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Spin-transfer torques in helimagnets
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We theoretically investigate current-induced magnetization dynamics in chiral-lattice helimagnets. Spin-orbit
coupling in noncentrosymmetric crystals induces a reactive spin-transfer torque that has not been previously
considered. We demonstrate how the torque is governed by the crystal symmetry and acts as an effective
magnetic field along the current direction in cubic B20-type crystals. The effects of the new torque are computed
for current-induced dynamics of spin spirals and the Doppler shift of spin waves. In current-induced spin-spiral
motion, the new torque tilts the spiral structure. The spin waves of the spiral structure are initially displaced by
the new torque, while the dispersion relation is unaffected.
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I. INTRODUCTION

Current-induced magnetization dynamics continue to be a
very active research area due to potential applications in future
electronic devices. In metallic ferromagnets, the magnetization
can be manipulated via the spin-transfer torque (STT), which
arises due to a misalignment between the spin polarization
of the current and the local magnetization direction.1,2 Slon-
czewski and Berger were the first to predict the existence of
the STT effect,3,4 which was later demonstrated in several
experiments.1,2 The anticipated application potential of the
STT effect lies in the development of electromagnetic devices
that utilize a current-induced torque instead of external
magnetic fields to manipulate the magnetization.2

The magnetization dynamics of an itinerant ferromagnet
is described by the Landau-Lifshitz-Gilbert (LLG) equation
extended to include the current-induced torques:2,5

ṁ = −γ m × Heff + αm × ṁ + τ . (1)

Here, m = M/Ms (Ms = |M|) is the unit direction vector
of the magnetization M, Heff = −δF/δM is the effective
field found by varying the free energy F [M] with respect
to the magnetization, α is the Gilbert damping coefficient,
γ is (minus) the gyromagnetic ratio, and τ describes the
current-induced torques. In the absence of intrinsic spin-orbit
coupling (SOC), the torque becomes τ = τ ex:2

τ ex = −(1 − βm×)(vs · ∇)m. (2)

In Eq. (2), the first term is the adiabatic torque, while the
second term (parametrized by β) is the nonadiabatic torque.
The vector vs is proportional to the current density J and
its polarization P : vs = −h̄PJ /2es0. Here, s0 is the total
equilibrium spin density along −m, and e is the electron
charge. The torque in Eq. (2) treats the ferromagnet within
the exchange approximation, which assumes that the exchange
forces only depend on the relative orientation of the spins. This
assumption is believed to be valid in metallic ferromagnets,
including disordered systems in which impurities couple to the
spin degree of freedom through random magnetic moments or
spin-orbit coupling. In this case, impurity averaging restores
the spin-rotational symmetry of the system. Recently, in
systems with a broken spatial inversion symmetry, the intrinsic
SOC in combination with an external electric field have
been observed to induce an additional torque, such that

τ = τ ex + τ so.6–10 In general, the SOC-induced torque τ so

can be written as6,9,10

τ so = −γ m × Hso, (3)

where the SOC field Hso is proportional to the electric field and
its orientation is determined by the symmetry of the underlying
crystal lattice and the direction of the external electric field.
Therefore, in contrast to τ ex, which vanishes in a homogeneous
ferromagnet, τ so is finite even in this case. Several experiments
have demonstrated that the SOC torque plays an important role
in magnetization dynamics.7,8 The underlying physics of the
torque is that the SOC effectively acts as a magnetic field on
the spins of the itinerant quasiparticles when an electric field
is applied to the system. The effective magnetic field induces
an out-of-equilibrium spin density that yields a torque on the
magnetization.6,7

In chiral magnets, the exchange interaction also contains
an anisotropic term known as the Dzyaloshinskii-Moriya
(DM) interaction.11,12 The DM interaction arises due to the
characteristic crystalline asymmetry of the chiral magnet in
combination with the SOC, and in cubic B20-type crystals, it
leads to the formation of a spin spiral in the magnetic ground
state. We refer to these systems as helimagnets. Helimagnets
have recently attracted substantial interest because topological
nontrivial spin structures, known as skyrmions, have been
observed in such systems under the application of weak
external magnetic fields.13–19 Current-induced responses of
the formed skyrmion lattice to current densities that are
over five orders of magnitude smaller than those typically
observed in conventional ferromagnetic metals have recently
been observed experimentally.20,21 To understand this striking
feature of helimagnets, numerical simulations and a col-
lective coordinate description have been applied to study
the current-induced dynamics of spin spirals and skyrmion
lattices.22–24 However, an important aspect of helimagnets is
the absence of spatial inversion symmetry, which implies that
the magnetization experiences a SOC-induced torque given by
Eq. (3).

In the present paper, we derive the form of the torque in
Eq. (3) for cubic noncentrosymmetric (B20-type) compounds.
An important example of such a system is the chiral itinerant-
electron magnet MnSi, which was the first system in which
a two-dimensional lattice of skyrmions was observed. The
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effects of the SOC torque are studied for two different cases:
current-induced spin-spiral dynamics and the Doppler shift of
magnons that propagates along the spiral structure. We observe
that for current-induced spin-spiral motion, the new torque
yields an enhanced tilting of the spiral structure, while the
torque does not affect the Doppler shift of spin waves except
to induce an initial translation of the spiral structure. We also
briefly discuss the effect of the SOC torque on the skyrmion
lattice dynamics.

This paper is organized in the following manner. Section II
provides a derivation of the SOC torque in Eq. (3) for cubic
B20-type crystals. Section III discusses the effects of the SOC
torque on current-induced spin-spiral motion and the Doppler
shift of spin waves that propagates along the spin spiral. We
conclude and summarize our results in Sec. IV.

II. DERIVATION OF THE SOC TORQUE

In deriving the explicit form of the torque in Eq. (3),
we are guided by the Onsager reciprocity relations and
Neumann’s principle. Consider a system described by the
parameters {qi |i = 1, . . . ,N} for which the rate of change q̇i is
induced by the thermodynamic forces fi ≡ −∂F/∂qi , where
F (q1, . . . ,qN ) is the free energy. Onsager’s theorem states that
the response coefficients in the equations q̇i = ∑N

j=1 Lijfj

are related by Lij (H,m) = εiεjLji(−H, − m), where εi = 1
(εi = −1) if qi is even (odd) under time reversal.25 m and
H represent any possible equilibrium magnetic order and an
external magnetic field, respectively. In the present paper, the
responses of the itinerant ferromagnet are described by the
time derivative of the unit vector along the magnetization
direction, ṁ, and the charge current density J . The associated
thermodynamic forces are the effective field scaled with the
magnetization, fm = MsHeff , and the electric field, fq = E,
respectively, and the equations describing the dynamics in the
linear response regime are determined by(

ṁ
J

)
=

(
Lmm Lmq

Lqm Lqq

)(
fm

fq

)
. (4)

The Onsager reciprocity relations imply that Lmiqj
(m) =

−Lqj mi
(−m). In addition to the symmetry requirements

imposed by the reciprocity relations, the symmetry of the
underlying lattice structure also decreases the number of
independent tensor components. This fact is expressed by
Neumann’s principle, which states that a tensor representing
any physical property should be invariant with respect to every
symmetry operation of the crystal’s point group.25

According to Eq. (4), the effect reciprocal to the adiabatic
and nonadiabatic torque in Eq. (2) is a charge current density
induced by a time-dependent magnetic texture. To the lowest
order in the texture gradients and the precession frequency, the
induced charge current density in the exchange approximation
is26

J ex
i = h̄

2e
σP

(
m × ∂m

∂ri

− β
∂m
∂ri

)
· ṁ. (5)

Here, e is the electron charge, P is the spin polarization
of the current, σ is the conductivity, and ri is component i

of the spatial vector. Because the exchange approximation
neglects any coupling (via intrinsic SOC) of the spins to the

crystal structure, the above expression is fully spin-rotationally
symmetric and a textured magnetization, i.e., ∂m/∂ri �= 0, is
required to have a coupling between the momentum of the
itinerant quasiparticles and the magnetization. If the effects of
intrinsic SOC are considered, additional terms are allowed by
symmetry in the phenomenological expansion for the pumped
current. In particular, for inversion symmetry-breaking SOC,
a homogenous magnetization pumps a charge current. To the
lowest order in SOC and precession frequency, the expression
for the pumped current then becomes

J pump
i = ηij ṁj + J ex

i . (6)

The second-rank tensor ηij is an axial tensor because the
current is a polar vector while the magnetization is an
axial vector. ηij is linear in the SOC coupling and vanishes
in systems with spatial inversion symmetry. According to
Neumann’s principle, the particular form of ηij is governed
by the crystal structure and is determined by the following set
of equations produced by the generating matrices [Rij ] of the
crystal’s point group:25

ηij = |R|RinRjmηnm. (7)

Here, |R| is the determinant of the matrix [Rij ].
Let us now consider a cubic B20-type crystal. Its crystal

structure belongs to the noncentrosymmetric space group
P 213, which has the cubic point group T . Common examples
of cubic B20-type chiral magnets are MnSi, FeGe, and
(Fe,Co)Si. From the symmetry relations in Eq. (7), one then
finds that the tensor ηij is proportional to the unit matrix:25

ηij = ηδij , (8)

where δij is the Kronecker delta. The tensor is isotropic
because the high symmetry of the cubic crystal reduces the
number of independent tensor coefficients to the single param-
eter η. Substituting this tensor into Eq. (6) and expressing the
time derivative of the magnetization in terms of the effective
field by applying the first term on the right-hand side of Eq. (1),
one obtains the response matrix:27

Lqimj
= − γ η

Ms

εikjmk + Lex
qimj

. (9)

Here, Lex
qimj

are the response coefficients describing the process
reciprocal to the STT in Eq. (2), which have been previously
derived in Ref. 26. The term proportional to η describes the
process reciprocal to the SOC-induced torque in Eq. (3). Using
the Onsager reciprocity relations, we find that the SOC field
takes the following form:

Hso = ηsovs , (10)

where ηso = (2ηes0)/(h̄σPMs). Thus, the torque induced by
the SOC in noncentrosymmetric cubic magnets acts as an
effective magnetic field along the current direction. Note that
the torque is reactive because it does not break the time reversal
symmetry of the LLG equation.

III. RESULTS AND DISCUSSION

In the following, we investigate the effects of the SOC
torque on current-driven spin-spiral motion and the Doppler
shift of spin waves. Additionally, a brief discussion of how we
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expect the torque to affect the skyrmion crystal dynamics is
presented.

A. Spin-spiral motion

To the lowest order in the magnetic texture gradients,
the free energy density of a ferromagnet with broken spatial
inversion symmetry can be written phenomenologically as:28

F(m) = Jij

2

∂m
∂ri

· ∂m
∂rj

+ Dijkmi

∂mj

∂rk

. (11)

Here, Jij is the spin stiffness describing the exchange inter-
action between neighboring magnetic moments, and the term
proportional to Dijk is the DM interaction. In Eq. (11) (and
in what follows), summation over repeated indices is implied.
The explicit form of the tensors Jij and Dijk is determined by
the crystal symmetry.

In cubic B20-type ferromagnets, the free energy density
becomes

F(m) = J

2

∂m
∂ri

· ∂m
∂ri

+ Dm · (∇ × m) . (12)

The free energy of the system, F [m] = ∫
drF , is minimized

by a helical magnetic order, where the wave vector of the
spiral structure is determined by the ratio between the DM
parameter and the spin stiffness, k = D/J . For a k vector
that points along the z axis, the magnetic order of the ground
state is

m0(z) = cos(kz)x̂ + sin(kz)ŷ, (13)

where x̂ and ŷ are the unit direction vectors along the x and y

axes, respectively.
The action functional S[m] and the dissipation functional

R[ṁ] of the system are written as29,30

S[m] =
∫

dtdrAi(ṁi + vs · ∇mi) + γ

Ms

F(m) − γ m · Hso,

(14)

R [ṁ] =
∫

dtdr
α

2

(
ṁ + β

α
vs · ∇m

)2

. (15)

Here, A(m) is the Berry phase vector potential of a magnetic
monopole, which satisfies εijk∂Ak/∂mj = mi [εijk is the Levi-
Civita tensor]. The LLG equation in Eq. (1), with τ = τ ex +
τ so, is determined by

δS

δm
= − δR

δṁ
. (16)

A previous study on spin-spiral motion demonstrated that
the response of the structure to an applied current (along z) can
be described by the tilting angle ξ and drift velocity ζ̇ of the
spiral structure.22 To find an approximate solution of Eq. (16),
we therefore employ the following variational ansatz:

m(z,t) = cos[ξ (t)]m0[z − ζ (t)] + sin[ξ (t)]ẑ. (17)

Substitution of this ansatz into Eqs. (14) and (15) and
integration over the spatial coordinates yield an effective action
and dissipation functional for the variational parameters ξ (t)

and ζ (t):

S[ζ,ξ ] =
∫

dt(ζ̇ − vs)k sin ξ

+ γ

Ms

(
J

2
k2 cos2 ξ − Dk cos2 ξ

)
− γHso sin ξ,

(18)

R[ζ̇ ,ξ̇ ] =
∫

dt
α

2

[
ξ̇ 2 +

(
β

α
vsk − kζ̇

)2
]

. (19)

The equations of motion for the variational parameters are

δS[ζ,ξ ]

δζ
= −δR[ζ̇ ,ξ̇ ]

δζ̇
,

δS[ζ,ξ ]

δξ
= −δR[ζ̇ ,ξ̇ ]

δξ̇
. (20)

We are interested in the steady-state regime in which ξ

approaches a constant value. In this regime, the drift velocity
and the tilting angle are

ζ̇ = β

α
vs, (21)

sin(ξ ) = Ms

γ

1

Jk − 2D

[(
β

α
− 1

)
vs − γ

k
Hso

]
. (22)

The expression for the drift velocity ζ̇ agrees with the
expression derived in Ref. 22. The SOC torque does not affect
the drift velocity because the SOC torque effectively acts
similarly to the adiabatic torque, as can be observed from the
expression for the action S[ζ,ξ ] in Eq. (18). The adiabatic and
SOC torques initiate a spiral motion when a current is applied.
However, the motion is damped due to the intrinsic pinning
effect caused by Gilbert damping in combination with the
DM interaction. Thus, similar to what is observed for domain
walls in conventional ferromagnets, a nonadiabatic torque is
required to obtain a steady-state spiral motion. An observable
effect of the SOC torque is the modification of the tilting angle
observed in Ref. 22 by an amount of −MsHso/(Jk2 − 2Dk).

B. Doppler shift of spin waves

In ferromagnets with a homogeneous magnetization, a
Doppler shift in the spin-wave dispersion relation under the
application of a current has been observed.31 The frequency ω

of the spin wave is shifted by vs · q, where q is the wave vector
of the magnon: ω = (γ J/Ms)q2 + vs · q.

Theoretical works on Goldstone modes in helimagnets
with a spin spiral predict that these modes are much more
complicated than those in homogeneous ferromagnets.32 We
refer to these Goldstone modes as helimagnons. The dispersion
relation of the helimagnons is highly anisotropic, with a linear
wave-vector dependency parallel to the spin-spiral direction
and a quadratic dependency in the transverse direction (in the
long wavelength limit). That is, the soft modes behave like an-
tiferromagnetic magnons along the spiral, while ferromagnetic
behavior is observed for modes propagating in the transverse
plane. Thus far, no works have studied the effect of an applied
current on the dispersion relation of helimagnons.

To derive an effective action for the Goldstone modes,
we describe the local fluctuations by ξ and ζ in Eq. (17)
by allowing the parameters to be both position and time
dependent: ξ = ξ (r,t) and ζ = ζ (r,t). A similar parametriza-
tion was performed in Refs. 32 and 33 in the analysis of
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helimagnons. The parameter ζ describes a local twist (around
the z axis) of the spiral structure, while ξ describes a local
tilting along the z axis. In the analysis of the Doppler shift,
we neglect dissipation and disregard the dissipation function.
Reference 33 demonstrated that simple closed-form solutions
for the variational parameters can only be obtained for modes
propagating along the spin-spiral direction. For simplicity, we
therefore restrict our study to Goldstone modes that propagate
along the z axis. Expanding Eq. (14) to second order in ξ (z,t)
and ζ (z,t), we obtain the effective action (the current is applied
along the z axis):

S[ξ,ζ ] =
∫

dtdzkξ

(
ζ̇ + vs

∂ζ

∂z
− vs

)

+ γ J

2Ms

[(
∂ξ

∂z

)2

+ k2

(
∂ζ

∂z

)2

+ k2ξ 2

]
− γHsoξ.

(23)

The equations of motion are obtained by varying the action
with respect to ξ and ζ , i.e., δS/δζ = δS/δξ = 0, which results
in two coupled equations for the variational parameters:

ζ̇ (z,t) + vs

∂ζ (z,t)

∂z

= − γ J

kMs

(
k2 − ∂2

∂z2

)
ξ (z,t) + vs + γ

k
Hso, (24)

ξ̇ (z,t) + vs

∂ξ (z,t)

∂z
= −γ Jk

Ms

∂2ζ (z,t)

∂z2
. (25)

Let us first consider the homogenous part of the equations
and neglect the two last terms on the right-hand side in
Eq. (24). Substitution of a plane wave ansatz of the form
[ζ0 ξ0]T exp (i(qz − ωt)) into the equations yields the follow-
ing dispersion relation:

ω = γ J

Ms

q
√

k2 + q2 + vsq. (26)

We see that the STT results in a Doppler shift similar to what
is observed for spin waves in conventional ferromagnets. In
the long wavelength limit, q → 0, a linear dispersion relation
is obtained: ω = (γ J/Ms)kq + vsq. The SOC-induced torque
only appears as a source term in the nonhomogeneous equa-
tions. The particular solution (PS) of the nonhomogeneous
equations in Eqs. (24) and (25) is(

ζ (z,t)

ξ (z,t)

)
PS

=
(

[vs + (γ /k)Hso]t

0

)
. (27)

This solution describes a displacement of the spiral structure
induced by the adiabatic and SOC torques. However, this
current-driven spin-spiral motion is damped when dissipation
is considered due to the intrinsic pinning effect. Thus, the
SOC torque (together with the adiabatic torque) only causes
an initial translation of the spin spiral.

C. Skyrmion crystal dynamics

In helimagnetic thin-film systems, skyrmions have been
observed under the application of a weak external magnetic
field B perpendicular to the thin film. Each skyrmion has
a vortexlike magnetic configuration, where the magnetic
moment at the core of the vortex is antiparallel to the applied
field while the peripheral magnetic moments are parallel.
From the peripheral moments to the core, the magnetic
moments swirl up in a counterclockwise or clockwise manner.
The formed skyrmions arrange themselves in a crystalline
structure, a two-dimensional skyrmion crystal.

Recent experiments have revealed current-driven skyrmion
crystal motion at ultralow current densities.20 The motion of a
skyrmion lattice is only weakly affected by pinning, which is in
stark contrast to observations for current-induced domain wall
dynamics in conventional ferromagnets. A theoretical work
has indicated that the pinning-free motion arises because the
skyrmion lattice rotates and deforms to avoid the impurities.24

However, all analyses of current-driven skyrmion crystal
motion have disregarded the SOC torque.

Section II showed that the SOC torque acts as an effective
field along the current direction. For a current applied along
any direction in the thin film, the expected consequence of
the SOC torque is therefore that this torque leads to a small
correction to the external magnetic field that stabilizes the two-
dimensional skyrmion lattice such that the total field becomes
HT = B + Hso. The expected response of the skyrmion crystal
to this perturbation is a rotation of the two-dimensional
(2D) lattice structure that aligns the core magnetic moments
antiparallel to HT. To confirm our predictions, a more thorough
numerical simulation of the magnetic system is required,
which is beyond the scope of the present paper.

IV. SUMMARY

In this paper, we performed a theoretical study of current-
induced torques in cubic noncentrosymmetric helimagnets. We
demonstrated that due to the broken spatial inversion symme-
try, the SOC induces a reactive magnetization torque. The spe-
cific form of the SOC torque is determined by the symmetry of
the underlying crystal lattice and acts as an effective magnetic
field along the current direction in B20-type chiral magnets.

The consequences of the SOC torque are studied for
two different cases: current-induced spin-spiral motion and
the Doppler shift of helimagnons. During the current-driven
spin-spiral motion, the SOC torque yields an enhanced tilting
of the spin-spiral structure, while the velocity is not affected.
The dispersion relation of a helimagnon that propagates along
the axis of the spin spiral is not affected by the SOC torque
except to induce an initial translation of the spiral structure.
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