where only the chirality exhibits a glassy long-range order
while the standard SG order still remains short ranged. In
dimensions lower than 3, where both the spin and the chirality
are believed to order only at T = 0, spin-chirality decoupling
means that the spin and the chiral correlation-length exponents
are different from each other, i.e., two different diverging
length scales exist at the T = 0 transition.32–45 In terms of a
symmetry, in the CG phase the Z2 spin-reflection symmetry is
spontaneously broken while the SO(3) or SO(2) spin-rotation
symmetry is unbroken.

In the case of the 3D XY SG, which is the target of the present
study, the spin-chirality decoupling was first examined by
a numerical domain-wall renormalization-group calculation
and also by a Monte Carlo (MC) simulation.35,46,47 Further
interesting features revealed by these numerical analyses might
be a possible one-step RSB (1RSB) type of feature in the
CG ordered state, and the non-Ising character of the CG
criticality.47

Similar spin-chirality decoupling phenomena, the 1RSB-
like nature of the CG ordered state, and the non-Ising
character of the CG criticality have also been observed in
the 3D Heisenberg SG, a reference model for many realistic
SG materials including the canonical SG, in spite of the
difference in the nature of the chiralities relevant to the
XY and the Heisenberg spins. For the former, the chirality
is quadratic in spins and time-reversal even, while, in the
latter, it is cubic in spins and time-reversal odd. Indeed,
on the basis of the spin-chirality decoupling picture of the
3D Heisenberg SG, a chirality scenario for the experimental
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SG order was advanced.29–31 Recent large-scale simulations
have revealed that the SG order actually takes place at a
nonzero temperature,48–61 in contrast to earlier beliefs. In ad-
dition, although some contrary opinions are still present,58–61

several recent MC simulations give eloquent evidences that
spin-chirality decoupling actually occurs, i.e., 0 < TSG <

TCG, in a range of dimensions including 3.48–57 Several
experimental facts were also successfully explained by the
chirality scenario,26,31 which clearly emphasizes the physical
importance of the spin-chirality decoupling in understanding
realistic SG systems.

On the other hand, the situation in the 3D XY SG seems
less clear. Extensive calculations comparable in their scale to
those for the 3D Heisenberg SG are scarce, and the occur-
rence of spin-chirality decoupling still remains controversial.
Maucourt and Grempel suggested on the basis of their T = 0
domain-wall renormalization-group calculation for lattices
with L � 8 the occurrence of a nonzero TSG located below
TCG.62 Mentioning some of the recent MC simulations on
the model, Kawamura and Li simulated the ±J EA model
by an equilibrium MC simulation up to the linear size L =
16, suggesting the occurrence of spin-chirality decoupling,47

whereas Granato performed dynamical Langevin simulations
of the model for lattices of L � 12, and concluded that a single
transition TSG = TCG occurs.63,64 Nakamura and collaborators
performed a nonequilibrium relaxation analysis for lattices up
to L = 55 (this method enables one to treat relatively larger
sizes but some drawbacks appear in its short-time observa-
tions), and suggested that TSG and TCG were identical or close
even if different.65,66 Young and collaborators investigated
the Gaussian EA model by equilibrium MC simulations for
lattices up to L � 24, reporting no evidence of spin-chirality
decoupling.67,68

This confusing situation motivates us to reexamine the
ordering of the 3D XY EA model with random Gaussian
coupling by large-scale MC simulations, treating large sizes up
to L = 40, considerably larger than the sizes studied before by
equilibrium simulations. A large number of samples of order
Ns ∼ O(103) are simulated to obtain reasonable statistics.
Furthermore, we compute various independent quantities
including the glass order parameter, the Binder parameter, the
correlation-length ratio, the overlap-distribution function, and
the non-self-averageness parameters for both the SG and the
CG, in order to check consistency among various independent
quantities.

We note that the 3D XY EA model is a reference
model for SG magnets with an easy-plane-type uniaxial
magnetic anisotropy.69–74 Readers are referred to Ref. 74 for
a detailed discussion. The ordering properties of the model
would also be helpful in understanding the peculiar ordering
behaviors experimentally observed in these granular cuprate
superconductors.75–82

Overall, the results of our large-scale simulations speak for
the occurrence of spin-chirality decoupling in the 3D XY SG.
The estimated SG and CG transition temperatures are Ts =
0.275+0.013

−0.052 and TCG = 0.313+0.013
−0.018, TCG being higher than TSG

by about 10%. In estimating the transition temperatures, we
have found a reasonably good consistency among various
independent quantities, with the one exception of the CG

correlation-length ratio, which behaves rather badly, leading
to a pathological estimate for TCG. Thus, in deriving the above
estimate of TCG, we have not used the CG-correlation length
data, in contrast to Ref. 67. To clarify the origin of the observed
pathological behavior of the CG correlation length, we directly
compute the spatial chiral correlation function, finding that the
standard formula of the finite-size correlation length may be
inappropriate to describe the CG correlation length in the range
of small sizes in which we make our simulations.

The critical properties associated with the SG and CG
orderings are also examined. We obtain the CG exponents
νCG = 1.36+0.15

−0.37 and ηCG = 0.26+0.29
−0.26 and the SG exponents

νSG = 1.22+0.26
−0.06 and ηSG = −0.54+0.24

−0.52, where ν and η are
the correlation-length and the critical-point-decay exponents,
respectively. These exponents turn out to be close to the
corresponding Heisenberg SG exponents, but are different
from those for the Ising SG. We also confirm the 1RSB nature
of the ordered state, consistently with previous reports.

This paper is organized as follows. In Sec. II, we introduce
the model and explain some of the details of our simulation.
In Sec. III, we define several physical quantities which we
compute to examine the SG and the CG orderings. Our criteria
for checking equilibration are also shown in this section.
The results of our MC simulations are presented in Sec. IV.
We show the data for the glass order parameter, the Binder
parameter, the correlation-length ratio, the overlap-distribution
function, the non-self-averageness parameter, and the spatial
correlation function for both the SG and the CG degrees of
freedom. The CG and SG transition temperatures are estimated
via an infinite-size extrapolation of appropriate finite-size
data. The possible RSB character of the ordered state is also
examined in this section. In Sec. V, the critical properties of
the SG and CG transitions are analyzed, and the CG and SG
critical exponents are determined. Comparison is made with
the corresponding exponents for the 3D Heisenberg and the
3D Ising SGs. The last section is devoted to a summary and
discussion. In the Appendix, the behavior of the SG Binder
parameter in the thermodynamic limit across the CG and SG
transition points is analyzed.

II. MODEL AND SIMULATIONS

The model we study is the isotropic XY EA model on a
3D simple cubic lattice. The sites are labeled by the index i

(i = 1,2, . . . ,N ), the corresponding coordinate being denoted
as r i = (xi,yi,zi). The total number of spins N is related to
the linear system size L as N = L3. The XY spin on the ith
site, Si , has two components Si = (Six,Siy) = (cos θi, sin θi)
where 0 � θi < 2π . The Hamiltonian is given by

H = −
∑
〈i,j〉

Jij Si · Sj , (1)

where the summation 〈i,j 〉 is taken over all nearest-neighbor
pairs. The interaction Jij is a random Gaussian variable whose
mean and variance are taken to be zero and unity, respectively.
The partition function is given by

Z =
∫ N∏

i=1

dθi

2π
e−βH, (2)
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TABLE I. Parameters of our MC simulations. L is the linear system size, Ns is the total number of samples, NMC1 is the number of MC
steps per spin discarded for equilibration, NMC2 is the number of MC steps per spin subsequently used in measuring physical quantities, Tmax

and Tmin are the highest and the lowest temperatures employed in the temperature-exchange process, and NT is the total number of temperature
points. For L = 40, we use two different temperature sets, and also we adaptively choose NMC1 and NMC2 for each bond realization to satisfy
the equilibrium criteria shown below.

L Ns NMC1 NMC2 Tmax Tmin NT

4 5000 1 × 104 1 × 105 0.86 0.24 32
6 5000 3 × 104 1 × 105 0.86 0.24 32
8 2000 5 × 104 1 × 105 0.80 0.24 32
12 2000 1 × 105 1 × 105 0.60 0.24 32
16 2048 4 × 105 4 × 105 0.52 0.26 32
20 1024 5 × 105 5 × 105 0.50 0.266 40
24 1024 7.5 × 105 7.5 × 105 0.49 0.271 40
32 1024 1.5 × 106 1.5 × 106 0.48 0.2736 56
40 384 (2–2.8) × 106 (2–2.8) × 106 0.46 0.2891 64

128 (2–3.4) × 106 (2–3.4) × 106 0.442 0.2792 64

where β is the inverse temperature 1/T normalized by the
Boltzmann constant kB . The thermal average will be denoted
by the angular brackets 〈· · ·〉.

We perform MC simulations based on the single-spin-flip
Metropolis method combined with the over-relaxation method
and the temperature-exchange technique. This algorithm is
known to effectively reduce the long correlation time involved
in simulations of hard-relaxing systems such as SGs.

In a single process of over-relaxation, we compute first the
local field experienced by the spin at site i, hi = ∑

j∈�i
Jij Sj ,

where �i represents the neighbors of the site i, and then reflect
the spin Si with respect to the local field hi as

Si → S′
i = −Si + 2

Si · hi

h2
i

hi . (3)

The simple cubic lattice consists of two interpenetrating
sublattices, and we perform the Metropolis update sequentially
through the sites on one sublattice after the other, which is
followed by M-times over-relaxation sweeps, also performed
sequentially through the sites on each sublattice. This proce-
dure constitutes our unit MC step. In our simulations, we take
M equal to the linear system size L.

In the temperature-exchange process, we prepare NT spin
configurations at a set of temperatures distributed between
Tmin and Tmax. The maximum temperature Tmax is chosen to
be high enough that the autocorrelation times of the spin and
the chirality are sufficiently short even in the single-spin-flip
dynamics, typically 40 MC steps per spin (MCS). Each
trial of the temperature exchange is performed for a pair
of neighboring temperatures. A temperature-exchange trial is
done after every MCS.

In Table I, we summarize the simulation parameters em-
ployed in our MC simulations, which include the linear system
size L, the total number of averaged samples (independent
bond realizations) Ns , the number of MCSs discarded for
equilibration NMC1, the number of MCSs employed for
measuring physical quantities NMC2, the maximum and the
minimum temperatures in the temperature-exchange process
Tmax and Tmin, and the number of temperature points NT .

Error bars are estimated by using the bootstrap method from
sample-to-sample fluctuations.

III. PHYSICAL QUANTITIES

In SGs, the conventional order parameter is an overlap be-
tween two independent systems with a common Hamiltonian.
In the case of the XY model, each spin has two components
and the spin overlap becomes a tensor with indices α and β

(α,β = x,y). We define the wave-vector- (k-) dependent spin
overlap as

qαβ (k) = 1

N

N∑
i=1

S
(1)
iα S

(2)
iβ eik·r i , (4)

where the superscripts (1) and (2) denote two independent
systems with the same Hamiltonian. For simplicity of notation,
we write

qs(k) =
√∑

α,β

|qαβ(k)|2. (5)

Similarly, we define the chirality and introduce the as-
sociated overlap. The chirality at a plaquette p which is
perpendicular to the μ (=x,y,z) axis is defined by

κp⊥μ = 1

2
√

2

∑
〈i,j 〉∈p

sgn(Jij ) sin(θi − θj ), (6)

where the directed sum
∑

〈i,j 〉∈p is taken over four bonds
surrounding the plaquette p in a clockwise direction.47,67,68

The chiral overlap is then given by

qμ
κ (k) = 1

N

N∑
p=1

κ
(1)
p⊥μκ

(2)
p⊥μeik·rp . (7)

The SG order parameter qSG and the SG susceptibility χSG are
then defined by

q
(2)
SG = [〈qs(0)2〉], χSG = Nq

(2)
SG, (8)

where the square brackets [· · ·] denote the configurational
average, i.e., the average over the bond disorder.
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The SG Binder parameter gSG and the SG correlation length
ξSG based on the Ornstein-Zernike form are defined by

gSG = 3 − 2
[〈qs(0)4〉]
[〈qs(0)2〉]2

, (9)

ξSG = 1

2 sin(kmin/2)

√
[〈qs(0)2〉]

[〈qs(kmin)2〉] − 1, (10)

where kmin = (2π/L,0,0). On the other hand, the CG order
parameter and the CG susceptibility are given by

q
(2)
CG = [〈

qμ
κ (0)2

〉]
, χCG = Nq

(2)
CG. (11)

The direction (μ) dependence of the right-hand side should
vanish after the sample averaging [· · ·], and we take the average
over μ = x,y,z in the actual calculation. The CG Binder
parameter and the CG correlation length are given by

gCG = 1

2

(
3 −

[〈
qμ

κ (0)4
〉]

[〈
q

μ
κ (0)2

〉]2

)
, (12)

ξ
μ

CG = 1

2 sin(kmin/2)

√√√√ [〈
q

μ
κ (0)2

〉]
[〈∣∣qμ

κ (kmin)
∣∣2〉] − 1. (13)

Although the μ dependence again vanishes for gCG, it remains
for ξ

μ

CG due to the nontrivial wave-vector dependence of
qμ

κ (kmin), i.e., the dependence on the direction μ with respect
to k (‖ x̂) taken here parallel with x̂. We denote ξx

CG as ξ
‖
CG

and ξ
y,z

CG as ξ⊥
CG, and will show both sets of data below.

We also define a parameter quantifying the non-self-
averageness of the order parameter, the A parameter.83 It is
defined either for the spin or for the chirality by

ASG = [〈qs(0)2〉2] − [〈qs(0)2〉]2

[〈qs(0)2〉]2
, (14)

ACG =
[〈
qμ

κ (0)2
〉2] − [〈

qμ
κ (0)2

〉]2[〈
q

μ
κ (0)2

〉]2 . (15)

The μ dependence vanishes for ACG. The A parameter
becomes nonzero if the SG or the CG susceptibility is
non-self-averaging. Note that, even when qSG vanishes in
the thermodynamic limit, ASG can become finite if χSG is
non-self-averaging. In the current problem, such a situation
can emerge in the temperature range TSG < T < TCG in the
possible occurrence of spin-chirality decoupling.

We also introduce the so-called Guerra parameter or the G

parameter defined by

GSG = [〈qs(0)2〉2] − [〈qs(0)2〉]2

[〈qs(0)4〉] − [〈qs(0)2〉]2
, (16)

GCG =
[〈
qμ

κ (0)2
〉2] − [〈

qμ
κ (0)2

〉]2[〈
q

μ
κ (0)4

〉] − [〈
q

μ
κ (0)2

〉]2 . (17)

The G parameter looks like the A parameter, but there is a
difference in that the G parameter can be finite even when an
ordered state does not accompany the RSB.84–86

The distributions of the spin and the chiral overlaps might
provide a signal of RSB. In this paper, we examine the

following two overlap distributions:

Ps(q) =
[
δ

(
q −

∑
α

qαα(0)

)]
, (18)

Pκ (q) = [
δ
(
q − qμ

κ (0)
)]

. (19)

For the chiral overlap distribution Pκ (q), the RSB effect is
simple: if there is no RSB in the ordered state, the distribution
has only two δ peaks in the thermodynamic limit, which
are related to each other by the Z2 spin-reflection symmetry
of the whole set of spins. On the other hand, the spin
overlap distribution Ps(q) takes a nontrivial form even in
the SG ordered state without RSB: a superposition of two δ

peaks located at q = ±qEA and a broad distribution spanning
between these diverging peaks, due to the projection of the
tensor qαβ onto the diagonal component. This makes it rather
difficult to obtain a clear indication of RSB from the Ps data.
For further details, see Ref. 47.

Next we explain how we check the equilibration in our
simulations. In any equilibrium simulations of SGs, special
care is required for thermalization due to the hard relaxation
of the system. Here we check the equilibration according to
the following four criteria.

(1) All the temperature replicas should move back and
forth many times along the temperature axis during the
temperature-exchange process, while the relaxation at the
highest temperature T = Tmax is fast enough. This criterion is
easy to implement and is empirically known to be a stringent
test of equilibration. We show in Fig. 1 the histogram of Nround,
the number of round trips between Tmin and Tmax averaged
over all the temperature replicas, for the simulated Ns = 512
samples of our largest size L = 40. One can see from the figure
that all the samples satisfy the criterion of Nround � 5 and most
of the samples (∼95%) satisfy the criterion of Nround � 10. A
harder criterion concerns the minimum number of round trips
among all the temperature replicas for each sample. We require
that this number is greater than 3 for 99% of samples. We check
that, with this small fraction (∼1%) of “bad” samples, either
inclusion or exclusion of the bad samples does not change our
final results for all the physical quantities.

(2) We check that all the measured physical quantities
converge to stable values. As an example, we show in Fig. 2 the
MC time dependence of the glass order parameter, the Binder
parameter, and the correlation-length ratio for both the spin
and chiral degrees of freedom at Tmin = 0.2792 for our largest

FIG. 1. (Color online) The histogram of the averaged number of
round trips between Tmin and Tmax of the simulated Ns = 512 samples
for the largest size L = 40.
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FIG. 2. (Color online) The MC time dependence of the glass order
parameter (top), the Binder parameter (middle), and the correlation-
length ratio (bottom) for both spin and chiral degrees of freedom,
where NMC represents the number of MCSs. The temperature is
Tmin = 0.2792, and the lattice size is L = 40, our largest system
size. The average is taken over 128 samples. In the top figure, the left
ordinate represents q

(2)
SG while the right one represents q

(2)
CG.

system size L = 40. The average is taken here over Ns = 128
samples.

(3) We confirm the equality between the specific heat
computed via the energy fluctuation and the one computed
via the temperature difference of the energy.

FIG. 3. (Color online) The spin (upper) and the chiral (lower)
overlap-distribution functions Ps(q) and Pκ (q) for one particular
bond realization (sample) of L = 40 at the temperature T = Tmin =
0.2792. The reversal symmetry q ↔ −q is approximately satisfied.
The three-peak structure observed in Pκ (q) is a characteristic of the
1RSB.

(4) The overlap-distribution functions Ps(q) and Pκ (q)
should be symmetric under the reversal operation q → −q.
We check that this symmetry is satisfied in each individual
sample. An example of Ps(q) and Pκ (q) for a typical L = 40
sample is given in Fig. 3 at a temperature T = Tmin = 0.2792.
[A clear three-peak structure observed in Pκ (q), which is also
observed in the averaged distribution function as shown later,
is a 1RSB characteristic.]

We think that these criteria (1)–(4) constitute sufficiently
stringent tests of equilibration, and believe that the system is
fully equilibrated up to the largest size L = 40 and down to
the lowest temperature T = Tmin of our simulation.

IV. MONTE CARLO RESULTS

In this section, we present the result of our MC simulations.
We show first the temperature dependence of the specific heat
in Fig. 4. No appreciable anomaly is seen in the specific heat,
although the SG and the CG transition points actually exist
in this temperature range, as will be shown below. The CG
and the SG critical temperatures TCG and TSG are denoted by
arrows in the figure.
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FIG. 4. (Color online) The temperature and size dependence of
the specific heat per spin. A magnified view is given in the inset. The
arrows at higher and lower temperatures indicate the CG and the SG
transition points, respectively.

To investigate the SG and the CG orderings, we show the
temperature dependence of the SG and the CG susceptibilities,
χSG and χCG, in Fig. 5. In contrast to the SG susceptibility χSG,
which tends to increase as the system size L is increased in
the whole temperature region, the CG susceptibility χCG shows
such behavior only in the temperature region T � 0.4, whereas
in the region T � 0.4, it exhibits an opposite size dependence.
This implies that the CG critical region is relatively narrow,
which is a common observation in the 3D Heisenberg SG.55

In Fig. 6, we plot the size dependence of the SG and the CG
order parameters q

(2)
SG and q

(2)
CG for several temperatures on a

double-logarithmic plot. The data for the CG order parameter
q

(2)
CG exhibit a straight-line behavior around a temperature

T ∼ 0.306. It exhibits a clear upward trend at lower tem-
peratures, implying the appearance of CG long-range order,
whereas at higher temperatures it exhibits a downward trend,
eventually approaching another straight line with the slope
−d = −3 generally expected in the disordered phase for large

enough systems. Thus, we get our first estimate of the CG
transition temperature TCG ∼ 0.31 ± 0.015. By contrast, q

(2)
SG

exhibits such an upward trend only at the lowest temperature
studied, T = 0.266, with a straight-line behavior observed
around T ∼ 0.276. Thus, we get an estimate of the SG
transition temperature TSG = 0.28 ± 0.015. Hence, our data
for the size dependence of the glass order parameters q(2)

suggest that spin-chirality decoupling really occurs in the
present model.

In Fig. 7, we show the SG and the CG Binder parameters.
Consistently with the earlier reports,46,47 the CG Binder param-
eter exhibits a nondivergent dip and a crossing among different
sizes on the negative side of gCG. Such behavior is expected in
a system exhibiting a continuous one-step RSB. The crossing
and the dip temperatures are expected to converge to TCG in the
thermodynamic limit, which might provide a way to precisely
estimate TCG. By contrast, the SG Binder parameter gSG shows
no crossing or dip, decreasing monotonically as the system
size is increased, although some characteristic inflections can
be observed in a subtle way in large-size systems. So far,
information concerning the transition points has been hard to
obtain from gSG. We reexamine the relation of gSG to the CG
and SG transition points in the Appendix, and point out the
possibility of extracting information about TSG and TCG from
the gSG data.

In Fig. 8, we show the temperature dependence of the
SG correlation-length ratio ξSG/L. Those of the parallel CG
correlation-length ratio ξ

‖
CG/L and of the perpendicular CG

correlation-length ratio ξ⊥
CG/L are given in Fig. 9. Both the SG

and the CG correlation-length ratios show crossings among
different sizes, and the crossing temperatures are expected
to converge to the corresponding critical temperatures in the
L → ∞ limit.

To estimate TSG, we plot in the left panel of Fig. 10 the
crossing temperatures of the SG correlation-length ratio ξSG/L

for pairs of sizes L and sL with s = 2, 3/2, 4/3, 5/3, and 5/4
versus 1/Lav where Lav = (1 + s)L/2. Note that the crossing
temperature for the pair (L,sL) = (32,40) with s = 5/4 is
estimated by extrapolating the data to lower temperatures,

FIG. 5. (Color online) The temperature and size dependence of the SG susceptibility χSG (left) and of the CG susceptibility χCG (right).
The insets are magnified views. As can be seen from the insets, the magnitude of χSG increases as the system size is increased in the whole
temperature region, while that of χCG exhibits an opposite size dependence in the temperature region T � 0.4.
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FIG. 6. (Color online) The size dependence of the SG order parameter (left) and of the CG order parameter (right) on a log-log plot for
several temperatures. Straight lines are drawn by fitting the three data points for the smaller sizes L = 4,6,8. The L = 24,32 data for T = 0.266
as well as the L = 40 data for T = 0.266 and 0.276 are obtained by extrapolating the higher-temperature data to lower temperatures. A line
with slope −d = −3, which is the expected large-L asymptotic behavior in the disordered phase, is also drawn.

since the raw data for ξSG/L do not show a crossing in the
investigated temperature range.

We then try an infinite-size extrapolation of the crossing
temperature Tcross(L) based on the scaling form

Tcross(L) = Tc + cL−θ , θ = ω + 1

ν
. (20)

In the fit of Tcross(L; s) of the SG correlation-length ratios
ξSG/L, we perform a combined fit of different s sequences
with a common Tc = TSG and a common θ = θSG. We use
in the fit the data for s = 2, 3/2, 4/3, and 5/3 only, not
those for s = 5/4 because of a possible inaccuracy due to
the extrapolation employed for the data of (L,sL) = (32,40)
mentioned above. The resulting fitting curves are shown in the
left panel of Fig. 10. The optimal fit is obtained for TSG =
0.274 and θSG = 1.1. If all data points were to be independent,
which is actually not the case, one would get the associated
error bars as TSG = 0.274+0.012

−0.032 and θSG = 1.10+0.60
−0.55, where

the error bar is underestimated. In order to get a more sensible

estimate of the error bar, we use the s = 2 series only, to get
TSG = 0.275+0.013

−0.052 and θSG = 1.14+0.75
−0.71. One sees that the use

of merely the s = 2 series changes the result only slightly. In
the inset of Fig. 11, we show the total χ2 value of this fit using
the s = 2 series versus the assumed TSG value. The horizontal
line in the figure represents a total χ2 value greater than the
optimal value observed at TSG = 0.275 by unity, which gives
our error criterion. The asymmetry of the curve results in the
different values for the upper and lower error values. We then
finally quote TSG = 0.275+0.013

−0.052 and θSG = 1.14+0.75
−0.71.

Next we turn to the estimate of TCG based on the CG
correlation-length ratio ξCG/L. Although the parallel ξ

‖
CG/L

and the perpendicular ξ⊥
CG/L ratios give two different se-

quences of the crossing temperatures, they tend to accord for
Lav � 8 as can be seen in the right panel of Fig. 10 (see also
the inset). Hence, to extract TCG, we use the data of ξ⊥

CG for
Lav � 8 only. Unfortunately, and somewhat unexpectedly, the
result of the fit of ξCG/L turns out to be rather pathological.
The estimated best TCG value becomes extremely small or

FIG. 7. (Color online) The temperature and size dependence of the SG Binder parameter gSG (left) and of the CG Binder parameter gCG

(right). The inset of the right panel exhibits gCG over a wider temperature range.
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FIG. 8. (Color online) The temperature and size dependence of
the SG correlation-length ratio ξSG/L. The inset exhibits a wider
temperature range.

even negative. The resultant fitting curves are shown in the
right panel of Fig. 10 (the lower curves). We also examine
the possible change in the fit with variation of the lowest
size used in the fit, but the pathology cannot be cured. The
cause of this pathology is not entirely clear, but it may be due
to the peculiar behavior of the chiral-glass correlations. For
example, χCG shows a nonmonotonic size dependence absent
in the corresponding χSG. To further clarify this point, we dis-
cuss the properties of the spatial CG correlation function later
in this section. Anyway, in the present analysis, we abandon
the crossing temperatures of ξCG/L in our estimate of TCG.

In estimating TCG, the crossing and the dip temperatures of
gCG can also be used, and the data are plotted in the right panel
of Fig. 10. The crossing temperature of gCG obeys the scaling
form Eq. (20) with Tc = TCG and θ = θCG = ωCG + 1/νCG,
whereas the dip temperature is expected to follow the scaling
form

Tdip(L) = TCG + c1L
−1/νCG + c2L

−θCG . (21)

Conventionally, the subleading correction-to-scaling term
c2L

−θCG is dropped because it gives a smaller contribution
than that of the leading correction-to-scaling term c1L

−1/νCG

for larger L. In the range of system sizes of our simulations,
however, we need to take into account this correction term for
describing the size dependence of Tcross, since the leading term
c1L

−1/νCG should describe an increase of the dip temperature
with the system size, which is not observed in our simulation.
[Such an increase of Tdip(L) was indeed observed in a
recent simulation of the 4D Heisenberg SG.87] The behavior
originates from the fact that both the dip and the crossing
temperatures of gCG should converge to a common value TCG,
each with an exponent 1/ν and θ (>1/ν), while the crossing
temperature always lies above the dip temperature.

The combined fit of the crossing and the dip temperatures
of gCG based on Eqs. (20) and (21) with a common TCG and a
common θCG using the series s = 2, 3/2, 4/3, and 5/3 yields
TCG = 0.308 ± 0.005 and θCG = 0.88 ± 0.03. More sensible
error bars are obtained by only using the s = 2 series, to find
TCG = 0.313+0.013

−0.018 and θCG = 0.91 ± 0.10. Those error bars
are again calculated from the total χ2 value plotted against the
assumed TCG value, and the result is given in the main panel
of Fig. 11. Note that the leading term in Eq. (21) tends to be
masked by the correction term, i.e., c1 tends to be considerably
smaller than c2.

The SG and CG transition temperatures TSG = 0.275+0.013
−0.052

and TCG = 0.313+0.013
−0.018 estimated here are well consistent with

the values obtained from the order parameter given in Fig. 6.
Our error analysis indicates that TSG and TCG are different by
more than two σ ’s, and are indeed separate. These observations
certainly speak for the occurrence of spin-chirality decoupling
in the 3D XY SG. The difference between the CG and the
SG transition temperatures is about 10%, which is comparable
with the corresponding value of the 3D Heisenberg SG.55

In Fig. 12, we plot the ratio of the CG and the SG correlation
lengths, ξCG/ξSG. For smaller sizes 6 � L � 12, the ratio
curves are almost size independent67 at lower temperatures,
while for intermediate sizes 16 � L � 24 the curves start
to splay out, but the tendency is still small.68 For larger
sizes L = 32 and 40, the tendency becomes stronger and

FIG. 9. (Color online) The temperature and size dependence of the CG parallel correlation-length ratio ξ
‖
CG/L (left), and of the CG

perpendicular correlation-length ratio ξ⊥
CG/L (right). The insets exhibit wider temperature ranges.
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FIG. 10. (Color online) The crossing temperatures Tcross of the SG correlation-length ratio ξSG/L for the two sizes L and sL are plotted
versus the inverse mean lattice size 1/Lav where Lav = (1 + s)L/2 (left). The crossing temperatures of the CG perpendicular correlation-length
ratio ξ⊥

CG/L and of the CG Binder parameter gCG as well as the dip temperature Tdip of gCG are plotted versus 1/Lav (or 1/L) (right). The insets
exhibit a wider size range.

the ratio exceeds unity at low temperatures, which supports
the spin-chirality decoupling ansatz. The intersection point of
the ratio curves between different sizes lies around T ∼ 0.31,
which is consistent with our estimate of TCG = 0.313+0.013

−0.018.
Now, to get further insight into the cause of the pathological

behavior we encountered in ξCG, we discuss the CG and
SG spatial correlations. The SG and CG spatial correlation
functions Cs(x) and Cκ (x) are defined by

Cs(|r i − rj |) =
∑
α,β

[〈
S

(1)
iα S

(2)
iβ S

(1)
jα S

(2)
jβ

〉]
, (22)

Cκ (|rp − rq |) = [〈
κ

(1)
p⊥μκ

(2)
p⊥μκ

(1)
q⊥μκ

(2)
q⊥μ

〉]
. (23)

The computed Cs and Cκ for L = 16 lattices under periodic
boundary conditions (BCs) are shown in Fig. 13 on a
semilogarithmic scale for several temperatures. Note that the

FIG. 11. (Color online) The total χ 2 values associated with the
combined fit of the crossing and dip temperatures of the CG binder
parameters gCG are plotted versus the CG transition temperature TCG

assumed in the fit. The horizontal line represents a total χ2 value
greater than the optimal value by unity, usually used as an error
criterion. The corresponding plot of the total χ 2 values obtained in
our estimate of TSG is also presented in the inset.

CG correlation function Cκ is normalized by its local amplitude
so as to give unity at x = 0. The leveling off of the data at larger
x is a finite-size effect due to the imposed periodic BCs.

An important point to be noticed here is the large difference
in magnitude between Cs(x) and Cκ (x). Namely, Cκ (x) drops
rapidly from unity in the small-x region of a few lattice
spacings even below TCG, and becomes smaller than Cs(x)
by an order of magnitude for larger x. Such a sharp drop of the
spatial correlations at short lengths is much less pronounced
in Cs(x). This feature of the CG correlations might cause
some problems in defining the finite-size correlation length
ξCG based on Eq. (13), at least for the small lattices treated
in our present simulation. This is because this definition of
ξCG contains the k = 0 part [〈qμ

κ (0)2〉], which is essentially
an equal-weight sum of CG correlation functions,

∫
dxCκ (x).

Since Cκ (x) in the large-x region, which should govern the
true CG correlation length, is much smaller in magnitude
than that in the small-x region, the latter contribution, not
playing an essential role in the CG correlation length, might

FIG. 12. (Color online) The temperature and size dependence of
the ratio of the CG and the SG correlation lengths, ξ⊥

CG/ξSG.
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FIG. 13. (Color online) The spatial correlation functions of the
SG and CG overlaps for several temperatures around TCG  0.313
and TSG  0.275. The upper curves are for the spin overlap and the
lower ones are for the chiral one. The lattice size is L = 16 under
periodic BCs. The total number of samples is Ns = 500. Error bars
are omitted. Note the logarithmic scale of the ordinate.

make a major contribution to [〈qμ
κ (0)2〉], and mask or obscure

the asymptotic behavior of the CG correlation length. Thus,
the standard definition of the finite-size correlation length,
Eq. (13), may be inappropriate to treat the CG correlation
length, when the system size is small. A similar observation
was also made in the 4D Ising SG in a magnetic field.88 To
overcome this difficulty, another dimensionless quantity was
already proposed,88 but the examination of the quantity is
beyond the scope of the present paper.

Next, we turn to the quantities which probe the phase-space
structure of the ordered state, including the overlap distribution
and the non-self-averageness parameter. In Fig. 14, we show
the distributions of the spin and chiral overlaps at a temperature
T = 0.2792, which lies below TCG and very close to (slightly
above) TSG. For L � 10, the chiral overlap distribution Pκ

shown in the right panel of Fig. 14 exhibits a central peak in
addition to the side peaks corresponding to the CG EA order
parameter ±qEA

CG. As the system size L increases, all the peaks
grow in height and become narrower in width. This implies
that all these peaks will remain in the thermodynamic limit.
These features are nothing but the character of the 1RSB,
and are consistent with the occurrence of a negative dip in
gCG. Similar behaviors have been observed in several types
of Heisenberg SG before,51,55 but the side peaks observed in
our present simulation for the XY SG seem sharper than those
observed in the Heisenberg SG.

By contrast, the spin-overlap distribution shown in the
left panel of Fig. 14 exhibits a shoulderlike structure only
for small sizes, which tends to be suppressed as the system
size increases. As the growing side peaks located at ±qEA

SG
are expected in the SG ordered phase,47 this observation is
consistent with the absence of SG order at this temperature
T = 0.2792, which is indeed compatible with our estimate
above, TSG = 0.275+0.013

−0.052.
In Fig. 15, the SG and CG non-self-averagingness A

parameters are plotted against the temperature for various
system sizes. As can be seen from the figure, ACG of different
sizes intersect around T ∼ TCG. A prominent peak is observed
on the lower-temperature side, which grows as the system
size increases. This suggests that the self-averageness of the
system is broken below TCG and that the CG ordered phase
is non-self-averaging. This is quite consistent with the 1RSB
nature of the CG phase, as already signaled by the central
peak in Pκ and by the negative dip of gCG. The parameter ASG

also exhibits an intersection around T = TCG, even though
SG order is still absent at T = TCG. As already noted in
Sec. III, this is not surprising since a finite ASG just means
the non-self-averageness of χSG, which originates from the
CG transition involving the phase-space narrowing associated
with the 1RSB. Hence, the intersection occurring around TCG

is completely compatible with spin-chirality decoupling. It
might be interesting to point out that, for larger L, the peak
of the A parameter seems to be located near the respective
transition temperature, i.e., near TCG for ACG and near TSG for

FIG. 14. (Color online) The spin diagonal overlap distribution (left) and the chiral overlap distribution (right) at a temperature T = 0.2792
which lies in the CG ordered state, i.e., below TCG  0.308 but slightly above TSG  0.274. A typical 1RSB behavior is observed in the
chiral-overlap distribution.
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FIG. 15. (Color online) The temperature and size dependence of the non-self-averageness A parameters of the SG (left) and of the CG
(right).

ASG. Such a difference between the behaviors of ACG and ASG

might be consistent with spin-chirality decoupling.
We also show the SG and CG G parameters in Fig. 16.

In the case of the Ising SG, the G parameter of large enough
lattices exhibits a crossing at the transition temperature and
tends to 1/3 in the T → 0 limit.84 The behavior observed here
resembles such a behavior of the Ising SG. Note that, although
the intersections of these A and G parameters can also be used
in estimating the transition temperature in principle, the data
tend to be noisy and not suited to precise location of TCG. The
same suggestion was made for the 3D Ising SG,7,89 and for the
3D Heisenberg SG.55

V. CRITICAL PROPERTIES

In this section, we study the critical properties of the SG
and the CG transitions based on a finite-size scaling analysis.
To estimate the CG critical exponents, we use both the CG
Binder parameter and the CG susceptibility. On the other hand,
we use the SG susceptibility only to estimate the SG critical
exponents, the reason for which will be explained below.

Let us start from the CG criticality. The standard finite-size
scaling forms of the CG Binder parameter gCG and of the CG
susceptibility χCG are given by

gCG = X̃((T − TCG)L1/νCG ), (24)

χCG = L2−ηCG Ỹ ((T − TCG)L1/νCG ), (25)

where X̃ and Ỹ are appropriate scaling functions.
For the CG susceptibility χCG, a good data collapse can be

obtained by a two-parameter fit based on Eq. (25), with νCG =
1.28 and ηCG = 0.34. Note that these values are obtained
via the Baysian scaling analysis (BSA), which enables us to
estimate the critical exponents in an unbiased way,90 after
fixing the transition temperature to the value obtained in
the previous section, TCG = 0.313. By changing the assumed
value of TCG in the range of the associated error bar, we
obtain the error bars of νCG and ηCG as νCG = 1.28+0.12

−0.03 and
ηCG = 0.34+0.40

−0.34.
The crossing temperature of the CG Binder parameter

gCG still exhibits appreciable size dependence, indicating the
necessity of invoking the correlation-to-scaling term in the
finite-size scaling. With the correction term, the scaling form

FIG. 16. (Color online) The temperature and size dependence of the G parameters of the SG (left) and of the CG (right).
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FIG. 17. (Color online) Finite-size-scaling plots of the CG Binder parameter (left) and of the CG susceptibility (right), where the correction-
to-scaling effect is taken into account. The CG transition temperature is fixed to TCG = 0.313. The best fit is obtained for νCG = 1.36 and
ωCG = 0.48 with a = 10+90

−7 for gCG (left), and νCG = 1.28, ηCG = 0.26, and ωCG = 0.3 with a = 0.5+0.5
−0.1 for χCG (right).

of gCG is modified as

gCG = X̃((T − TCG)L1/νCG )(1 + aL−ωCG ), (26)

where a is a numerical constant. The BSA analysis based on
this form yields νCG = 1.36+0.15

−0.37 and ωCG = 0.48+0.17
−0.14 with a

constant a = 10+90
−7 , which is consistent with νCG = 1.28+0.12

−0.03
estimated above from the CG susceptibility. The value of the
nonuniversal constant a tends to be quite large, although it
contains a rather large error bar.

These values lead to (1/νCG) + ωCG ≈ 1.2 ± 0.4, which is
consistent with θCG = 0.91 ± 0.10 obtained in the previous
section. The resultant finite-size-scaling plot is given in the
left panel of Fig. 17.

We examine the scaling form with the correction term also
for the CG susceptibility,

χCG = L2−ηCG Ỹ ((T − TCG)L1/νCG )(1 + a′L−ωCG ). (27)

Based on this form, we get νCG = 1.28+0.12
−0.03, ηCG = 0.26+0.29

−0.26,
and ωCG = 0.32+0.21

−0.10 with a nonuniversal constant a′ =
0.5+0.5

−0.1. These values are consistent with the values obtained
above without invoking the correction term. The resultant
finite-size-scaling plot is given in the right panel of Fig. 17.

Next, we move to the SG criticality. As in the CG case, the
standard scaling form of the SG susceptibility is given by

χSG = L2−ηSG Ỹ ((T − TSG)L1/νSG ). (28)

A good data collapse of the SG susceptibility is obtained based
on this form, with the resultant exponents νSG = 1.23+0.28

−0.07 and
ηSG = −0.42+0.13

−0.40. We also examine the effect of the correction
to scaling based on the form

χSG = L2−ηSG Ỹ ((T − TSG)L1/νSG )(1 + a′′L−ωSG ), (29)

to get νSG = 1.22+0.26
−0.06 and ηSG = −0.54+0.24

−0.52, and ωSG =
0.89+0.11

−0.05 with a nonuniversal constant a′′ = 3+6
−2. The asso-

ciated scaling plot at T = TSG = 0.275 is given in Fig. 18. We
also examined the SG correlation-length ratio but ended up
with an unphysical result of negative ωSG, so we do not quote
it here. This inadequacy may partly be due to the fact that

the estimated TSG is located out of the simulated temperature
range.

Summarizing the above results, we finally quote as our best
estimates of the CG exponents

νCG = 1.36+0.15
−0.37, ηCG = 0.26+0.29

−0.26, (30)

and the SG exponents

νSG = 1.22+0.26
−0.06, ηSG = −0.54+0.24

−0.52. (31)

The estimated CG critical exponents are compatible with the
ones reported in earlier literature on the 3D XY SG.46,47,64,66,68

They are also quite close to the values of the 3D Heisenberg
SG,55 whereas they are greatly different from the values of
the 3D Ising SG, ν = 2.5 to 2.7 and η = −0.38 to −0.40,10,11

in spite of the common Z2 symmetry between the Ising spin
and the chirality of the present model. The type of RSB in
the Ising SG and that in the XY or the Heisenberg SG may
explain this difference, i.e., full RSB in the former versus
1RSB in the latter. The phase-space structure of the XY and

FIG. 18. (Color online) Finite-size-scaling plot of the SG sus-
ceptibility with the correction-to-scaling term. The SG transition
temperature is fixed to TSG = 0.275. The best fit is obtained for
νSG = 1.22, ηSG = −0.54, and ωSG = 0.89.
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Heisenberg SGs is essentially different from that of the Ising
SG. Such speculation also leads to another question: what
causes the difference in RSB types among the Ising, the XY,
and the Heisenberg SGs? A possible explanation might be that
in the latter the chirality-chirality interaction has a long-range
nature different from that in the Ising model. Further study is
needed to clarify these points.

VI. SUMMARY AND DISCUSSION

In this paper, we studied equilibrium ordering properties
of the 3D isotropic XY SG by means of extensive MC
simulations, up to the linear size L = 40. Examining various
physical quantities including the glass order parameter, the
Binder parameter, the correlation-length ratio, the overlap-
distribution function, and the non-self-averageness parameter,
we succeeded in giving reasonable numerical evidence that the
SG and the CG transitions occur at two different temperatures.
The SG and CG critical temperatures estimated from the
correlation-length ratio and the Binder parameter are TSG =
0.275+0.013

−0.052 and TCG = 0.313+0.013
−0.018, respectively. Since the

difference is more than two σ ’s, the difference is likely to be
statistically relevant. Furthermore, our independent estimate of
the CG and the SG transition temperatures based on the glass
order parameter q(2) turned out to be entirely consistent with
the estimates from the correlation-length ratio and the Binder
parameter. The difference between TCG and TSG is about 10%,
which is comparable with the difference observed in the 3D
Heisenberg SG.

Our conclusion of the occurrence of spin-chirality decou-
pling in the model is in apparent contrast to that of the
recent simulation by Pixley and Young.68 The main cause
of the difference is that their analysis was mainly based on
the correlation-length ratios. We have also confirmed that, as
observed by Pixley and Young, the crossing points of the
CG correlation-length ratio behave in a not very different
manner from the SG ones, which is seemingly consistent
with a simultaneous SG and CG transition. Our present
quantitative analysis, however, revealed that the extrapolated
Tcross(L) of the ξCG/L leads to an unphysical estimate of
TCG, i.e., a negative one, whereas that of ξSG/L leads to a
reasonable estimate of TSG. It turned out that such behavior
of the CG correlation-length ratio is inconsistent with that
of other quantities such as the CG order parameter and the
CG Binder parameter. In particular, the size dependence of
the glass order parameter suggests successive CG and SG
transitions occurring at two different temperatures, as seen
in Fig. 6. Our attitude is that the order parameter, from the
various quantities, is expected to give a stable and reliable
result, since it is the most fundamental quantity in describing
phase transitions. We then argued that the observed ill behavior
of the finite-size CG correlation length may originate from
the finite-size effect associated with a significant short-length
dropoff of the spatial CG correlations. Pixley and Yound also
suggested the possibility that the 3D XY SG is marginal, i.e.,
the lower critical dimension is close to 3. Our data, especially
the glass order parameter shown in Fig. 6 and the critical
scaling shown in Figs. 17 and 18, reasonably rules out such a
possibility.

The critical properties of the SG and the CG orderings were
also examined by means of a finite-size-scaling analysis. By
controlling the correction-to-scaling effect, we obtained the
CG critical exponents as νCG = 1.36+0.15

−0.37 and ηCG = 0.26+0.29
−0.26.

These values are close to the corresponding Heisenberg SG
values, but are quite different from the Ising SG values in spite
of the common Z2 symmetry. The SG critical exponents were
also estimated to be νSG = 1.22+0.26

−0.06 and ηSG = −0.54+0.24
−0.52,

which are consistent with the earlier estimates.
The RSB nature of the ordered state was probed via the

Binder parameter, the overlap distribution, and the non-self-
averageness parameter. All the quantities consistently point to
1RSB in the model. The physical significance of the 1RSB
feature was already discussed in the Heisenberg case from
several perspectives.31 It would also be interesting to examine
possible 1RSB properties in real materials related to the XY SG,
such as granular cuprate superconductors,75–77,79,80 together
with the successive transitions and the associated critical
properties.

As mentioned, the CG transition of the XY SG model and
the Ising SG transition belong to different universality classes
in spite of the common Z2 symmetry between the chirality and
the Ising spin variable. We speculate that this might originate
from the difference in the type of RSB in the two systems.
The 3D Ising SG is believed to exhibit a full RSB,6,83,84

though some contrary opinions also exist.91–94 By contrast,
the 3D XY SG exhibits 1RSB. These different types of RSB
may be related to the difference in the critical properties of
the Ising SG transition and the CG transition of the XY SG.
Furthermore, since such a 1RSB-like feature is also observed in
the 3D Heisenberg SG,55 the above consideration suggests the
possibility that the CG transitions of the XY and the Heisenberg
SGs are actually the same, which is indeed consistent with our
present numerical results.
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APPENDIX: THE BEHAVIOR OF THE SPIN-GLASS
BINDER PARAMETER IN THE THERMODYNAMIC LIMIT

In this Appendix, we examine how the SG Binder parameter
gSG in the thermodynamic limit behaves across TCG and
TSG in the presence of spin-chirality decoupling. In the CG
phase realized at TSG < T < TCG, the average spin overlap
〈qαβ〉 vanishes as in the high-temperature paramagnetic phase.
Meanwhile, the Z2 spin-reflection symmetry is spontaneously
broken in the CG phase, which implies that the determinant
of the spin-overlap tensor, det qαβ , takes a nonzero value.
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FIG. 19. Schematic form of the SG Binder parameter gSG in the
thermodynamic limit, as expected in the present model.

Denoting this symmetry-breaking bias coming from the CG
order by h(T ), we may write the distribution of the spin-overlap
tensor qαβ as

P ({qαβ}) ∝ e−(N/2σ 2)(
∑

α,β q2
αβ )−h(T ) det qαβ . (A1)

Since the standard SG order is absent in the CG phase, the
average of any simple moment such as 〈q2

αβ〉 vanishes in
the thermodynamic limit, which is reflected in the first term
in the exponent. Using this distribution, the SG Binder
parameter is calculated as

gSG = − 1
4h2(T ). (A2)

Hence, we find that the SG Binder parameter takes a negative
value in the region TSG < T < TCG in spite of the absence of

long-range SG order. Although the detailed form of h(T ) is
unclear, h(T )2 will grow continuously and monotonically from
zero when the temperature T is decreased across T = TCG. It
should be noted that, in the CG state of the 3D Heisenberg
SG, gSG still remains zero, in sharp contrast to the XY SG
case.95

In the SG ordered state realized at T < TSG, gSG will take
a different form. If there were no RSB in the SG ordered state,
gSG in the thermodynamic limit would jump to unity below
TSG. If 1RSB occurs as in the present model, gSG will take
a nontrivial value not equal to unity below TSG, eventually
approaching unity in the T → 0 limit. We show in Fig. 19
a schematic shape of gSG in the thermodynamic limit, as
expected in the present model.

Figure 19 may enable us to extract further information
about the transition temperatures from the data for the
SG Binder parameter gSG for larger sizes. We see several
characteristic temperatures in gSG for larger sizes, displayed
in the left panel of Fig. 7. For example, we see in the data
for L = 40 two extrema and an inflection point in between. In
the thermodynamic limit, the extremum at a higher temperature
will converge to TCG, and the one at a lower temperature
to TSG. Unfortunately, the extrema are still faint and visible
only for larger lattices, making a reliable estimate of TCG and
TSG difficult. The inflection point will be located somewhere
between TSG and TCG in the thermodynamic limit, and thus
can be utilized to give a lower bound of TCG and an upper
bound of TSG. Indeed, the inflection point of the L � 20 data
lies around T ∼ 0.31, which is compatible with our present
estimates of TSG = 0.275+0.013

−0.052 and TCG = 0.313+0.013
−0.018.
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