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We investigate the two-magnon Raman scattering from an anisotropic S = 1
2 triangular Heisenberg

antiferromagnet Cs2CuCl4. We find that the Raman response is very sensitive to magnon-magnon interactions and
to scattering geometries, a feature that is in remarkable contrast with the polarization-independent Raman signal
from the isotropic triangular Heisenberg antiferromagnet. Since a spin-liquid ground state gives rise to a similar
rotationally invariant Raman response, our results on the polarization dependence of the scattering spectrum
suggest that Raman spectroscopy provides a useful probe, complementary to neutron scattering, of the ground-
state properties of Cs2CuCl4, particularly whether the time-reversal symmetry is broken in the ground state.
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I. INTRODUCTION

Recently, Heisenberg antiferromagnets on the triangular
lattice have attracted considerable experimental and theoretical
interest. Among them, Cs2CuCl4 has been under particular
scrutiny as it provides an interesting example of a spatially
anisotropic spin- 1

2 triangular antiferromagnet.1–10 Much of the
interest in this compound stems from its unusual, nonclassical
magnetic properties, arising from the competition between the
spatial anisotropy, Dzyaloshinskii-Moriya (DM) interactions,
and quantum fluctuations.

Extensive neutron scattering studies1,2 on the magnetic
properties of Cs2CuCl4 revealed several interesting features.
First, despite frustration and low dimensionality, a long-range
magnetic order develops at low temperatures: the observed
spin order is incommensurate and sets in at temperatures
below TN = 0.62 K. Magnetic excitations above this ground
state are also quite unusual. While the low-energy excitation
spectrum contains well-defined sharp modes, as expected for
an ordered state, a broad continuum is formed at intermediate
and high energies. A number of theoretical proposals have
been made to explain the origin of this continuum. It has
been suggested that the existence of a continuum is an
indication that the system is proximate to a spin-liquid phase
that determines the behavior of excitations except for low
energies.3–5,8 An alternative suggestion is that the continuum
might originate from magnon-magnon scattering which is
enhanced in noncollinear magnets.6,7

In view of the ambiguity in the interpretation of the neutron
scattering data, a complementary experimental analysis of the
magnetic properties of Cs2CuCl4 by a different technique
is highly desirable. A very effective and frequently used
experimental tool to study low-temperature properties of
low-dimensional quantum magnets is the two-magnon Raman
scattering.11–18 The two-magnon Raman intensity is directly
related to the spectrum of two interacting magnons in a
total spin-zero state at vanishingly small momentum and
weighted by a form factor that is dependent on the polarization
of the incident light. It contains detailed information on
the two-magnon density of states and the magnon-magnon
interactions. Therefore, direct comparison of experimental
spectra with those obtained from theoretical analysis can lead

to rather accurate estimates on values of the superexchange and
DM interactions. In addition, the analysis of the polarization
dependence of the magnetic Raman scattering19,20 might shed
some light on whether the ground state is ordered, as neutron
scattering experiments have suggested, or is actually in a
spin-liquid state, as some theories suggest. A pronounced
polarization dependence would indicate that magnetically
ordered state is the most probable candidate for the ground
state, and that the observed continuum is due to relatively
strong interactions between magnons. On the other hand,
if the Raman scattering depends weakly on the scattering
geometry, the continuum in neutron scattering might be due to
unconventional excitations above a spin-liquid ground state.

In this paper, we carry out a theoretical analysis of
two-magnon Raman scattering from an anisotropic S = 1

2
Heisenberg antiferromagnet (HAF) on a triangular lattice (see
Fig. 1). To evaluate the two-magnon Raman spectra, we use
the well-established, semiphenomenological Loudon-Fleury
(LF) approach.21 By choosing model parameters relevant for
the compound Cs2CuCl4, we find that the spectral shape
as a function of frequency is sensitive to 1/S corrections
of the magnon spectrum and is strongly modified by the
magnon-magnon interactions in the final state. The intensity
of the two-magnon peak also significantly depends on the
scattering geometry which is in contrast with the polarization
independence of the magnetic Raman response in isotropic
HAF on the triangular lattice.19

The paper is organized as follows. In Sec. II, we present
a model of Cs2CuCl4 and discuss its classical ground state,
which is an incommensurate spin spiral with a pitch vector
determined by the competition of anisotropic nearest-neighbor
interactions. In Sec. III, we first review results of the one-
magnon excitations in the anisotropic S = 1

2 HAF to first order
in 1/S. We show that although 1/S corrections are present in
the whole Brillouin zone (BZ), they are less drastic than in
the isotropic case of the triangular lattice. This is due to DM
interactions, which suppress quantum fluctuations and open
a gap at the ordering vector. In Sec. IV, we first review the
LF formalism and then use it to calculate the Raman spectra
at various levels of approximation, i.e., using only the bare
magnon dispersion, using a magnon dispersion renormalized
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FIG. 1. (Color online) Triangular lattice with anisotropic spin
exchanges.

to order 1/S, and with final-state interactions included. We
show that the Raman profile is very sensitive to the magnon-
magnon interactions and to the scattering geometry. Finally,
Sec. V presents a summary of the work.

II. MODEL

We start with the following spin- 1
2 model Hamiltonian for

Cs2CuCl4:

H =
∑
〈ij〉

[Jij Si · Sj + Dij · (Si × Sj )], (1)

where 〈ij 〉 refers to nearest-neighbor (NN) bonds on the
triangular lattice, and Jij and Dij are the symmetric and
antisymmetric exchange constants. The antisymmetric spin
exchange originating from the relativistic spin-orbit inter-
action is also known as the Dzyaloshinskii-Moriya (DM)
interaction. For Cs2CuCl4, it is customary to denote the
exchange constants Jij along the horizontal bonds, which form
quasi-one-dimensional (1D) chains, as J , and Jij along the
zigzag bonds as J ′.1,2 In this paper, we consider the DM
vectors in the geometry suggested by the neutron-scattering
work by Coldea et al.2 In this geometry, the DM interaction
vanishes along the quasi-1D chains, whereas on the zigzag
bonds, the DM vectors are perpendicular to the triangular
plane Dij = ±(0,0,D) (Fig. 1). Experimental measurements
in high magnetic field have resulted in J ≈ 0.374 meV,
J ′ ≈ 0.128 meV, and D = 0.02 meV.2

The classical ground state of Hamiltonian (1) is given
by a spin spiral Si/S = cos(Q · ri) b̂ + sin(Q · ri) ĉ, where
the pitch vector Q = Q b̂ depends on the ratio J ′/J . In the
isotropic case J ′ = J , the ground state is the well-known
120◦ noncollinear magnetic order with Q = 2π/3.22,23 To
understand the classical ground state in detail, we consider
the energy of the magnetic spiral:

E0(Q) = 3NS2J T
Q , J T

Q = JQ − DQ, (2)

where

Jk = 1

3

(
J cos ky + 2J ′ cos

ky

2
cos

√
3kz

2

)
, (3)

Dk = 2D

3
sin

ky

2
cos

√
3kz

2
. (4)

Minimization with respect to Q leads to the following
three types of long-range magnetic order: (1) At J ′ > 2J ,
the magnetic spiral reduces to collinear Néel order with
ferromagnetic ordering of the spins along the chains. Along
the c direction, spins on adjacent chains are antiparallel to each
other. (2) At 0 < J ′ � 2J , the pitch of the spiral is given by
Q = 2 arccos(− J ′

2J
), which varies from 2π → π as we vary

J ′ from 2J to 0. (3) For J ′ = 0, the system degenerates into
decoupled antiferromagnetic chains.

III. LARGE-S EXPANSION

The large-S expansion about the classical spiral order can
be significantly simplified with a locally rotated frame of
reference.23 The spin components Si in a laboratory frame
are related to those in the rotated local frame through

Sx
i = S̃x

i ,

S
y

i = S̃
y

i cos Q − S̃z
i sin Q, (5)

Sz
i = S̃

y

i sin Q + S̃z
i cos Q.

The spiral viewed from the rotated local frame corresponds
to a simple ferromagnetic order S̃i = Sẑ. We then employ the
Holstein-Primakoff transformation

S̃z
i = S − a+

i ai ,

S̃+
i = (2S − a+

i ai )1/2 ai , (6)

S̃−
i = a+

i (2S − a+
i ai )1/2.

The magnon operators a
†
i and ai describe excitations around

the spiral ground state. As we intend to study magnon
interactions to first order in 1/S, we need to expand the
Hamiltonian in Eq. (1) up to quartic order in the boson
operators:

H = E0 + 3JS(H2 + H3 + H4). (7)

Introducing Fourier transform ai = ∑
k ak eik·ri /

√
N , the ex-

plicit expression of the various terms in the Hamiltonian reads
as

H2 =
∑

k

[
Ak a

†
k ak + Bk

2
(ak a−k + a

†
k a

†
−k)

]
, (8)

H3 = i

2

√
1

2NS

∑
{ki }

(C1 + C2) (a†
3a1a2 − a

†
1a

†
2a3), (9)

H4 = 1

8NS

∑
{ki }

{
[(A1−3 + A1−4 + A2−3 + A2−4)

− (B1−3 + B1−4 + B2−3 + B2−4)

− (A1 + A2 + A3 + A4)]a†
1a

†
2a3a4

− 2

3
(B1 + B2 + B3) (a†

1a
†
2a

†
3a4 + a

†
4a1a2a3)

}
. (10)

Here, 1 . . . 4 denote k1 . . . k4, and the summation in H3 and
H4 is subject to momentum conservation

∑
i ki = 0 up to

a reciprocal lattice vector G. The following functions are
introduced:

Ak = Jk + 1
2

(
J T

Q+k + J T
Q−k

) − 2J T
Q ,

(11)
Bk = 1

2

(
J T

Q+k + J T
Q−k

) − Jk, Ck = J T
Q+k − J T

Q−k.
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Here, for convenience, we rescale the interactions Jk and J T
k

with respect to J , which is assumed to be J = 1.
The quadratic Hamiltonian H2 can then be diagonalized by

a Bogoliubov transformation:

ak = ukck + vkc
†
−k,

(12)
a
†
k = ukc

†
k + vkc−k,

where c
(†)
k are operators for Bogoliubov quasiparticles. The

coherence coefficients

uk =
√

Ak + Ek

2Ek
, vk = − Bk

|Bk|

√
Ak − Ek

2Ek
(13)

satisfy u2
k − v2

k = 1, and

Ek =
√

A2
k − B2

k (14)

describes the quasiparticle dispersion (the energy of the
quasiparticles is 3JSEk). The diagonalized Hamiltonian H2 is
given by

H2 = E2(Q) +
∑

k

Ekc
†
kck, (15)

where

E2(Q) =
∑

k

(
Akv

2
k + Bkukvk

) = −NJT
Q + 1

2

∑
k

Ek

(16)

gives the 1/S correction to the classical ground-state energy
E0(Q). The 1/S correction to the ordering wave vector Q is
determined by minimizing the sum

E0 + E2 = 3JS(S − 1)NJT
Q + 3JS

2

∑
k

Ek (17)

with respect to Q. The quantum correction is given by

�Q = −1

∂2J T
Q/∂Q2

1

N

∑
k

Ak − Bk

2Ek

∂J T
Q+k

∂Q

∣∣∣∣
Q0

, (18)

where Q0 = 2 arccos(− J ′
2J

) is the pitch of the classical ground
state.

The 1/S contribution from the quartic Hamiltonian can
be obtained through a mean-field decoupling of H4. We first
define

G(k) = 〈a†
k ak〉, F (k) = 〈ak a−k〉 = 〈a†

k a
†
−k〉. (19)

The quadratic Hamiltonian plus the decoupled H4 can be
expressed as

H2 + H̄4 = 3JS
∑

k

[
Āk a

†
k ak + B̄k

2
(ak a−k + a

†
k a

†
−k)

]
,

(20)

where

Āk = Ak + 1

NS

∑
q

[
(Ak−q + Bk−q − Ak − Aq) G(q)

−
(

Bq + Bk

2

)
F (q)

]
, (21)

B̄k = Bk + 1

NS

∑
q

[
−

(
Bk + Bq

2

)
G(q)

+
(

Ak−q + Bk−q − Aq

2
− Ak

2

)
F (q)

]
. (22)

The magnon spectrum renormalized by the quartic Hamilto-
nian H4 becomes

Ēk =
√

Ā2
k − B̄2

k = Ek + �
(4)
k + O(1/S2), (23)

where �(4)(k) is self-energy correction of order 1/S:

�
(4)
k = A

(4)
k

(
u2

k + v2
k

) + 2B
(4)
k ukvk

= (
Ak A

(4)
k − Bk B

(4)
k

)
/Ek. (24)

To obtain the 1/S correction from the cubic Hamiltonian
H3, we follow Ref. 23 and consider interactions between
quasiparticles c, c†:

H3 = i

4

√
1

2NS

∑
{ki }

[
�1(k1,k2; k3) c

†
k1

c
†
k2

ck3

+ 1

3
�2(k1,k2,k3) c

†
k1

c
†
k2

c
†
k3

]
+ H.c. (25)

The vertex functions are given by (for simplicity, we denote
1 ≡ k1, 2 ≡ k2, etc.)

�1(1,2; 3) = �̃1(1,2; 3)√
E1E2E3

, �2(1,2,3) = �̃2(1,2,3)√
E1E2E3

, (26)

where

�̃1(1,2; 3) = C1f
(1)
− (f (2)

+ f
(3)
+ + f

(2)
− f

(3)
− )

+ C2f
(2)
− (f (3)

+ f
(1)
+ + f

(3)
− f

(1)
− )

+ C3f
(3)
− (f (1)

+ f
(2)
+ − f

(1)
− f

(2)
− ), (27)

�̃2(1,2,3) = C1f
(1)
− (f (2)

+ f
(3)
+ − f

(2)
− f

(3)
− )

+ C2f
(2)
− (f (3)

+ f
(1)
+ − f

(3)
− f

(1)
− )

+ C3f
(3)
− (f (1)

+ f
(2)
+ − f

(1)
− f

(2)
− ), (28)

and f
(α)
± = √

Aα ± Bα for α = 1,2,3.
The triplic contribution to the self-energy is

�
(3)
k = − 1

16NS

( ∑
k1+k2=k

|�(1)(k1,k2,k)|2
Ek1 + Ek2 − Ek + i η

+
∑

k1+k2=−k

|�(2)(k1,k2,k)|2
Ek1 + Ek2 + Ek + i η

)
. (29)

The first term in Eq. (29) describes a virtual decay of a
magnon into two-particle intermediate states. Terms with
three creation (annihilation) operators, as will become clear
in the next section, play no role in evaluating the magnon
interactions within the Raman response. We also note that
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�
(3)
k is computed within so-called on-shell approximation. In

this approximation, the self-energy is evaluated at the bare
magnon energy Ek.

Finally, the magnon energy renormalized by both the
quartic and the triplic terms is given by

Ẽk = Ek + �
(4)
k + �

(3)
k + O(1/S2). (30)

In Fig. 2, we plot the renormalized magnon spectrum Ẽk
for parameters relevant to Cs2CuCl4. One can see that the
renormalization of the spectrum is much less pronounced than
in the case of the isotropic triangular lattice.24,25 Moreover, the
imaginary part of the magnon energy ImẼk almost vanishes in
the whole BZ. Thus, the lifetime of the quasiparticles is very
large at almost any momentum. This happens because the
DM interaction opens a gap at the ordering Q vector, which
significantly suppresses quantum fluctuations.7 We note that,
as corrections to the ordering vector Q, determined by Eq. (18),
are small at those values of D relevant to our calculation, we

FIG. 2. (Color online) Top: Renormalized magnon dispersion.
Dotted line corresponds to the linear spin-wave dispersion Ek, while
red and blue solid lines correspond to the real and imaginary parts
Re(Im)Ẽk, respectively, computed on a lattice of 252 × 252 k points
with artificial line broadening of η = 0.003. Middle and bottom: 3D
plot of the ReẼk and of the ImẼk, respectively. The spectrum is
computed for J = 1, while other parameters describing interactions
Cs2CuCl4 are correspondingly rescaled. All energies are measured in
units of 3JS.

use the bare value of the ordering wave vector Q0 for the
remainder of the paper.

IV. RAMAN INTENSITY

A. Loudon-Fleury formalism

Here, we present the analysis of the two-magnon Raman
scattering from the anisotropic triangular lattice. We employ
the LF approach which models the interaction of light with
spin degrees of freedom. The LF scattering operator is given
by the photon-induced superexchange operator21,27

R =
∑
i,±δμ

(ε̂in · δμ)(ε̂out · δμ) Jμ Si · Si±δμ
, (31)

where δμ denote basic vectors of triangular lattice: δ1 = (1,0),

δ2 = ( 1
2 ,

√
3

2 ), and δ3 = (− 1
2 ,

√
3

2 ). Jμ defines the Heisenberg
exchange on the bond δμ. Since Jμ is anisotropic, the C3v

symmetry of the triangular lattice is broken. Thus, instead
of using C3v-irreducible representations (A1, A2, and E) for
characterization of the polarizations, we determine polariza-
tions of incoming and outgoing light as ε̂in = cos θ x̂ + sin θ ŷ
and ε̂out = cos φ x̂ + sin φ ŷ, where θ and φ are defined with
respect to the x axis.

In terms of Bogoliubov quasiparticle c operators, the LF
scattering operator (31) takes the following form:

R =
∑

k

Mk(ckc−k + c
†
kc

†
−k) ≡ r− + r+, (32)

where Mk is bare Raman vertex, which is determined by the
magnon spectrum and by scattering geometry. The expression
for Mk is given by

Mk = F1(k,θ,φ)ukvk + F2(k,θ,φ)
(
u2

k + v2
k

)
, (33)

where we introduced the following notations:

F1(k,θ,φ) = 2S

3∑
μ=1

fμ(θ,φ)ξμk,

(34)

F2(k,θ,φ) = S

3∑
μ=1

fμ(θ,φ)νμk,

and

ξ1k = cos kx(1 + cos Q0) − 2 cos Q0,

ξ2k = cos

(
kx

2
+

√
3ky

2

)(
1 + cos

Q0

2

)
− 2 cos

Q0

2
,

ξ3k = cos

(
kx

2
−

√
3ky

2

)(
1 + cos

Q0

2

)
− 2 cos

Q0

2
,

(35)
ν1k = cos kx(1 − cos Q0),

ν2k = cos

(
kx

2
+

√
3ky

2

)(
1 − cos

Q0

2

)
,

ν3k = cos

(
kx

2
−

√
3ky

2

)(
1 − cos

Q0

2

)
.

The functions fμ(θ,φ) ≡ (ε̂in · δμ)(ε̂out · δμ) are symmetry
weighting factors along the three basic vectors δμ of the
triangular lattice.
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The Raman intensity is obtained from the Fermi’s golden
rule, which on the imaginary frequency axis reads as

I (ωm) 
 Im

[∫ β

0
dτ eiωmτ 〈Tτ (R(τ )R)〉

]
. (36)

By analytically continuing Matsubara frequencies ωm =
2πmT onto the real axis as iωm → � + iη, we obtain the
Raman intensity as a function of the inelastic energy transfer
� = ωin − ωout of the incident photons. For the rest of the
paper, we assume the temperature T = 1/β to be zero.

To order 1/S, the Raman polarization operator 〈Tτ (R(τ )R)〉
contains only terms such as 〈Tτ (r+(τ )r−)〉 + 〈Tτ (r−(τ )r+)〉,
where r± are specified in Eq. (32) and Fig. 5(a). By Hermitian
conjugation, it is sufficient to calculate J (τ ) = 〈Tτ (r−(τ )r+)〉,
which is depicted in Fig. 5(b).

B. Raman intensity without final-state interactions

We now focus on the contribution from two-magnon Raman
scattering, which can be computed at different levels of
approximation. We begin by first using only the bare spin-wave
dispersion. Then, we continue by including renormalizations
of the one-magnon spectrum to 1/S order. Calculating the
Raman polarization operator 〈Tτ (R(τ )R)〉 with the bare
propagators of the Bogoliubov quasiparticles G(k,iωn) =
1/(iωn − Ek), where Ek is the bare magnon spectrum, gives
the following expression for the Raman intensity:

I (�)


 Im

[∫
d2k

∫
dω

2π
M2

k
1

ıω − Ek

1

ı(� − ω) − Ek

]∣∣∣∣
�→−i�+η

= − Im

[ ∫
d2k M2

k
1

� − 2Ek + ıη

]

= η

∫
d2k M2

k
1

(� − 2Ek)2 + η2
. (37)

0 0.5 1 1.5 2
Ω

0

0.2

0.4

0.6

0.8

1

I(Ω)

θ=π/2,φ=0
θ=π/2,φ=0
θ=2π/3,φ=0
θ=2π/3,φ=0
θ=0,φ=0
θ=0,φ=0

FIG. 3. (Color online) Bare Raman intensity (solid lines) and
Raman intensity including the one-magnon renormalization of the
spectrum (dashed lines) at different polarizations of light described
by φ, and θ scattering angles. Number of k points: 252 × 252. The
broadening parameter is η = 0.003. � is measured in units of 3JS.

Figure 3 shows the bare Raman spectra (solid lines) as func-
tions of the transferred photon frequencies � for three scatter-
ing geometries: (i) θ = π/2,φ = 0, (ii) θ = 2π/3,φ = 0, and
(iii) θ = 0,φ = 0. For two of the polarizations (i) and (ii), the
Raman spectra show a similar profile and intensity: the Raman
response exhibits a peak at � 
 0.8–0.9, and the location of
this peak corresponds to twice the energy of the dominant van
Hove singularity of the one-magnon dispersion (cf. Fig. 2).

The small Raman intensity I (�) at low energies is due to
two reasons. First, the magnon energy is gapless only at the
zone center and has a gap caused by the DM interaction at
the ordering wave vector Q0. Thus, only magnons with mo-
mentum near k 
 0 can be excited by photons with frequency
� < 2 E(Q0). As one can see from Fig. 2, the rather steep
magnon spectrum in the vicinity of zone center gives rise to a
small density of states. Second, the form of M2

k is such that it
selects mostly wave vectors k ∼ π where the gap resides.

In the θ = φ = 0 geometry, the Raman response is nonvan-
ishing but very small for the whole energy range compared
with intensities observed in other geometries. The relative
smallness can be understood by comparing this result with
the well-studied case of the square lattice, for which the LF
operator in the A1g geometry commutes with the Heisenberg
Hamiltonian, and, as a result, the Raman response vanishes. In
the case of the anisotropic triangular lattice, a noncommuting
part of the LF operator (31) remains nonzero even for the
A1g geometry. This part leads to small Raman intensities,
scaling with the ratio (J ′/J )2. Indeed, as we have discussed
earlier, the anisotropic triangular lattice can be viewed as an
interpolation between the square and the isotropic triangular
lattice by varying J ′/J .

In Fig. 4, the two-magnon peak is shown as a function of
the scattering angle θ . A strong dependence on the scattering
geometry can be seen: the largest peak intensity is observed
at the θ = π/2,φ = 0, i.e. cross polarization, which gradually
decreases and reaches its minimum at θ = 0 or π (alhough not
exactly, the peak intensity is roughly proportional to sin2 θ ).
This polarization dependence is consistent with the fact that
the anisotropy in the present case resembles more that of a
rectangular than of an isotropic triangular geometry.

0 π/3 π/2 2π/3 π
θ

0

0.5

1

I
m

Renormalized intensity
Bare intensity

FIG. 4. Variation of the maximum of the bare and renormalized
intensities as a function of the scattering angle θ computed at � = 0.8
and 0.6, respectively.
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An angular-dependence analysis of the Raman spectrum
on Cs2CuCl4 is highly desirable as it could provide a potential
diagnosis of whether a long-range spin order develops in the
ground state. If an angular dependence similar to the one
described above is observed, then the ground state is likely to
be an incommensurate spiral.6,7 On the other hand, a Raman
response that is independent of the scattering geometry might
indicate a spin-liquid ground state,20 as proposed in some
recent theories.3–5,8 Here, some precautions are necessary.
Since the underlying Hamiltonian is spatially anisotropic, the
spinon excitations of the proposed spin-liquid phase might
inherit the crystal anisotropy to some degree, hence also giving
rise to a polarization-dependent Raman signal. This question
should be further studied but we believe that even if this is the
case, the polarization dependence of the Raman response will
be much weaker than in the case of spiral magnetic order.

Next, we incorporate 1/S corrections to the Raman spec-
trum. This can be easily done by replacing the bare energy with
the renormalized magnon energy Ẽk (30) in the propagator
G(k,iωn) = 1/(iωn − Ẽk). The renormalized Raman spectra
are shown by dashed lines in Fig. 3. We can see that in the renor-
malized spectrum the two-magnon peak appears at the energy
� 
 0.6, which is slightly lower than the peak in the bare spec-
trum. This is in contrast with the case of isotropic triangular
lattice, where the peak is shifted to higher energies. Once again,
it shows that the Raman spectra on the anisotropic triangular
lattice has features of both triangular and square lattices.

C. Raman intensity with final-state interactions

Next, we consider the final-state magnon-magnon interac-
tions. Usually, these are not small, particularly for S = 1

2 .
The effect of the final-state magnon-magnon interactions
can be taken into account by computing vertex corrections
to the bare Raman vertex. Here, we consider only the
leading 1/S corrections. In this approximation, the vertex
corrections can be obtained from an infinite summation
of ladder diagrams. These ladder diagrams are shown in
Fig. 5(c) in terms of the two-particle (ir)reducible Raman
vertex [γ (k,p,ωn,ωo)]�(k,ωn,ωm). These are related by the
Bethe-Salpeter equation

�(k,ωn,ωm) = r−(k) +
∑
p,ωo

γ (k,p,ωn,ωo)

×G(p,ωo + ωm)G(−p, −ωo)�(p,ωo,ωm).

(38)

The two-particle irreducible vertex can be decomposed as
in Fig. 5(d): γ (k,p,ωn,ωo) = γ3(k,p,ωn,ωo) + γ4(k,p). The
quartic vertex γ4(k,p) is identical to the two-particle–two-hole
contribution from the H4 term; its explicit expression is given
by

γ4(k,p) = 1

4S

[
4(A0 − B0 + Ap+k − Bp+k

+ Ap − Ak)upukvpvk + (Ap−k − Bp−k

+ Ap+k − Bp+k − Ap − Ak)
(
u2

pu
2
k + v2

pv
2
k

)
− (2Bp + Bk)

(
u2

p + v2
p

)
ukvk

− (2Bk + Bp)
(
u2

k + v2
k

)
upvp

]
, (39)

where the functions Ak and Bk are given by Eqs. (11).

FIG. 5. (a) Bare Raman vertex R from Eq. (32); (b) Raman
susceptibility bubble; (c) the integral equation for the dressed Raman
vertex � in terms of the irreducible magnon particle-particle vertex
γ ; (d) leading-order 1/S contributions to γ .

The triplic vertex γ3(k,p,ωn,ωo) is obtained from the
product of two vertices of the cubic term H3 and one
intermediate propagator, and can be written as

γ3(k,p,ωn,ωo) = 1

32S
[�1(p,k − p; k)�∗

1(p,k − p; k)

× G0(k − p,iωo − iωn)

+ �1(−p,p − k; −k)�∗
1(−p,p − k; −k)

× G0(p − k,iωn − iωo)], (40)

where the functions �1(1,2; 3) and their complex conjugates
are given by Eqs. (26) and (27). To keep γ3(k,p,ωn,ωo)
to leading order in 1/S, we retained only the zeroth-order
propagators G0 for each intermediate line. We further simplify
the expression (40) by assuming that the dominant contri-
bution to the frequency summations in the Bethe-Salpeter
equation (38) comes from the mass shell of the intermediate
particle-particle propagators. This corresponds to the substitu-
tion of the intermediate frequencies by −iωn ≈ Ek, − iωo ≈
Ep. The simplified expression for the triplic vertex then reads
as

γ3(k,p) 
 1

32S
�1(p,k − p; k) �∗

1(−p,p − k; −k)

× 2Ek−p

(Ek − Ep)2 − E2
k−p

. (41)

The triplic vertex then depends only on momenta.
Next, we perform the frequency summation over ωo on the

right-hand side of Eq. (38) as well as the analytic continuation
iωm → � + iη ≡ z. With this, the reducible vertex � in
the latter equation turns into a function of p and z only,
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leading to ∑
p

Lk,p(z)�p(z) = r−(k), (42)

Lk,p(z) = δk,p − γ (k,p)

z − 2Ẽp
, (43)

which is an integral equation with respect to momentum only.
Finally, the expression for the Raman intensity can be written
as

I (�) 
 [J (�) − J (−�)], (44)

where

J (�) = Im

[∑
k

Mk �k(� + iη)

� + iη − 2Ẽk

]
. (45)

The fully renormalized intensity for the polarization with
θ = 2π/3,φ = 0 is shown in Fig. 6(a). Despite the damping
by the vertex corrections, the two-magnon peak survives and
is further shifted towards lower energies. Apparently, the
damping of the peak is less pronounced compared with the
isotropic triangular lattice case.19 At the higher energies, we
also see the appearance of a broad continuum. We would
like to point out that both the peak and the broad continuum
are observed in geometries with almost perpendicular ε̂in and
ε̂out. Although the width and intensities of the peak and the
profile of the continuum vary with the angle θ , the position
of the two-magnon peak and the center of the continuum do
not change significantly for θ ∼ π/2. On the other hand, the
Raman signal is extremely weak for nearly parallel geometries
(θ , φ ∼ 0), similar to the case without vertex corrections (see
Fig. 3).

In order to disentangle the contributions coming from the
triplic and quartic terms, we also compute the Raman spectrum
with an irreducible vertex which includes only the quartic part.
The comparison between the Raman spectrum computed with
the full vertex and with the one containing only γ4(k,p) is
presented in Fig. 6(b). One observes that vertex corrections
due to the quartic term split the sharp two-magnon peak
into two peaks of comparable intensities, which are, however,
about the half of the intensity of the two-magnon peak with
final-state interactions. The triplic term modifies these two
peaks quite differently. The lower-energy peak is only weakly
renormalized by the triplic term, while the higher-energy peak
is damped more strongly and is transformed into the broad
continuum.

Finally, we note that the direct comparison of these results
with Fig. 3 should be taken with a certain precaution since
the artificial line broadening in Fig. 6 is larger by one order of
magnitude. This is a consequence of a factor of 16 less k points
used in the latter case. This is because the kernel Lk,p(z) in
the integral equations (42) and (43) is not sparse and has rank
N2 × N2. Consequently, a moderate lattice size gives rise to a
rather large dimension for the kernel. In the above calculations,
we have chosen N = 69, leading to a 4761 × 4761 system
which we have solved 100 times to account for 100 frequencies
in the interval � ∈ [0,2]. We also note that the kernel has
points of singular behavior in (k,p)-space, which stem from
the singularities of the Bogoliubov factors and from the energy
denominators in vertex functions. Here, we have chosen to

0 0.5 1 1.5 2
Ω

0

0.1

0.2

0.3

0.4

0.5

0.6

I(
Ω

)

Bare bubble
Renormalized bubble
Renormalized bubble with vertex corrections

(a)

(b)

FIG. 6. (Color online) Effect of final-state interactions on Raman
intensity for θ = 2π/3,φ = 0. (a) Bare intensity, an intensity com-
puted with renormalized magnon energies, and intensity computed
with included final-state interactions are shown by blue, green,
and red lines, respectively. Number of k points: 69 × 69. The
imaginary broadening is η = 0.03. � is measured in units of 3JS.
(b) Comparison of the intensities computed with corrections only
due to the quartic vertex γ4(k) (brown solid line with diamonds), and
with corrections due to full vertex γ3(k) + γ4(k) (red solid line with
circles).

regularize these points by cutting off eventual singularities in
Lk,p. This can be justified because the weight of these points
is negligibly small compared with the total number of points
in the BZ. We have checked that this regularization does not
significantly effect the obtained spectra.

V. SUMMARY

In summary, we have studied the two-magnon Raman
scattering in the anisotropic triangular Heisenberg antiferro-
magnet considering various levels of approximation within a
controlled 1/S expansion. We have shown that the Raman
profile is sensitive to the magnon-magnon interactions and to
the scattering geometry. The calculations indicate that the main
effect of the magnon-magnon interactions is on the shifting
of the two-magnon peak towards lower energies and on the
formation of the broad continuum at the higher energies. We
have also shown that through exchange and DM interactions,
the spatial anisotropy of the lattice is transferred to the
magnon dispersion of the spiral magnetic order. This makes the

174423-7



NATALIA B. PERKINS, GIA-WEI CHERN, AND WOLFRAM BRENIG PHYSICAL REVIEW B 87, 174423 (2013)

two-magnon Raman scattering anisotropic and very sensitive
to the scattering geometry when the spiral magnetic order is
the ground state. Our results on the polarization dependence
of the spectrum suggest that Raman spectroscopy might be
very useful to resolve the ambiguity in the interpretation of
the neutron scattering experiments and to gain insight into the
magnetic structure of Cs2CuCl4.

As a final note, in this paper we have used as an input
the orientation of the DM vectors extracted from neutron
scattering in Ref. 2. Recent electron spin resonance (ESR)
measurements by Povarov et al.17 suggested an alternative
orientation of the DM vectors in Cs2CuCl4, in which the
strongest DM interaction is along the spin chains. It is worth
noting that the two different sets of the DM vectors give
rise to the same spin order in the classical ground state of
the Heisenberg model on the anisotropic triangular lattice.
The direction of the DM vectors is particularly important
for magnetic properties of Cs2CuCl4 in the presence of the
magnetic field because both the magnetic ground state and the
excitation spectra in this case depend on the relative orientation

of the external field and the direction of the DM vector.9,17,18

While the zero-field magnon spectrum certainly depends on
the orientations of the DM vectors, the main conclusion of this
paper remains valid, namely, a polarization-dependent Raman
signal in the magnetically ordered ground state. Moreover,
since the main effect of DM interactions is the opening of the
spectral gap at the ordering wave vector, the higher-energy
magnon excitations that contribute most to the Raman signal
are not strongly affected by different geometries of the DM
vectors.
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