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Effective spin diffusion in spin-polarized equilibrium and quasiequilibrium Fermi liquids
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We calculate the effective spin diffusion coefficient of weak ferromagnet and quasiequilibrium paramagnetic
systems using Landau Fermi liquid theory. We find that the behavior of the diffusion coefficient of the
quasiequilibrium system is determined primarily by the internal magnetic field, which, in turn, depends
upon the nonequilibrium magnetization and the antisymmetric Landau parameters. We also show that this is
qualitatively similar to the diffusion coefficient of the weak ferromagnetic system. We discuss its implication for
the spin-polarized state created in cold atom systems.
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I. INTRODUCTION

Polarized nonequilibrium (PNEQ) spin systems have at-
tracted a great deal of research interest recently. These systems
can be prepared in liquid helium,1–4 spintronic materials,5,6

and atomic gases.7–10 In spintronics, the PNEQ system has
been used to study spin transport in paramagnetic metals,
semiconductors, and metal alloys.5 The PNEQ system has also
been utilized in atomic gases in order to explore the superfluid
state for varying magnetization fractions.7–10

In this paper we study theoretically the effects of the
presence of nonequilibrium magnetization on the effective spin
diffusion coefficient Deff for systems that can be characterized
as Fermi liquids or gases. The Deff of a Fermi liquid can
be measured in a spin-echo experiment. The decay rate in the
spin-echo measurements is directly proportional to the real part
of the spin diffusion coefficient, which, as we show in what
follows, depends on the nonequilibrium magnetization. More
importantly, the spin echo experiment indirectly confirms
the existence and nature of the spin collective modes in
a Fermi liquid, since both the dispersion relation of the
modes and the magnetization-dependent diffusion coefficient
are derived from the same Landau kinetic equation. Thus, if
the dependence of Deff on the nonequilibrium magnetization,
which we derive below, agrees with the measured behavior
observed in spin echo experiments, the existence of the gapless
mode in the PNEQ system, which is reported in Ref. 11, will
be confirmed.

We are going to consider paramagnetic systems in the
presence of an external magnetic field and a weak ferromag-
netic system as examples of equilibrium Fermi liquids. The
theory for spin diffusion is well known for the paramagnetic
Fermi liquids.12,13 Here, we consider a system that is created
in a PEQ state, and on top of which a nonequilibrium
magnetization �mNEQ is imposed. Thus the system we consider
is a hybrid one (PEQ + PNEQ). We show that the effect of
�mNEQ on the diffusion coefficient can be extracted theoretically
from a PEQ + PNEQ system by changing the nonequilibrium
magnetization, while keeping the external magnetic field
constant. Any deviation of the diffusion coefficient of the
polarized equilibrium state will be due to the nonequilibrium
magnetization. We propose that this should be experimentally
observable with current techniques.

The temperature dependence of the effective diffusion
coefficient Deff , in the equilibrium phases of liquid He3 and the
dilute mixtures of He3 in superfluid He4 in a small magnetic
field has been studied by Leggett and Rice.12 In their paper,12

the authors have shown that Deff is complex and the real part
as a function of temperature has a maximum separating the
hydrodynamic regime from a collisionless regime. One of
the main results of the paper was that the position and the
magnitude of the maximum of Deff are determined by the
Larmor frequency, ωL = 2B, where B is the external magnetic
field. In a follow up paper, Leggett14 went beyond the earlier
calculation of Leggett and Rice12 by deriving a result for
the nonequilibrium case. For the nonequilibrium phase, he
considered the case where the longitudinal spin relaxation
time, T1, and the transverse spin relaxation time, T2, are infinite
or at least much longer than the other relevant time scales, e.g.,
the diffusion lifetime and the time to make the measurement.
In this limit, the magnetization of the system need not be at
the equilibrium value for the external field that is applied to
the system. To account for this, Leggett introduces what he
calls the equivalent Larmor frequency ω∗

L,14 which is related
to our mNEQ. It is in this sense that we introduced the PNEQ
paramagnetic Fermi liquids in our paper11 and in the current
paper. The main difference between our papers and Leggetts14

is that we have explicitly calculated the change in the Fermi
energy of spin σ , εσ

F , and the spin wave spectrum, ω±
0
�(q), in

leading order in mNEQ, in the QEQ limit.
Here, we will see that the Deff for the QEQ paramagnetic

systems is qualitatively the same as for the weak ferromag-
netic metal. For a weak ferromagnetic metal, we derive the
Deff from the hydrodynamic equation developed by Bedell
and Blagoev.15 The motivation that was behind the current
calculation is rooted in our previous observation that the spin
collective modes of the PNEQ system are qualitatively similar
to that of the weak ferromagnetic Fermi liquids.11

II. DERIVATION OF SPIN DIFFUSION COEFFICIENT

Let us assume that we have a PEQ state that is created
due to the application of an external field �B = Bẑ, and on
top of this system let us impose a nonequilibrium state that
is created by polarized spin injection or optical pumping. In
what follows, we consider the case in which the direction
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of the polarization of the equilibrium and nonequilibrium
magnetization is the same, i.e., ẑ direction. In this case, the
magnetization �m = mz = n↑ − n↓ (where n↑ and n↓ are the
densities of up and down spins) of the system will be the sum

of the magnetization due to the �mEQ = n
↑
EQ − n

↓
EQ = γh̄

2
N(0) �B
(1+Fa

0 )

for small polarization, where γ is the gyromagnetic ratio, N (0)
is the quasiparticle density of states at the Fermi energy, and
Fa

0 is the l = 0 antisymmetric Fermi liquid parameter,16,17 and
�mNEQ = n

↑
NEQ − n

↓
NEQ where the nonequilibrium density of up

and down spins is controlled by the external source (such as the
intensity of the polarized light in spin pumping) used to created
this nonequilibrium spin population. We note that the total
magnetization �m = �mEQ + �mNEQ is an approximation valid
only for small nonequilibrium polarization. A more accurate
calculation would require a self-consistent approach taking
into account the change in the distribution function due to
the nonequilibrium polarization. We will assume that the spin
relaxation times, T1 and T2, are very long compared to the
diffusion time or the time to make the spin echo measurements.
Under these conditions the total magnetization is conserved.

Next we also show that the current �j of the hybrid system
discussed above is also equal to the currents due to the
equilibrium state �jEQ and the nonequilibrium state �jNEQ. To
prove so, we utilize the spin conservation law. Starting from
the definition of the local polarization density distribution
function, �m �p(�r,t) = �mEQ, �p(�r,t) + �mNEQ, �p(�r,t) of the hybrid
system, to derive the spin conservation law, we need to sum
the equation for the time evolution of the magnetization
distribution function,16,17 i.e.,

∂ �m �p(�r,t)
∂t

+ ∂

∂ri

[
∂ε �p
∂pi

�m �p(�r,t) + ∂ �h �p
∂pi

n �p(�r,t)
]

= − �m �p(�r,t) ××× �h �p(�r,t) (1)

over the momenta, where

�h �p(�r,t) = −γh̄

2
�B +

∑
�p′

f a
�p �p′ �m �p′(�r,t) (2)

is the effective local field, f a
�p �p′ is the quasiparticle interaction,

ε �p is the quasiparticle energy, and n �p(�r,t) = nEQ, �p(�r,t) +
nNEQ, �p(�r,t) is the quasiparticle density distribution function.
The repeated index i in Eq. (1) refers to the Cartesian
coordinates of space �r and it is to be summed. In what
follows, we set γh̄

2 = 1. After summation over the quasiparticle
momentum �p, we get

∂ �m(�r,t)
∂t

+ ∂

∂ri

�ji(�r,t) = �m(�r,t) ××× �B, (3)

where

�m(�r,t) =
∑

�p
�m �p(�r,t) (4)

and

�ji(�r,t) =
∑

�p

[
∂ε �p
∂pi

�m �p(�r,t) + ∂ �h �p
∂pi

n �p(�r,t)
]

(5)

is the spin current along î direction. Equation (3) represents
the net spin conservation law. For the details of this formalism,
we would like to refer authors to Refs. 16 and 17.

Assuming that the spin polarization is nonzero only for �p
near the Fermi surface, the current equation can also be written
as16,17

�ji(�r,t) =
∑

�p
v �pi

[ �mEQ, �p(�r,t) + �mNEQ, �p(�r,t)]
(

1 + Fa
1

3

)
,

(6)

where �v �p = ∇�pε0
�p is the equilibrium quasiparticle velocity

and Fa
1 is the l = 1 component of the antisymmetric Fermi

liquid parameter. From this equation it is clear that the total
spin current of the system is the sum of the corresponding
contributions of the equilibrium and nonequilibrium states.

In a similar fashion, we can show that in the presence of a
transverse magnetic perturbation (applied perpendicular to the
direction of the applied equilibrium magnetic field, i.e., ẑ), the
transverse current is also the sum of the transverse current due
to equilibrium and nonequilibrium states. For a transverse per-
turbation �B± = Bx î ± By ĵ , we define m±

�p (�r,t) = mx
�p ± im

y

�p
as the transverse component of �m �p(�r,t). For excitations close

to the Fermi surface, we introduce m±
�p (�r,t) = − ∂n0

�p
∂ε0

�p
ν±

�p (�r,t)
and ν �p(�r,t) is the distortion of the Fermi surface. Using these
definitions, the transverse component of the spin current is
given by

j±
i (�r,t) =

(
1 + Fa

1

3

) ∫
d3p

(2π )2
v �pi

[
−∂n0

�p
∂ε0

�p
ν±

�p (�r,t)
]

. (7)

This equation shows that if the transverse magnetization of
the two systems adds algebraically, then the transverse spin
current does, as well.

We now are in a position to rederive the spin diffusion
coefficient in order to show the nonequilibrium effects on the
diffusion. Initially, we follow Ref. 12 for the spin current
equation, which is obtained by multiplying Eq. (1) by the
Fermi velocity. The transverse component of the resulting spin
current satisfies the following equation:

∂j±
i (�r,t)
∂t

+ c2
s

∂m±(�r,t)
∂ri

= ∓iωLj±
i (�r,t) ± 2

N (0)

(
Fa

0 − Fa
1

3

)
mzj

±
i (�r,t)

−
(

1 + Fa
1

3

)
j±
i (�r,t)
τD

, (8)

where the last term represents the collision contribution to
the spin current, ωL is the Larmor precession frequency,
c2
s = 1

3 (1 + Fa
0 )(1 + Fa

1
3 )v2

F is the spin-wave velocity, vF is
the Fermi velocity, and τD is spin diffusion life time.

We would like to pause here a moment and compare
this equation with the similar equation for spin current in
the ferromagnetic system as derived in Ref. 15. The two
equations differ only on the definition of the spin-wave velocity
given by c2

s and the origin of the magnetization. In the

PEQ + PNEQ system, c2
s = 1

3 (1 + Fa
0 )(1 + Fa

1
3 )v2

F , whereas
in the ferromagnetic system it is given by c2

s = 1
3 (|1 + Fa

0 |)
(1 + Fa

1
3 )v2

F . The major difference in the magnetization is
that the magnetization of the PNEQ system is imposed and
maintained externally, whereas in the ferromagnetic system
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it is coming from the ground state of the ferromagnet. The
surprising observation is that although the ferromagnetic
and PNEQ systems are completely different the equations
of motion for the magnetization distribution function are
qualitatively the same. In what follows, we will track the effect
of this difference for the PNEQ system and the ferromagnetic
system and will point out wherever the correction is to be
made.

For a PEQ + PNEQ system in a nearly steady state
condition, the transverse component of the spin current
[see Eq. (8)] can be written as

c2
s

∂m±(�r,t)
∂ri

= ±2
(
Fa

0 − Fa
1

3

)
N (0)

mzj
±
i (�r,t)

−
(

1 + Fa
1

3

)
j±
i (�r,t)
τD

, (9)

where we have used the fact that in the quasisteady state the
spin current also precesses around the external field with the
Larmor precession frequency.12,13 Solving this equation with
the transverse component of the net spin conservation law, i.e.,

∂m±(�r,t)
∂t

± iωLm±(�r,t) + ∂j±
i (�r,t)
∂ri

= 0, (10)

we get an expression for the transverse magnetization:

∂m±(�r,t)
∂t

± iωLm±(r,t) − D±∇2m±(�r,t) = 0, (11)

where

D± = v2
F τD

(
1 + Fa

0

)
3

[
1 ± i2τD

(mEQ+mNEQ

N(0)

)( Fa
1
3 −Fa

0

1+ Fa
1
3

)]

= v2
F τD(1 + Fa

0 )

3

[
1 ± iτDωL

(
1

1+Fa
0

− 1

1+ Fa
1
3

)
± iτD

2mNEQ

N(0)

(
Fa

1
3 −Fa

0

1+ Fa
1
3

)] .

(12)

Defining λ = 1
1+Fa

0
− 1

1+ Fa
1
3

, K± = ±ωL, and ω±
1 =

± 2mNEQ(
Fa

1
3 −Fa

0 )
N(0) (which is the internal field of the

nonequilibrium system created due to the fermionic
interaction), Eq. (12) can be written as

D± = v2
F τD

(
1 + Fa

0

)
3

(
1 + iλK±τD + i

ω±
1 τD

1+ Fa
1
3

) . (13)

In the absence of nonequilibrium magnetization, the spin
diffusion coefficient reduces to

D±
EQ = v2

F τD

(
1 + Fa

0

)
3(1 + iλK±τD)

, (14)

which is identical to the results obtained by Bedell and
Meltzer.13 On the other hand, for a purely nonequilibrium
state (in the absence of the equilibrium magnetization) the
spin diffusion coefficient is given by

D±
NEQ = v2

F τD

(
1 + Fa

0

)
3

(
1 + i

ω±
1 τD

1+ Fa
1
3

) . (15)

For the ferromagnetic system, we only need to replace (1 +
Fa

0 ) by (|1 + Fa
0 |), and keep in mind that ω±

1 = ± 2mEQ(
Fa

1
3 −Fa

0 )
N(0)

is the equilibrium internal field of the ferromagnetic system. In
what follows, the real part of the D±

NEQ is what we are interested

in, and this is given by Re(D±
NEQ) = v2

F (1+Fa
0 )τD

1+(τDω±
eff )

2 , where ω±
eff =

λK± + ω±
1

1+ Fa
1
3

.

III. RESULT AND DISCUSSION

We see in Eq. (13) that the diffusion coefficient is dependent
on ωL, which represents the contribution of the equilibrium
state, and ω1, which represents the contribution of the
nonequilibrium state. As discussed above, the nonequilibrium
magnetization is rotationally invariant. So for practical pur-
poses it is desirable to retain a finite polarized equilibrium
magnetization, so that there exists in the system a fixed
quantization axis for the polarization. For such a situation, we
now discuss, in general, terms how one could experimentally
extract the effect of the nonequilibrium magnetization on the
real part of the diffusion coefficient. For simplicity, in what
follows we restrict the discussion to positive distortions of the
Fermi surface, i.e., when the distortion is describe by ν+ (the
negative distortion effects follow from the positive distortion
effects trivially).

We propose that using a traditional spin-echo experimental
setup one could first measure the Re(D+) behavior for a given
ωL at mNEQ = 0. Then for the same ωL one could measure
Re(D+) for varying mNEQ 	= 0. Any deviation in Re(D+)
would reveal the effect of the nonequilibrium magnetization
on spin diffusion. From Eq. (12), we see theoretically that there
is a nontrivial effect coming form mNEQ, and we expect this to
be borne out in experiment.

To better understand theoretically the effect of mNEQ on
spin diffusion, we can evaluate the real part of the diffusion
coefficient Re(D+) as a function of diffusion life time τD .
(For the purpose of numerical calculation, ωL is normalized
with the Fermi energy, and mNEQ is used in the form of
a polarization fraction, i.e., mNEQ/n, where n is the total
particle density). In Fig. 1, we show the behavior of Re(D+)
as a function of the diffusion lifetime, which is normalized
with respect to Fermi energy, for two different values of the
Larmor frequency, ωL = 0.1,0.05, and a fixed value of the
nonequilibrium magnetization, mNEQ = 0.1. One can see that
Re(D+) decreases for all τD with a corresponding increase
in either ωL or mNEQ. We also see that for low τD , in
agreement with the literature,12 Re(D) increases initially,
attains a maximum value, and decreases towards zero for
τD → ∞. This behavior is characteristic of a spin system
that undergoes a transition from a collision-dominated regime
(low τD) to a collision-less regime (high τD).

It is important to emphasize the significant effect a varying
mNEQ has on Re(D+). For example, for ωL = 0.05, the height
of the maxima of Re(D+) decreases by about 100% on ramping
up mNEQ from 0 to 0.1 (compare the labeled long-dashed
and short dashed curve). This is a significant change which
should be readily observable in a spin echo experiment.
The unlabeled long-dashed and short-dashed curves corre-
spond to ωL = 0.1, mNEQ = 0 and ωL = 0.1, mNEQ = 0.1,
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FIG. 1. (Color online) The real part of the diffusion coefficient
Re[D+] is shown as a function of the diffusion lifetime τD for different
values of the normalized Larmor frequency ωL/εF = 0.1,0.05 and
fixed value of mNEQ/n = 0.1. The unlabeled long-dashed and
unlabeled short-dashed curve correspond to ωL = 0.1, mNEQ = 0 and
ωL = 0.1, mNEQ = 0.1, respectively. For ωL = 0.05, increasing mNEQ

by 0.1 reduces the diffusion coefficient by 100%. The positions of
the maxima are determined by both the mNEQ and ωL. me is the bare
mass of the electron.

respectively, where we see that the change in Re(D) due to
change in mNEQ = 0.1 is almost 50%. Thus it is clear that the
effect of change in mNEQ is more drastic for smaller ωL.

The position of the maxima in Fig. 1 is determined not
only by ωL, but also by mNEQ. An increase in ωL or mNEQ

increases the total polarization of the system, and thus makes
the system more susceptible to particle collisions, as signified
by the overall shift of the maxima of Re(D+) towards lower
τD values.

Motivated by the fact that the effect of mNEQ on Re(D+)
is bigger for smaller values of ωL, we calculated Re(D+) for
ωL = 0.001, and for mNEQ = 0.01,0.05,0.1. In the limiting
case of ωL → 0+, the system can be considered to be in
a pure nonequilibrium state. The numerical calculation of
Re(D+) for such a system is shown in Fig. 2. We see that
an increase in the nonequilibrium polarization decreases the
magnitude of Re(D) significantly. The positions of the maxima
are again determined by the nonequilibrium magnetization.
We would like to note here that the nonequilibrium polar-
ization well above 10% has been obtained experimentally4,10

making it feasible to observe the effects discussed
above.
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mNEQ = 0.05

mNEQ = 0.1

FIG. 2. (Color online) The spin diffusion coefficient of a PNEQ
system when the equilibrium magnetization is very small. The
diffusion coefficient decreases with the increase in mNEQ. The position
of the maxima is determined by the internal field. me is the bare mass
of the electron. We take ωL = 0.001.

We would like to comment on the implication of the
current study in the cold atom system. From the calculations
of the spin-wave dispersion,11 the equation for the spin
current and the diffusion coefficient we have shown that the
polarized nonequilibrium system mimics the behavior of a
weak ferromagnetic system. In our formalism, the difference
is only in the origin of the magnetization and the magnitude of
the Fermi liquid parameters characterizing these systems. This
observation might be very important for cold-atom physics
because PNEQ states have been created in number of cold
atom systems.7–10,18 The observation that a paramagnetic
ground state which, when forced to have finite nonequilibrium
polarization, can mimic the behavior of a weak ferromagnet
suggests that one needs to be careful while interpreting the
experimental data.

IV. CONCLUSION

We studied the nonequilibrium magnetization dependence
of the real part of the spin diffusion coefficient of a polarized
nonequilibrium system. We predicted that this coefficient
changes significantly with the variation of the nonequilibrium
magnetization. We propose that a spin echo experiment should
be able to test our predictions. We also showed that the
polarized nonequilibrium system mimics the behavior of a
weak ferromagnetic system.

1M. Bouchiat, T. Carver, and C. Varnum, Phys. Rev. Lett. 5, 373
(1960).

2F. D. Colegrove, L. D. Schearer, and G. K. Walters, Phys. Rev. 132,
2561 (1963).

3B. Castaing and P. Nozières, J. Phys. (Paris) 40, 257 (1979).
4M. Chapellier, G. Frossati, and F. B. Rasmussen, Phys. Rev. Lett.
42, 904 (1979).

5I. Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004),
and references therein.

6A. G. Mal’shukov, C. S. Tang, C. S. Chu, and K. A. Chao, Phys.
Rev. Lett. 95, 107203 (2005).

7A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).
8W. Ketterle, Rev. Mod. Phys. 74, 1131 (2002).
9A. Cho, Science 310, 1892 (2005).

10M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle,
Science 311, 492 (2006), and references therein.

11K. S. Bedell and H. P. Dahal, Phys. Rev. Lett. 97, 047204
(2006).

174406-4

http://dx.doi.org/10.1103/PhysRevLett.5.373
http://dx.doi.org/10.1103/PhysRevLett.5.373
http://dx.doi.org/10.1103/PhysRev.132.2561
http://dx.doi.org/10.1103/PhysRev.132.2561
http://dx.doi.org/10.1051/jphys:01979004003025700
http://dx.doi.org/10.1103/PhysRevLett.42.904
http://dx.doi.org/10.1103/PhysRevLett.42.904
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/PhysRevLett.95.107203
http://dx.doi.org/10.1103/PhysRevLett.95.107203
http://dx.doi.org/10.1103/RevModPhys.73.307
http://dx.doi.org/10.1103/RevModPhys.74.1131
http://dx.doi.org/10.1126/science.310.5756.1892a
http://dx.doi.org/10.1126/science.1122318
http://dx.doi.org/10.1103/PhysRevLett.97.047204
http://dx.doi.org/10.1103/PhysRevLett.97.047204


EFFECTIVE SPIN DIFFUSION IN SPIN-POLARIZED . . . PHYSICAL REVIEW B 87, 174406 (2013)

12A. J. Leggett and M. J. Rice, Phys. Rev. Lett. 20, 586 (1968).
13K. S. Bedell and D. E. Meltzer, Phys. Rev. B 33, 4543 (1986).
14A. J. Leggett, J. Phys. C: Solid State Phys. 3, 448 (1970).
15K. S. Bedell and K. B. Blagoev, Phil. Mag. Lett. 81, 511 (2001).
16G. Baym and C. Pethick, Landau Fermi-liquid Theory (Wiley,

New York, 1991).

17G. Baym and C. Pethick, in The Physics of Liquid and Solid Helium,
Part II, edited by K. H. Benemann and J. B. Ketterson (Wiley,
New York, 1978).

18G. B. Jo, Y. R. Lee, J. H. Choi, C. A. Christensen, T. H. Him, J. H.
Thywissen, D. E. Pritchard, and W. Ketterle, Science 325, 1521
(2009).

174406-5

http://dx.doi.org/10.1103/PhysRevLett.20.586
http://dx.doi.org/10.1103/PhysRevB.33.4543
http://dx.doi.org/10.1088/0022-3719/3/2/027
http://dx.doi.org/10.1080/09500830110044573
http://dx.doi.org/10.1126/science.1177112
http://dx.doi.org/10.1126/science.1177112



