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We investigate the excited states of the quasi-one-dimensional quantum antiferromagnets on hexagonal lattices,
including the longitudinal modes based on the magnon-density waves. A model Hamiltonian with a uniaxial
single-ion anisotropy is first studied by a spin wave theory based on the one-boson method; the ground state
thus obtained is employed for the study of the longitudinal modes. The full energy spectra of both the transverse
modes (i.e., magnons) and the longitudinal modes are obtained as functions of the nearest-neighbor coupling and
the anisotropy constants. We have found two longitudinal modes due to the noncollinear nature of the triangular
antiferromagnetic order, similar to that of the phenomenological field theory approach by Affleck. The excitation
energy gaps due to the anisotropy and the energy gaps of the longitudinal modes without anisotropy are then
investigated. We then compare our results for the longitudinal energy gaps at the magnetic wave vectors with the
experimental results for several antiferromagnetic compounds with both integer and noninteger spin quantum
numbers, and we find good agreement after the higher-order contributions are included in our calculations.
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I. INTRODUCTION

The excitations of the quasi-one-dimensional (1D) Heisen-
berg antiferromagnet systems have been studied extensively
since Haldane predicted an energy gap in the excitation spectra
of the isotropic integer-spin Heisenberg chains in 1983.1 Now
it is well established that there is an energy gap separating the
singlet ground state from the triplet lowest-energy-excitation
states for the integer-spin Heisenberg chains, contrast to
the gapless excitation states of the half-odd-integer-spin
Heisenberg systems.2,3 This theoretical prediction has been
confirmed by Buyers et al.4 in the inelastic-neutron-scattering
experiments on the quasi-1D antiferromangetic compound
CsNiCl3. Some subsequent experimental investigations4–8 and
numerical calculations9–13 also support Haldane’s prediction.

At very low temperature, most of the quasi-1D anti-
ferromagnetic materials including CsNiCl3 show the three-
dimensional nature with the classical magnetic order, and
more interestingly, energy gaps at the magnetic wave vector
have also been observed in many compounds.4 For the case of
CsNiCl3, the observed energy gap was initially explained by
a uniaxial single-ion anisotropy but now it is widely accepted
that the gapped excited state belongs to one of the two longitu-
dinal modes corresponding to the oscillations in the magnitude
of the magnetic order of the quasi-1D hexagonal systems, first
proposed by Affleck based on a simplified version of Haldane’s
theory.14,15 The gapped longitudinal modes are clearly beyond
the conventional spin wave theory, which produces only the
transverse excitations usually referred to as magnons. A later
experimental study by Enderle et al.16 using high-resolution
polarized neutron scattering also confirms Affleck’s proposal
of the longitudinal modes, and contradicts the spin wave
theory of two-magnon by Ohyama and Shiba17 or a modified
spin wave theory by Plumer and Caillé.18 There are also
investigations of the longitudinal excitation states in other
quasi-1D structures with the Néel-like long-ranged order at
low temperature such as the tetragonal KCuF3 with s = 1/2,19

where good agreement between the experiment and a theory
based on a sine-Gordon field theory have been found for the

energy gap at the magnetic wave vector.20,21 More recently,
a longitudinal mode was also observed in the dimerized
antiferromagnetic compound TlCuCl3 under pressure with a
long-ranged Néel order.22

We recently proposed a general microscopic many-body
theory based on the magnon-density waves for the longitudinal
excitations of spin-s quantum antiferromagnetic systems.23,24

In analogy to Feynmann’s theory of the low-lying excited states
in the helium-4 superfluid,25,26 we identify the longitudinal
excitation states in a quantum antiferromagnet with a Néel-like
order as the collective modes of the magnon-density waves.
In application to the quasi-1D tetragonal structure of KCuF3

with s = 1/2, with no other fitting parameters than the nearest-
neighbor coupling constants in the model Hamiltonian, we
find that our numerical results for the energy gap values at
the magnetic wave vector are in general agreement with the
experiments.27 We hope that more experimental results for
the energy spectra at other wave vectors will be available for
comparison.

In this article, we extend our microscopic approach to
the quasi-1D hexagonal quantum antiferromagnets such as
CsNiCl3 and RbNiCl316,28,29 both with spin-1 and CsMnI3 with
spin-5/2.30 Furthermore, we also investigate the higher-order
contributions to the longitudinal excitation spectra in the large-
s expansion. The basal planes of these materials are antiefer-
romagnetic triangular lattices with the noncollinear magnetic
order. Hence there are two possible longitudinal modes in these
hexagonal systems, rather than the single longitudinal mode
of the bipartite systems such as the tetragonal KCuF3. Some
preliminary results for the two-dimensional triangular model
have been published.31 We organize this article as follows. For
completeness, we outline the main results of the spin wave
theory for the quasi-1D model in Sec. II, using the one-boson
approach after two spin rotations. We obtain the full spin wave
spectra as a function of the uniaxial single-ion anisotropy. To
our knowledge, this anisotropy dependence of the spin wave
spectra has not been published before. We then apply our
microscopic theory for the longitudinal excitations in Sec. III,
using the approximated ground state from the spin wave theory.
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The energy gaps due to the anisotropy and the energy gaps of
the longitudinal modes without anisotropy are then discussed
in details. We compare our results for the longitudinal energy
gaps with the experimental results for the spin-1 compounds
CsNiCl3 and RbNiCl3 and the spin-5/2 compound CsMnI3.
We find good agreement for the energy gap values for CsNiCl3
and RbNiCl3 after including the higher-order contributions
in our calculations. For CsMnI3, which is very close to the
pure 1D system, we find a big discrepancy between our
approximation of the gap value and the experimental results.
We conclude this article by a summary and a discussion of the
possible further corrections particularly for CsMnI3.

II. THE SPIN WAVE THEORY OF THE ANISOTROPIC
HEXAGONAL ANTIFERROMAGNETIC SYSTEMS

The quasi-1D materials such as CsNiCl3 crystallize in the
hexagonal ABX3 structure with space group P 63/mmc, where
A is an alkaline-metal cation, B is a cation of the 3d group,
and X is a halogen anion. The magnetic ions B construct the
hexagonal lattice in the ab plane with adjacent spins forming
angles of θ = 2π/3, and antiparallel adjacent spins along the
chain of the c axis as shown in Figs. 1(a) and 1(b). The lattice

constants of CsNiCl3, for example, are a = 7.14
◦
A and c =

5.90
◦
A, and the magnetic moments are carried by Ni2+. The

superexchange interaction between B (Ni2+) ions is modeled
by an N -spin Heisenberg Hamiltonian with a strong intrachain

(a)

(b)

FIG. 1. (Color online) The classical spin structure of the quasi-1D
hexagonal antiferromagnets (a) on the ab plane and (b) the three-
dimensional structure.

interaction J and weak interchain interaction J ′ such as

H = 2J

chain∑
〈i,j〉

Si · Sj + 2J ′
plane∑
〈i,j〉

Si · Sj + D
∑

i

(
Sz

i

)2
, (1)

where the notation 〈i,j 〉 indicates the nearest-neighbor cou-
plings only and where we have also added an Ising-like
single-ion anisotropy term with constant D(<0). Most of
the intrachain couplings in ABX3 compounds are anti-
ferromagnetic such as in CsNiCl3 or RbNiCl3 with easy
single-site anisotropy, or CsMnBr3 and RbMnBr3 with hard
anisotropy.32,33 These intrachain couplings can also be ferro-
magnetic (i.e., J < 0) as in CsNiF3

34,35 or CsCuCl3.36 We
consider only the antiferromagnetic couplings here. Therefore
the classical ground state of each linear chain along the c

axis (also denoted as y axis) is a Néel state with alternating
spin-up (blue) and spin-down (red) alignments as shown
in Fig. 1(b).

We consider a spin wave theory for the Hamiltonian
(1) based on the one-boson approach by performing two
spin rotations. Firstly, we rotate the local axes of all up
spins (blue) by 180◦ so that all spins along each chain
align in the same down direction. This is equivalent to the
transformation

S∓
i → −S±

i , Sz
i → −Sz

i (2)

for the first terms in Eq. (1), leaving the last two terms
unchanged. The second rotation is on the hexagonal lattice
of the ab plane (or xz plane) on the second and third terms
of Eq. (1). Following Singh and Huse37 and Miyake,38 for
every triangle of the hexagonal lattices [see Fig. 1(a)], we
rotate the local axes of two spins along the classical direction
in the xz plane to align with that of the third spin.39,40 This
is equivalent to the rotation of the i sites of Eq. (1) by the
following transformation:

Sx
i → Sx

i cos(θi) + Sz
i sin(θi),

S
y

i → S
y

i , (3)

Sz
i → Sz

i cos(θi) − Sx
i sin(θi),

where θi ≡ Qz · ri and Qz = (4π/3,0,qz) with Qz at qz = π

defined as the magnetic-ordering wave vector of the quasi-
1D hexagonal systems. The Hamiltonian (1) after these two
transformations is given as

H = −1

2
J

chain∑
l,�

(
S+

l S+
l+� + S−

l S−
l+� + 2Sz

l S
z
l+�

)

− 1

2
J ′

plane∑
l,�′

[
Sz

l S
z
l+�′ + 3

4
(S+

l S+
l+�′ + S−

l S−
l+�′ )

− 1

4
(S+

l S−
l+�′ + S−

l S+
l+�′ )

− 2 sin(θl − θl+�′ )
(
Sz

l S
x
l+�′ − Sx

l Sz
l+�′

)] + H̃D, (4)

where l runs through all sites, � and �′ are the nearest-neighbor
index vectors with coordination numbers z = 2 along the chain
and z′ = 6 on the hexagonal basal planes, respectively, and H̃D

is the rotated anisotropy term. Care should be taken for the two
rotations on this anisotropy term. The first rotation of Eq. (2)
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leaves it unchanged due to its quadratic form as mentioned
before. In order to perform the second rotation of Eq. (3)
involving rotations of the axes of the two spins to align with
the axis of the third spin on the triangular planes, we rewrite the
anisotropy term of Eq. (1) in the following equivalent, suitable
form: ∑

i

(
Sz

i

)2 = 1

z′
∑
l,�′

[
1

3

(
Sz

l

)2 + 2

3

(
Sz

l+�′
)2

]
. (5)

The transformation of Eq. (3) to the second term in Eq. (5)
gives

H̃D = 1

z′
∑
l,�′

[
1

3
D

(
Sz

l

)2 + 2

3
D

[(
Sz

l+�′
)2

cos2 θl+�′

+ (
Sx

l+�′
)2

sin2 θl+�′ − cos θl+�′ sin θl+�′

× (
Sz

l+�′S
x
l+�′ + Sx

l+�′S
z
l+�′

)]
. (6)

We notice that this anisotropy form is different from the simple
form of Ref. 43 or that of Ref. 44. We believe that Eq. (6) is the
correct form suitable for the hexagonal systems. The energy
gaps in the energy spectra due to this anisotropy term will be
presented later.

Using the canonical Holstein-Primakoff transformations,
the spin operators are expressed in terms of a single set of
boson operators a† and a as

S+ =
√

2sf a, S− =
√

2sa†f, Sz = s − a†a, (7)

where f =
√

1 − a†a/2s and s is the spin quantum number.
The Hamiltonian (4) can then be written as, after Fourier
transformations of the boson operators with the Fourier
component operators aq and a

†
q and to the order of (2s),

H ≈ H0 + H2, (8)

where H0 is the classical energy,

H0 = −2JNs2 − 3J ′Ns2

+ 1

3
DNs2

(
1 + 2 cos2 θ + 1

s
sin2 θ

)
(9)

with θ = 2π/3 and H2 is given by the quadratic terms in the
boson operators as

H2 = s
∑

q

[
Aqa

†
qa−q − 1

2
Bq(a†

qa
†
−q + aqa−q)

]
(10)

with constants Aq and Bq defined by

Aq = 4J + 6J ′(1 + 1
2γq

) − 2
3D(1 + 2 cos2 θ − sin2 θ ),

(11)
Bq = 4J cos qz + 9J ′γq − 2

3D sin2 θ,

and γq defined as usual by

γq = 1

z′
∑
�′

eiq·r�′ = 1

3

(
cos qx + 2 cos

qx

2
cos

√
3

2
qy

)
.

(12)

The quadratic Hamiltonian H2 of Eq. (10) is diagonalized by
the usual Bogoliubov transformation and can be written in

terms of the new boson operators αq and α
†
q as

H2 = �H0 +
∑

q

Eq

(
α†

qαq + 1

2

)
, (13)

where �H0 is the quantum correction to the classical ground
state energy of Eq. (9),

�H0 = −2JNs − 3J ′Ns + 1
3DNs(1 + 2 cos2 θ − sin2 θ ),

(14)

and Eq is the spin wave excitation spectra,

Eq = s

√
A2

q − B2
q . (15)

The first Brillouin zone of a quasi-1D antiferromagnet
is ploted in Fig. 2, where the magnetic wave vector Q =
(4π/3,0,π ) is located at the corner of the hexagon and
where other symmetry points in conventional notations are
also illustrated. We plot the spin wave spectra of Eq. (15) in
Fig. 3 for CsNiCl3 using the experimental values J = 0.345,
J ′ = 0.0054 THz and negligible anisotropy D ≈ 0.4,14,16,41,42

We define the ratio of the two nearest-neighbor coupling
constants as ξ and, for CsNiCl3,

ξ = J ′

J
= 0.0157. (16)

(a)

(b)

FIG. 2. (Color online) (a) The first Brillouin zone of a quasi-
1D hexagonal antiferromagnets. The points (0,0), (2π/3,2π/

√
3),

(2π/3,0), (4π/3,0), (π,π/
√

3), and (0,π/
√

3) all at qz = π are
denoted as Q′,K ′,P ′,Q,L′,O ′, respectively, and the similar points
at qz = 0 are denoted as 	,K,P,Q′′,L,O, respectively. (b) The
hexagonal Brillouin zone at qz = π with some symmetry points in
conventional notations for the quasi-1D systems.
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FIG. 3. (Color online) The three spin wave excitation spectra
(in colors) for CsNiCl3 with J = 0.345, J ′ = 0.0054, and D = 0
THz, along the symmetry direction (0,0,π + πη), (4πη,0,π ), and
( 4π

3 ,0,π + πη). Also included is the gapped y mode (black, denoted
as y ′) with D = −0.0285 using the anisotropy term of Eq. (6). The
solid and dash with the blue color on the lines indicate the zx+ and
zx− modes, respectively.

The spin wave energy spectra with different polarizations
are obtained by folding of the wave vectors. In Fig. 3,
several branches along the symmetry direction of (0,0,η +
1),(η,η,1), and (1/3,1/3,1 + η) are shown, where η is the
reduced wave vector component in the reciprocal lattice unit
(r.l.u) with qz = (2πl/c)(c/2) = πl, and γ = 1/3[cos 2πh +
cos 2πk + cos 2π (h + k)]. Using Eq. (12), the moving in the
paramagnetic Brillouin zone can be written as for qx = 4πη

and qz = π + πη, and the corresponding symmetry directions
to those in reciprocal lattice unit are (0,0,π + πη),(4πη,0,π ),
and (4π/3,0,π + πη), respectively. The three transverse spin
wave branches are obtained from Eq. (15) as follows. The y

mode has the polarization along the y axis of the hexagonal
lattice where the quantum fluctuation is at q; the other two
modes are found in the xz plane by translating the wave vector
by a magnetic wave vector as q → (q ± Q) and are denoted
as zx±, respectively.

As can be seen from Fig. 3, at the magnetic wave vector Q,
the y mode is gapless for zero anisotropy (D = 0). However,
as mentioned earlier, an energy gap about 0.41(2J ) has been
observed by the neutron scattering experiments for CsNiCl3.4

This energy gap can be reproduced in the y-mode excitation
by introducing an anisotropy with D = −0.0285 using our
approximation of Eq. (6), also plotted in Fig. 3. If we use
the simple form of Ref. 43 corresponding to setting θ = 0 in
Eq. (6), the required anisotropy is reduced by a little more
than half with the value D = −0.0141. Both of these values
are now considered too large for CsNiCl3, which has negligible
anisotropy. The conclusion is that the observed gaps are not of
the transverse spin wave spectra, but belong to the longitudinal
modes, as first proposed by Affleck.14,15

Now we turn our attention to the order parameter. The
long-range order of the quasi-1D hexagonal systems is given
by the three sublattice magnetizations with the same magnitude
but different orientations as shown in Fig. 1, and it is clearly

noncollinear, contrast to the collinear case of the bipartite
systems. In the spin wave theory with one boson method as
described above, the magnitude of the sublattice magnetization
can be expressed as

M = 1

N

∑
l

〈
Sz

l

〉 = s − ρ, (17)

where the quantum correction ρ is the magnon density defined
as the ground-state expectation value of the boson number
operator

ρ = 〈a†
l al〉 = 1

N

∑
q

1

2

(
Aq√

A2
q − B2

q

− 1

)
, (18)

with Aq and Bq defined by Eq. (11). The numerical result of the
magnon density for CsNiCl3 is ρ ≈ 0.49 at D = 0, giving the
sublattice magnetization M ≈ 0.51. On the other hand, using
slightly different parameter ξ = 1.7 × 10−2 from Ref. 44, we
obtain ρ = 0.48, giving M = 0.52. Both these results compare
favorably with the experimental value of M = 0.53.44 As
mentioned earlier, our microscopic analysis of the longitudinal
modes is based on these mangon density fluctuations and there
will be two such modes as discussed in details in the following
section.

III. THE LONGITUDINAL MODES OF THE QUASI-1D
HEXAGONAL ANTIFERROMAGNETS

As mentioned before, the longitudinal excitations in a
quantum antiferromagnetic system with a Néel-like long-
ranged order correspond to the fluctuations in the order
parameter. Using the fact that the quantum correction in
the order parameter is given by the magnon density ρ as
discussed previously in Eq. (17), the longitudinal modes can
be considered as the magnon-density waves. By analogy
to Feynman’s theory on the low-lying excited states of the
helium-4 superfluid,25 the longitudinal excitation states can
be constructed by employing the magnon-density operators
Sz, in contrast the transverse spin wave excitation states
constructed by the spin-flip operators S±.24 The energy spectra
of these longitudinal collective modes can then be easily
derived by a formula first employed by Feynman for the famous
phonon-roton spectrum of the helium superfluid involving the
structure factor of its ground state.

More specifically, following Feynman as described above,
the longitudinal excitation state is approximated by applying
the magnon density fluctuation operator Xq to the ground state
|�g〉 as

|�e〉 = Xq |�g〉, (19)

where Xq is given by the Fourier transformation of Sz

operators,

Xq = 1√
N

∑
l

eiq·rl Sz
l , q > 0, (20)

with index l running over all lattice sites. The condition q > 0
in Eq. (20) ensures the orthogonality to the ground state. The
energy spectrum for the trial excitation state of Eq. (19) can
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be written as

E(q) = 〈�g|X̃qHXq |�g〉
〈�e|�e〉 − Eg = 〈�g|X̃q[H,Xq]|�g〉

〈�e|�e〉 ,

where X̃q is the Hermitian of Xq and where in the second
equation we have used the ground-state equation, H |�g〉 =
Eg|�g〉. We notice that operator Sz

l in Xq of Eq. (20) is
a Hermitian operator, hence X̃q = X−q . By considering the
similar excitation state X−q |�g〉 with the energy spectrum
E(−q) = E(q), it is straightforward to derive24

E(q) = N (q)

S(q)
, (21)

where N (q) is given by the ground-state expectation value of
a double commutator as

N (q) = 1
2 〈[X−q,[H,Xq]]〉g, (22)

and the state normalization integral S(q) is the structure factor
of the lattice model

S(q) = 〈�e|�e〉 = 1

N

∑
l,l′

eiq.(rl−rl′ )
〈
Sz

l S
z
l′
〉
g
. (23)

The notation 〈· · ·〉g in Eqs. (22) and (23) indicates the ground-
state expectation.

In fact, the excitation state of Eqs. (19) and (20) can also
be viewed as the single-mode approximation (SMA)45 and
the expression for E(q) is actually the exact first moment
of the dynamic longitudinal structure factor. We also like to
point out that the relation between the longitudinal magnon-
density waves and the quasiparticle magnon modes can be
examined by the first commutation of the operator (20) with the
Hamiltonian and that the magnon-density waves represent the
coherent motion of the spin ±1 magnon pairs, very similar to
the plasmon excitations in the electronic systems with coherent
motion of quasi-electron-hole pairs as discussed in details in
our earlier paper.23

Further support for the form of Eq. (19) can also be obtained
by examining the general structures of the ground and excited
states within the framework of the coupled-cluster method
(CCM).46–48 Briefly, within the CCM, the ground state is
given by applying an exponentiated correlation operator Ŝ

on a reference state |
〉 (i.e., the classical Néel state in our
case) as

|�g〉 = eŜ |
〉, Ŝ =
∑

I

FIC
†
I (24)

with the multiparticle creation operator C
†
I and the correspond-

ing variational coefficients FI . In our case here, C
†
I is given

by the products of the spin-flip operators S+ with respect the
Néel state. The excitation state within the CCM is given by the
linear form as24,49,50

|�e〉 = X|�g〉 = XeŜ |
〉, X =
∑

I

xIC
†
I (25)

with the variational coefficients xI . In fact, the spin wave
ground state as discussed in Sec. II can be deduced by a low-
order, the so-called SUB2 involving the two-body correlations,
approximation, in the large-s limit of the CCM.51 Furthermore,

using the following algebra:

Sz
l e

Ŝ = eŜ S̄z
l ,

S̄z
l = e−ŜSz

l e
Ŝ = Sz

l + [
Sz

l ,Ŝ
] + 1

2!

[[
Sz

l ,Ŝ
]
,Ŝ

] + · · · ,

where the nested commutation series in S̄z
l terminates at

the first order in our case, it is not difficult to show the
similarity between the excitation state of Eqs. (19) and (20)
and that of Eq. (25). The clear advantage of Eqs. (19)
and (20) lies on its simple form and on the fact that the
double commutation in N (q) of Eq. (22) reduces the order of
calculations. Furthermore, it satisfies the sum rule as described
above in the SMA.

We have applied these formulas to the bipartite quasi-1D
antiferromagnetic systems such as KCuF3.27 For the hexagonal
lattice systems as discussed here, we expect that there are two
longitudinal modes due to the noncollinear nature of the order
parameter on the triangular basal plane. Within the one-boson
approach after the two spin rotations as employed here, the
two longitudinal modes with xz polarizations of the hexagonal
systems can be obtained by folding of the wave vectors in the
energy spectra of Eq. (21), in similar fashion to the one-boson
spin wave theory as discussed in Sec. II and also to that of
Ref. 14.

Using the Hamiltonian of Eq. (4), it is straightforward to
derive the following double commutator with zero anisotropy
(i.e., D = 0) as

N (q) = 2sJ
∑

�

(1 + cos qz)g̃�

+ 1

2
J ′s

∑
�′

[3(1 + γq)g̃�′ − (1 − γq)g̃′
�′], (26)

where γq is as defined in Eq. (12) and the transverse correlation
functions g̃� and g̃′

� are defined respectively as

g̃� = 1

2s
〈S+

l S+
l+�〉g, g̃′

� = 1

2s
〈S+

l S−
l+�〉g, (27)

all independent of index l due to the lattice translational sym-
metry. Also, the contribution from the three-boson operators
with sin(θl − θl+�) (the so-called cubic term) is zero. We notice
that this cubic term has been included in perturbation theory
for the correction in spin wave spectrum.38,39 In evaluating
g̃� and g̃′

� of Eq. (27), we keep up to the second order in the
large-s expansions and obtain

g̃� = �� − 2ρ �� + μ� δ

2s
,

(28)

g̃′
� = μ� − 2ρ μ� + ��δ

2s
,

where

ρ = 〈a†
l al〉 = 1

N

∑
q

ρq, μ� = 〈a†
l al+�〉 = 1

N

∑
q

eiq·�ρq,

�� = 〈alal+�〉 = 1

N

∑
q

eiq·��q, δ = 〈alal〉 = 1

N

∑
q

�q,

(29)
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and where

�q = 1

2

Bq√
A2

q − B2
q

, ρq = 1

2

(
Aq√

A2
q − B2

q

− 1

)
, (30)

with Aq and Bq as given before by Eq. (11). The structure factor
within the linear spin wave approximation is independent of s

and is given by

S(q) = ρ + 1

N

∑
q ′

ρq ′ρq+q ′ + 1

N

∑
q ′

�q ′�q+q ′ . (31)

We like to point out that the calculations of both Eqs. (28)
and (31) involve up to four-boson operators.

We first discuss the general behaviors of the longitudinal
spectrum of Eq. (21) as a function of the ratio of the two
nearest-neighbor coupling constants, ξ = J ′/J . In the limit
ξ → 0, the Hamiltonian (1) becomes the pure 1D systems; the
longitudinal spectrum is gapless and identical to the doublet
spin wave spectra thus forming a triplet excitation state as
discussed in details in Ref. 27. This demonstrates the limitation
by the spin wave ground-state employed, particularly when
applied to the integer-spin Heisenberg chain where the Haldane
gap is expected as discussed in Sec. I. In the other limit,
ξ → ∞, the Hamiltonian is a pure triangular antiferromagnet
with the quasigapped longitudinal modes as discussed in
details in our previous paper31 where we keep only the first
order term in Eq. (28) in the large s expansion, similar to the
case of the square lattice model.

For the quasi-1D materials with intermediate values of ξ ,
the spin wave ground state is a reasonable approximation.
We obtain nonzero energy gaps for the longitudinal exci-
tation spectra of Eq. (21). As discussed before, following
Affleck,14,15 two longitudinal modes for the quasi-1D hexag-
onal antiferromagnets can be obtained by folding of the wave
vector. We denote one as L− with the spectrum E(q − Q)
and the other as L+ with the spectrum E(q + Q). We plot
these two longitudinal spectra in the first and second-order
approximations together with the three spin wave spectra
of Eq. (15) in Fig. 4 near the magnetic wave vector Q for
the compound CsNiCl3. Our numerical result for the energy
gap of the lower longitudinal mode L− at Q is 0.96(2J ) in
the first-order approximation in Eq. (28). After including the
second-order terms, the energy gap value is now (0.49)2J , in
agreement with the experimental results of 0.41(2J ). We also
notice that the upper mode L+ is higher than the L− mode
by about (0.092)2J at Q. We also plot the L− mode along
the path Q′K ′P ′QL′O ′ of the hexagonal Brillouin zone in
Fig. 5 together with the spin wave y and zx− modes. As can
be seen, the longitudinal mode is nearly flat over the whole
spectrum.

For the compound RbNiCl3 also with s = 1, using the
exchange parameters J = 0.485 and J ′ = 0.0143 THz with
a larger ratio ξ = J ′/J = 0.0295,52 we obtain similar longi-
tudinal modes as those of CsNiCl3. The numerical result for
the energy gap of the L− mode is 1.16 THz in the first-order
approximation and 0.69 THz after including the second-order
contributions at the magnetic wave vector. This later result
is in better agreement with the experimental result of about
0.51 THz. We like to point out that there is some difficulty
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FIG. 4. (Color online) The longitudinal modes L± as derived
from Eq. (21) together with the spin wave y- and zx± modes as derived
from Eq. (15) for CsNiCl3 along the symmetry direction (0,0,π +
πη), (4πη,0,π ), and ( 4π

3 ,0,π + πη). The longitudinal modes L±
calculated from the first-order approximation and after including the
second term in Eq. (28) are indicated by the dash and solid lines,
respectively.

in fitting of Affleck’s model with the experimental results for
RbNiCl3.15,52

Finally, we turn to the longitudinal modes for the
noninteger-spin quasi-1D hexagonal systems. The superex-
change interactions in the hexagonal compound CsMnI3 can
be described by the Hamiltonian (1) with spin quantum
number s = 5/2 and the nearest-neighbor coupling constants
J = 0.198 and J ′ = 0.001 THz and negligible anisotropy.30

This system is very close to the pure 1D system with a very
small ratio ξ = J ′/J ≈ 0.005. The linear spin wave theory
may be a poor approximation for such a system. Nevertheless,
with a similar analysis as before, based on the spin wave ground
state, we obtain the L− mode energy gap value of 0.64 THz at
the magnetic wave vector Q in the first-order approximation,
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FIG. 5. (Color online) The longitudinal mode L− along the path
Q′K ′P ′QL′O ′ of the hexagonal Brillouin zone of Fig. 2(b) together
with the spin wave y and zx− modes for CsNiCl3. The longitudinal
modes L± calculated from the first-order approximation and after
including the second term in Eq. (28) are indicated by the dash and
solid lines, respectively.
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and of 0.47 THz after including the second-order contributions.
This later value is still much larger than the experimental value
of about 0.1 THz by Harrison et al.,30 which was used to fit a
modified spin wave theory by Plumer and Cailé.18 Clearly, for
such systems as CsMnI3, we need a better ground state than
that of the spin wave theory in our analysis.

IV. DISCUSSION

In this paper, we have investigated the excitation states of
the quasi-1D hexagonal systems as modeled by the anisotropic
Heisenberg Hamiltonian with only the nearest-neighbor cou-
plings. We have obtained the three spin wave modes and two
longitudinal modes. The energy gaps due to the anisotropy and
the energy gaps of the longitudinal modes at the magnetic wave
vector are investigated and compared with the experimental
results for several quasi-1D hexagonal compounds. We have
also estimated the higher-order contributions in the large-s
expansions for the longitudinal energy spectra. We like to em-
phasize that our analysis applies to both integer and noninteger

spin systems and there are no other fitting parameters than
the nearest-neighbor coupling constants and the anisotropy
parameter in the model Hamiltonian provided by experiments.
Therefore the good agreement for the longitudinal energy
gap values between our calculations and the experimental
measurements for the compounds CsNiCl3 and RbNiCl3 are
particularly satisfactory. The compound CsMnI3 is very close
to the pure 1D model (i.e., ξ very small) for which the spin
wave ground state is not reliable. It is therefore not surprising
to find big discrepancy between our estimate based on spin
wave ground state and the experimental result even after
including the higher-order contributions in our calculations.
Further improvement may be found on two fronts. Firstly,
the contribution of the cubic term may be calculated by a
perturbation theory in a similar fashion as employed in Refs. 26
and 53. Secondly, a better ground state is needed, particularly
for the compound CsMnI3 where the interchain coupling is
particularly weak. A more sophisticated many-body theory
such as the coupled-cluster method, particularly its recent
variational version,51,54 may provide such an improvement.
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