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Chiral spin-wave edge modes in dipolar magnetic thin films
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Based on a linearized Landau-Lifshitz equation, we show that two-dimensional periodic allay of ferromagnetic
particles coupled with magnetic dipole-dipole interactions supports chiral spin-wave edge modes, when subjected
under the magnetic field applied perpendicular to the plane. The mode propagates along a one-dimensional
boundary of the system in a unidirectional way and it always has a chiral dispersion within a band gap for
spin-wave volume modes. Contrary to the well-known Damon-Eshbach surface mode, the sense of the rotation
depends not only on the direction of the field but also on the strength of the field; its chiral direction is generally
determined by the sum of the so-called Chern integers defined for spin-wave volume modes below the band
gap. Using simple tight-binding descriptions, we explain how the magnetic dipolar interaction endows spin-wave
volume modes with nonzero Chern integers and how their values will be changed by the field.
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I. INTRODUCTION

Spin waves are collective propagations of precessional
motions of magnetic moments in magnetic materials. Magnon-
ics research investigates how the spin wave propagates in
the submicrometer length scale and subnanosecond time
scale.1–6 Particularly, the propagation of spin waves in period-
ically nanostructured magnetic materials dubbed as magnonic
crystals7–10 are one of its central interests. Owing to the peri-
odic structurings, the spin-wave spectrum in magnonic crystal
acquires allowed frequency bands of spin-wave modes and
forbidden-frequency bands dubbed as magnonic band gap.7

Similar to other solid-state engineering such as electronics,
photonics, and plasmonics, the main application direction is
to explore the ability of spin waves to carry and process
information. Compared to others, magnonics has a much better
prospect for miniaturization of the device because the velocity
of a spin wave is typically several orders slower than those of
light and electrons in solids.

Recently, the authors proposed a spin-wave analog of the
integer quantum Hall (IQH) state,11 which has unidirectional
edge modes for spin-wave propagation. The IQH state is a
two-dimensional electron system with broken time-reversal
symmetry, which supports unidirectional electric conducting
channels along the boundaries (edges) of the system.12 The
number of the unidirectional (chiral) edge modes is determined
by a certain kind of topological number defined for bulk
electron states, called the first Chern integer.13–15 Based on
a linearized Landau-Lifshitz equation, we have generalized
the Chern integer well established in quantum Hall physics
into the context of spin-wave physics, to argue that a nonzero
Chern integer for spin-wave volume-mode bands results in an
emergence of chiral spin-wave edge modes.11

The proposed edge mode has a chiral dispersion with a band
gap for volume-mode bands, which supports a unidirectional
propagation of spin degree of freedom for a frequency within
the gap. The sense of rotation and the number of the chiral
mode is determined by the topological number for volume-
mode bands below the gap, which itself can be changed by
closing the band gap. These features allow us control the chiral

edge modes in terms of band-gap manipulation, which could
realize novel spintronic devices such as spin current splitters
and spin-wave logic gates.11 To have these devices in real
experimental systems, however, it is quite important to have
a number of actual magnonic crystals, in which spin-wave
volume mode bands take various nonzero Chern integers.

From its electron analog,16,17 it is expected that finite Chern
integers for spin-wave volume-mode bands result from strong
spin-orbit-coupled interactions, such as magnetic dipole-
dipole interaction. Namely, having an inner product between
spin operator and coordinate operator, the magnetic dipolar
interaction locks the relative rotational angle between the spin
space and orbital space, just in the same way as the relativistic
spin-orbit interaction does in electron systems.16,17 As a result
of the spin-orbit locking, the complex-valued character in the
spin space (i.e., one of the three Pauli matrices) is transferred
into wave functions in the orbital space. Specifically, in the
presence of finite out-of-plane ferromagnetic moments in the
spin space, the symmetry argument allows the Chern integer
for volume-mode bands to have nonzero integer value. In the
recent work, employing a standard plane-wave theory, we have
shown that a two-dimensional (x-y) bi-component magnonic
crystal under an out-of-plane field (along the z direction)
acquires spin-wave volume-mode bands with nonzero Chern
integers, when magnetic dipolar interaction dominates over
short-ranged isotropic exchange interaction. From the state-
of-art nanotechnology, however, it is not easy to synthesize
the proposed bicomponent magnonic crystal experimentally.
Moreover, the proposed model is not simple enough to see how
magnetic dipolar interaction leads to nonzero Chern integers
for spin-wave volume-mode bands.

In the present paper, we introduce much simpler thin-
film magnetic models, which also support spin-wave volume
modes with nonzero Chern integers and chiral spin-wave edge
modes, under the field normal to the two-dimensional plane.
Based on the models, we show that the chiral edge modes
have frequency-wavelength dispersions within a band gap
for spin-wave volume modes, and their chiral directions are
determined by a sign of the Chern integer for a spin-wave
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FIG. 1. (Color online) Periodic array of ferromagnetic islands
(gray circles) (a) decorated square-lattice model. (b) decorated
honeycomb-lattice model. Each gray point stands for a ferromagnetic
island (volume element is �V ), which we assume to behave as a single
big spin whose moment is fully saturated (Ms). The spins are coupled
via magnetic dipole-dipole interaction. We took |ex | = |ey | = 2.4,
2r = 1.2, �V = 1.70, and Ms = 1.0 for the square-lattice case, while
|e1| = |e2| = |e3| = 2.4, 2r = 1.2, �V = 1.0, and Ms = 1.0 for the
honeycomb-lattice case. The primitive translational vectors aμ (μ =
x,y) are defined as ax = ex and ay = ey for the square-lattice model
and as ax = e3 − e2 and ay = e1 − e2 for the honeycomb-lattice case
(see text).

volume mode below the gap. Using a simple tight-binding
model composed of atomic orbitals, we further argue that the
level inversion between the parity-odd atomic orbital (such as
p-wave orbital) and parity-even atomic orbital (such as s-wave
orbital) leads to a band inversion, which endows spin-wave
volume-mode bands with nonzero Chern integers. We expect
that these findings would give useful prototype models for
future designing of more realistic magnonic crystals, which
support topological chiral spin-wave edge modes.

The organization of the paper is as follows. In the next
two sections, we introduce the models studied in this paper
(Sec. II and Fig. 1), formulate our problem and summarize a
calculation procedure of spin-wave band dispersions and the
topological Chern integers (Sec. III). In Sec. IV, we show how
chiral spin-wave edge modes appear and how they change
their directions on increasing the field. The results show
that the sense of the rotation of chiral edge mode is indeed
determined by the sign of the Chern integer defined for the
spin-wave volume mode. In Sec. V, we introduce a tight-
binding description of linearized Landau-Lifshitz equations
in the context of the present models. In Sec. V A, we first
clarify spin-wave excitations within a unit cell in terms of a
total angular momentum variable. Based on the atomic orbitals
thus obtained, we construct a tight-binding model for a square-
lattice model (Sec. V B) and for a honeycomb-lattice model
(Sec. V C). Using this tight-binding model, we explain how

a level inversion between different atomic-orbital levels leads
to an inverted spin-wave band with nonzero Chern integers
and how the signs of the Chern integers are changed as a
function of the field. To see how the proposed chiral spin-wave
edge modes could be seen in experiments, we simulate the
Landau-Lifshitz-Gilbert equation for the square-lattice model
near the saturation field (Sec. VI). Section VII is devoted to
a summary and future open issues, in which we also discuss
the effects of disorders associated with lattice periodicity and
shape of the boundaries.

II. MODEL

In this paper, we consider two-dimensional periodic arrays
of ferromagnetic islands. We assume that each ferromag-
netic island behaves as a single spin and ferromagnetic
islands are coupled via magnetic dipolar interaction. In
fact, two-dimensional periodic lattice structures composed of
submicrometer-scale ferromagnetic islands have been fabri-
cated experimentally, in which they confirm that each island
behaves as a giant single spin under some circumstances.18,19

To have volume-mode bands with finite Chern integers, we
generally need multiple-band degrees of freedom within a unit
cell of magnonic crystal. To this end, we consider two models;
the decorated square-lattice model and the honeycomb-lattice
model (see Fig. 1). A basic building block of both models is
a cluster of ferromagnetic islands. For the decorated square
lattice model, four ferromagnetic islands form a circle-shape
cluster, which encompasses a site of the square lattice. For the
decorated honeycomb-lattice model, three neighboring islands
form a circle, which encompasses either an A-sublattice site
or a B-sublattice site of the honeycomb lattice.

Experimentally speaking, it is also quite likely that a
submicrometer-scale ferromagnetic island has a number of
low-energy excitation modes having different spin textures
within the island. Such modes can be also regarded as
multiple-band degrees of freedom, so that a system with
only one ferromagnetic island within a unit cell of magnonic
crystal19 could also have a chance to provide volume mode
bands with finite Chern integers and associated chiral edge
modes. We expect that the theoretical results obtained in the
present model study would also provide useful starting points
for further studies on such systems.20

III. FORMULATION

For the models introduced above, we first determine a
classical spin configuration, which minimizes the following
magnetostatic energy:

E = −1

2
(�V )2

i �=j∑
i,j

Ma(r i)fab(r i − rj )Mb(rj )

+ H�V
∑

i

Mz(rj ), (1)

where r i specifies a spatial location of a ferromagnetic island
(classical spin). For simplicity, the norm of each spin is
fixed; |M(rj )| = Ms . The magnetic dipole-dipole interaction
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is given by a 3 × 3 matrix,

fab(r) = 1

4π

(
δa,b

|r|3 − 3rarb

|r|5
)

(2)

with a,b = x,y,z. The summation over i,j in Eq. (1) are taken
over all ferromagnetic islands, while the summations over
a,b = x,y,z were omitted. A corresponding Landau-Lifshitz
equation reads

∂tMa(r i)

= εabc

[
Hδb,z − �V

∑
j �=i

fbd (r i − rj )Md (rj )

]
Mc(r i).

(3)

�V is a volume element for each ferromagnetic island. From
dimensional analysis, one can see that a saturation field and
resonance frequency of spin-wave excitations are scaled by
Ms�V/l3, where l is a characteristic length scale for the
periodic structuring within the two-dimensional plane, e.g.,
radius (r) of the circle-shape M-spin cluster. In the following,
we take this value to be around 1; Ms = 1, �V = 1.0, 2r = 1.2
for the square-lattice case and Ms = 1, �V = 1.7, 2r = 1.2
for the honeycomb-lattice case.

A. Classical spin configuration

1. Square-lattice model

For the decorated square-lattice case, we found that every
four spins within a circle-shape cluster form a same vortex,

M0
[
r = r

(
cθj

,sθj

)] = Ms

( − sϕsθj
,sϕcθj

,cϕ

)
, (4)

with θj ≡ 2πj

4 (j = 1, . . . ,4) and (sθ ,cθ ) ≡ (sin θ, cos θ ), such
that the classical spin configuration M0(r) respects the transla-
tional symmetries of the square lattice, M0(r + aμ) = M0(r)
(see Fig. 2). A finite out-of-plane component (ϕ �= π

2 ) is
induced by the field. Above the saturation field (H > Hc =
1.71), all the spins become fully polarized along the field
(ϕ = π ).

FIG. 2. (Color online) Top view of classical spin configurations
for the decorated square-lattice model. The field is lower than the
saturation field, so that spins have finite in-plane components, forming
a vortex structure.

2. Honeycomb-lattice model

For the decorated honeycomb-lattice case, the classical spin
configuration below a saturation field (H < Hc = 0.57) breaks
the translational symmetries of the lattice, while that above
the field is a fully polarized state respecting the translational
symmetries of the honeycomb lattice. For simplicity, we only
consider spin-wave excitations above the saturation field for
the decorated honeycomb-lattice case.

B. Linearized Landau-Lifshitz equation

Starting from the classical spin configurations thus ob-
tained, M0(r), the Landau-Lifshitz equation is linearized with
respect to a small transverse fluctuation field m⊥(r), with
M(r) ≡ M0(r) + m⊥(r) and m⊥ ⊥ M0. In terms of a rotated
frame with a 3 × 3 rotational matrix R(r), with which M0(r)
is always pointing along the z direction, R(r)M0(r) ≡ Msez

and R(r)m⊥(r) ≡ m(r), the linearized equation of motion for
the transverse moments takes the form

−∂tmμ(r i) = εμνα(r i)mν(r i)

+Ms�V εμν

∑
j �=i

fνλ(r i ,rj )mλ(rj ), (5)

where m ≡ (mx,my,0) and the summation over the repeated
indices μ,ν,λ are taken only over x,y with εxy = −εyx = 1.
The first term in the right-hand side includes a demagnetization
field and the external field

α(r i)M0(r i) = −�V
∑
j �=i

f (r i − rj )M0(rj ) + H ez,

where, provided that M0(rj ) gives a local minimum for the
magnetostatic energy Eq. (1), the equality always holds true for
a certain scalar function α(r i). The dipole-dipole interaction
in the second term of Eq. (5) is given in the rotated frame

f (r i ,rj ) ≡ R(r i) f (r i − rj )Rt (rj ).

In terms of m± ≡ mx ± imy , which are magnon cre-
ation/annihilation fields, respectively, the equation of motion
reduces to a following form:

−i∂tσ 3

(
m+(r i)

m−(r i)

)

= α(r i)Ms

(
m+(r i)

m−(r i)

)
+ Ms�V

×
∑
j �=i

(
f++(r i ,rj ) f+−(r i ,rj )

f−+(r i ,rj ) f−−(r i ,rj )

) (
m+(rj )

m−(rj )

)
, (6)

where a 2 × 2 diagonal Pauli matrix σ 3 takes +1 for the
creation field (particle space), while taking −1 for the
annihilation field (hole space). A Green’s function fαβ (r,r ′)
(α,β = ±) in the second term takes a form of a certain Hermite
matrix in the particle-hole space,(

f++(r,r ′) f+−(r,r ′)
f−+(r,r ′) f−−(r,r ′)

)

= 1

2

(
1 i

1 −i

) (
fxx(r,r ′) fxy(r,r ′)
fyx(r,r ′) fyy(r,r ′)

) (
1 1
−i i

)
,

174402-3



SHINDOU, OHE, MATSUMOTO, MURAKAMI, AND SAITOH PHYSICAL REVIEW B 87, 174402 (2013)

with f ∗
αβ(r,r ′) = fβα(r ′,r). Accordingly, the problem reduces

to solving the following generalized eigenvalue problem:

∑
j

(H)r i ,rj

(
m+(rj )

m−(rj )

)
= σ 3

(
m+(r i)

m−(r i)

)
E (7)

with a Hermite matrix H ,

(H)r i ,rj
= −Msα(r i)δr i ,rj

(
1

1

)
− Ms�V

(
1 − δr i ,rj

)

×
(

f++(r i ,rj ) f+−(r i ,rj )

f−+(r i ,rj ) f−−(r i ,rj )

)
. (8)

The sum of j is taken over all spins in the systems. Using
the Cholesky decomposition,21 the Hermite matrix can be
diagonalized by a paraunitary transformation matrix T

HT = σ 3T E (9)

with a proper normalization condition T †σ 3T = σ 3 and a
diagonal matrix E.

Now that the saddle-point solution respects the transla-
tional symmetries, M0(r + aμ) = M0(r), so does the Green’s
function and the demagnetization coefficient, f (r + aμ,r ′) =
f (r,r ′ − aμ) and α(r + aμ) = α(r) with the primitive trans-
lational vectors aμ (μ = x,y). Moreover, the classical spin
configuration Eq. (4) is invariant under the simultaneous C4

rotations in the spin space and the lattice space (around z axis),
so that the demagnetization coefficient within a unit cell has
no spatial dependence, α(rj ) = α. This also holds true for the
honeycomb-lattice case considered.

With the Born-von Karman boundary condition, the eigen-
value problem reduces to a diagonalization of following
Bogoliubov-de Gennes (BdG) type Hamiltonian for every
crystal momentum k = (kx,ky):

i∂tσ 3

(
u+,k(r i)

u−,−k(r i)

)
=

MU∑
j=1

(H k)r i ,rj

(
u+,k(rj )

u−,−k(rj )

)

with

(H k)r i ,rj
≡ −Msαδr i ,rj

−Ms�V

(
fk,++(r i ,rj ) fk,+−(r i ,rj )

fk,−+(r i ,rj ) fk,−−(r i ,rj )

)
, (10)

and

fk,αβ (r,r ′) ≡ e−ik(r−r ′)
∑

b

(1 − δr,r ′−b)fαβ(r,r ′ − b)e−ikb,

and

m±(r + aμ) ≡
∑

k

e±ikaμu±,k(r).

The summation with respect to j (or rj ) in the right-hand side
is taken over a unit cell. For decorated square and honeycomb
lattice, MU = 4 and 6 respectively. The summation over the
translation vectors b are taken over sufficiently many unit
cells in actual numerical calculations, b = nax + may with
−50 � n,m � 50. In terms of the Cholesky decomposition,
the 2MU × 2MU BdG Hamiltonian is diagonalized

H k|ψj 〉 = σ 3|ψj 〉Ej,k (11)

with the normalization condition, 〈ψj |σ 3|ψj 〉 = (−1)σj ,
where σj = 0 for particle bands, j = 1, . . . ,MU , and σj = 1
for hole bands j = MU + 1, . . . ,2MU . Provided that the
spin-wave Hamiltonian is derived from an energy minimum
of the magnetostatic energy Eq. (1), it is guaranteed that
eigenvalues for particle bands (j = 1, . . . ,M) are positive
definite Ej,k > 0 for any k, while those for the hole bands(j =
MU + 1, . . . ,2MU ) are all negative, Ej,k < 0 for any k. In fact,
this is true for all the cases studied in this paper.

The eigenvalues in the particle bands, Ej,k (j =
1, . . . ,MU ), determine wavelength-frequency dispersion re-
lations for all the spin-wave volume-mode bands. An eigen-
vector, |ψj 〉, is a Bloch wave function for the corresponding
spin-wave volume-mode band. In terms of the Bloch wave
function, we have calculated the first Chern integer defined for
each spin-wave band as,11

Chj ≡ i(−1)σj εμν

∫
BZ

d2k
〈
∂kμ

ψj

∣∣σ 3

∣∣∂kν
ψj

〉

= i

m�=j∑
m=1,...,2MU

∫
BZ

d2k
(−1)σj (−1)σm

(Ej,k − Em,k)2

×
{
〈ψj |∂ H k

∂kx

|ψm〉〈ψm|∂ H k

∂ky

|ψj 〉 − (x ↔ y)

}
. (12)

Contrary to the Chern integer defined for an electron’s wave
function,13 Eq. (12) contains the diagonal Pauli matrix σ 3

between bra state and ket state, which takes +1 in the
particle space while −1 in the hole space. This additional
structure comes from the fact that magnon obeys the boson
statistics,11 which enforces the respective BdG Hamiltonian
such as Eqs. (8) and (10) to be diagonalized in terms of a
paraunitary matrix instead of a unitary matrix. Due to this
paraunitary character in the particle-hole space, we can also
argue that the sum of the magnonic Chern integer over all
particle bands always reduce to zero,

∑MU

j=1 Chj = 0, which
leads to the absence of gapless topological chiral spin-wave
edge mode.11

In the next section, we have calculated spin-wave excita-
tions with the open boundary condition along one direction
(y direction) while the periodic boundary condition along
the other (x direction); the frequency-wavelength dispersions
for the spin-wave edge modes are obtained as a function of
(surface) momentum along the x direction, kx . The dispersions
thus obtained allow us to see the propagation direction of the
chiral spin-wave edge mode. With changing the strength of the
field, we have calculated spin-wave band dispersions for both
volume modes and edge modes and the Chern integer for all
the volume modes.

IV. RESULTS

A. Square-lattice model

Results for the square-lattice model are summarized in
Figs. 3, 4, and 5. Without the field, the system has no
magnetization perpendicular to the plane, so that the spin-
wave Hamiltonian respects both time-reversal symmetry,
H−k = H∗

k, and mirror symmetries, e.g., H (kx ,ky ) = H (kx ,−ky ).
The Chern integer for all the four bands are required to be zero
by these symmetries [Fig. 3(a)], and no chiral spin-wave edge
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FIG. 3. (Color online) (a)–(d) Side view of wavelength-frequency
dispersions of four spin-wave volume-mode bands in the square
lattice model under fields (H ) normal to the two-dimensional plane;
(a) H = 0.0, (b) H = 0.47Hc, (c) H = 0.76Hc (d) H = 0.82Hc,
(e) H = 1.01Hc, (f) H = 1.1Hc, (g) H = 1.4Hc, and (h) H =
2.35Hc where Hc = 1.71. The Chern integer for red/blue-colored
spin-wave bands is −1/ + 1, while 0 otherwise.

modes are observed [Fig. 4(a)]. With the field along the z

direction, these symmetries are gone.
On increasing the field, there appears a sequence of band

touchings between the lowest spin-wave band and the second
lowest one at the � point (H = 0.24Hc) and two inequivalent
X points (H = 0.67Hc). As a result of these band touchings,
the Chern integers for the lowest band and the second lowest
one become +1 and −1, respectively for 0.24 < H/Hc <

0.67 [Fig. 3(b)], −1 and +1 respectively for 0.67 < H/Hc

[Figs. 3(c) and 3(d)]. Correspondingly, there appears a chiral
spin-wave edge mode propagating in the clockwise direction
for 0.24 < H/Hc < 0.67, whose dispersion runs across a
band gap between these two spin-wave volume-mode bands
[Figs. 4(b) and 4(b-1)]. When the band gap closes and reopens
at H/Hc = 0.67, the chiral spin-wave edge mode changes
its direction from clockwise to anticlockwise [Figs. 4(c)
and 4(c-2)]. The anticlockwise edge mode remains for a
relatively larger range of the field strength, 0.67 < H/Hc <

1.4 [Figs. 4(d), 5(a), 5(b), 5(a-1), and 5(b-1)] .
There is also another sequence of band touchings between

the third lowest spin-wave band and the highest one. They
appear at H = 0.71Hc (M point), H = 0.79Hc (two inequiv-
alent X points) and H = 0.85Hc (� point). Correspondingly,
the first Chern integers for the third lowest band and the

(b)
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(d)
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FIG. 4. (Color online) (a)–(d) Wavelength-frequency dispersions
calculated with open boundary condition along one direction (y
direction) and periodic boundary condition along the other (decorated
square-lattice model); (a) H = 0.0; (b), (b-1) H = 0.47Hc; (c), (c-1),
(c-2) H = 0.76Hc; (d), (d-1) H = 0.82Hc with Hc = 1.71. The
system along the y direction includes 40 unit cells (L = 40). More
than 80% of wave functions for red-colored points are localized from
y = L − 3 to y = L, while those for blue-colored points are localized
from y = 1 to y = 4. Compared with Figs. 3(a)–3(d), spectra are
comprised also of edge-mode bands, whose chiral dispersions runs
across band gaps for spin wave volume modes.

highest band become −1 and +1 for 0.71 < H/Hc < 0.79
[Fig. 3(c)], +1 and −1 for 0.79 < H/Hc < 0.85 [Fig. 3(d)],
while 0 otherwise. They lead to a chiral spin-wave edge
mode with anticlockwise propagation [0.71 < H/Hc < 0.79,
Figs. 4(c) and 4(c-1)] and that with clockwise propagation
[0.79 < H/Hc < 0.85, Figs. 4(d) and 4(d-1)] between these
two volume-mode bands.

In the limit of strong field, the system becomes effectively
time-reversal symmetric, H∗

k = H−k (consult also a perturba-
tion analysis presented in Sec. IV C), where the Chern integers
for all the four spin-wave volume-mode bands reduce to zero
and the system does not support any chiral spin-wave edge
mode which crosses band gaps for spin-wave volume-mode
bands. Yet there still exist spin wave edge modes, which have
parabolic dispersions at their lowest (or highest) frequency
levels and thus consist of both right-moving modes and
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FIG. 5. (Color online) (a)–(d) Wavelength-frequency dispersions
calculated with open boundary condition along one direction (y
direction) and periodic boundary condition along the other (decorated
square-lattice model). (a), (a-1) H = 1.01Hc; (b), (b-1) H = 1.1Hc;
(c), (c-1) H = 1.4Hc; (d), (d-1) H = 2.35Hc with Hc = 1.71.

left-moving modes on a same side of the boundary [Figs. 5(d)
and 5(d-1)].

B. Honeycomb-lattice model

Results for the decorated honeycomb lattice are shown in
Fig. 5. Above the saturation field H � Hc = 0.57, the lowest
spin-wave volume-mode band and the second lowest one are
always separated by a finite band gap. The Chern integers for
these two bands are quantized to −1 and +1 respectively for
H � Hc = 0.57, and a chiral spin-wave edge mode with the
anticlockwise propagation cross the band gap between these
two [Figs. 6(a) and 6(a-1)]. On increasing the field, the band
gap becomes smaller but always remains finite [Figs. 6(b)
and 6(b-1)]. Only in the strong field limit, the gap closes and
the lowest two bands form two massless Dirac-cone spectra
at two inequivalent K points, k = K and K ′ with K · e1 =
−K · e2 = −K ′ · e3 = K ′ · e1 = 2π

3 and K · e3 = K ′ · e2 =
0, where the Chern integers for these two bands reduce to
zero (see also Sec. IV C). In other words, the band gap and the
chiral spin-wave edge mode which crosses over the gap persist
even in the presence of large (but finite) field for the decorated
honeycomb-lattice model.

(a)

(b)

(a-1)

(b-1)

ω

-1
+1

-1

+1

0.4

0.1

1.8

1.6

0.2

0.1

0.3

K K’ΓK  K’

kx

1.60

1.64

FIG. 6. (Color online) (a)–(b) Wavelength-frequency dispersions
calculated with open boundary condition along one direction (y
direction) with the zigzag boundary (decorated honeycomb-lattice
model). The system along the y direction includes 30 unit cells
(L = 30). Wave functions for red-colored points are localized from
y = L − 2 to y = L (>80%), while those for blue-colored points
are localized from y = 1 to y = 3. (a), (a-1) H = 1.05Hc; (b), (b-1)
H = 3.5Hc, where Hc = 0.57.

V. TIGHT-BINDING DESCRIPTIONS

Although we are dealing with a classical spin problem, the
calculation procedure so far is totally in parallel with what
the standard Holstein-Primakoff approximation22–24 does in
localized quantum spin models based on large S expansion
(where S denotes the size of a localized quantum spin).
Finding a classical spin configuration of a given localized spin
model (on the order of S2; treating spin as a classical spin)
corresponds to the minimization of the magnetostatic energy,
Eq. (1) (Sec. III A). Reducing a spin model Hamiltonian into a
quadratic form in terms of Holstein-Primakoff boson field (on
the order of S) corresponds to linearizing the Landau-Lifshitz
equation, Eq. (3), around the classical spin configuration (see
Sec. III B). In fact, we diagonalized a quadratic form of the
spin-wave Hamiltonian, Eq. (8), to obtain frequency levels of
spin-wave modes (Sec. IV). A tight-binding (TB) description
introduced in this section is one approximate way of doing this
diagonalization, which in fact gives useful physical pictures for
results obtained in the previous section.

To construct a TB description for Eqs. (6) and (7), let us first
decompose the Hamiltonian defined by Eq. (8) into a diagonal
part and off-diagonal part with respect to the M-spin cluster
index

(H)r i ,rj
= (H0)r i ,rj

+ (H1)r i ,rj
,

with

(H0)r i ,rj
= −Msαδr i ,rj

(
1

1

)
− Ms�V δ[r i ],[rj ]ηr i ,rj

×
(

f++(r i ,rj ) f+−(r i ,rj )

f−+(r i ,rj ) f−−(r i ,rj )

)
, (13)

(H1)r i ,rj
= −Ms�V η[r i ],[rj ]

(
f++(r i ,rj ) f+−(r i ,rj )

f−+(r i ,rj ) f−−(r i ,rj )

)
,

(14)
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M=4  M=3 M=6

FIG. 7. A single M-spin cluster for M = 4,3,6. M spins (gray
circle) align along a circle (radius r), taking an equal distance between
their nearest-neighbor spins. Each spin has a saturation magnetization
(Ms) and a finite volume element (�V ).

where η[r i ],[rj ] = 1 − δ[r i ],[rj ] and [r i] specifies an M-spin
cluster in which the spin site r i is included; the four-spin
cluster for the decorated square-lattice case (M = 4) and the
three-spin clusters for the honeycomb-lattice case (M = 3);
see Fig. 7.

Suppose that H0 is diagonalized in terms of appropriate
atomic orbitals localized at each M-spin cluster

H0T 0 = σ 3T 0σ 3 H̃0.

H̃0 is a diagonal matrix, whose elements correspond to
respective atomic-orbital levels; the column of T 0 are specified
by atomic-orbital index (j,m), cluster index (n,n′), and
particle-hole index (μ,ν). The orthonormal condition for the
new basis is given as T †

0σ 3T 0 = σ 3. In terms of the basis, the
original eigenvalue problem, Eq. (11), reduces to

(H̃0 + H̃1)S = σ 3 SE, (15)

with T ≡ T 0 S. The row of S and the row and the column of
H̃1 are specified by atomic orbital (j ,m), cluster (n,n′) and
particle-hole (μ,ν) indices

(H̃1)(j,n,μ|m,n′,ν) ≡ (T †
0 H1T 0)(j,n,μ|m,n′,ν), (16)

(H̃0)(j,n,μ|m,n′,ν) ≡ δj,mδn,n′δμ,νE0,j , (17)

where atomic-orbital levels E0,j being positive definite, E0,j >

0. By its construction, H̃1 has a finite matrix element only
between atomic orbitals localized at different clusters, which
thus stands for interorbital or intraorbital hopping terms
between clusters. In terms of the creation/annihilation fields
for the j th atomic orbital localized at the nth cluster, γ †

j,n/γj,n,
Eq. (15) takes the form,

E0,j γj,n +
∑
m

∑
n′

(t (+,+)
(j,n|m,n′)γm,n′ + t (+,−)

(j,n|m,n′)γ
†
m,n′ ) = γj,nE

(18)

E0,j γ
†
j,n +

∑
m

∑
n′

(t (−,+)
(j,n|m,n′)γm,n′ + t (−,−)

(j,n|m,n′)γ
†
m,n′ ) = −γ

†
j,nE,

(19)

with

t (μ,ν)
(j,n|m,n′) ≡ (T †

0 H1T 0)(j,n,μ|m,n′,ν). (20)

A. Atomic orbitals

To gain a useful insight on how atomic-orbital levels for
H0 behave as a function of the out-of-plane field, let us first

calculate eigenmodes for a single M-spin cluster formed by M

spins; M spins align along a circle such that any neighboring
two spins are separated by a same distance (Fig. 7). As an
energy minimum of the magnetostatic energy, the M spins
form a vortex structure with a finite out-of-plane component,

M
[
rj = r

(
cθj

,sθj

)] = (− sϕsθj
,sϕcθj

,cϕ

)
(21)

with θj = 2πj

M
(j = 1, . . . ,M) and (sθ ,cθ ) ≡ (sin θ, cos θ ).

The saturation field is given as Hc/Ms ≡ 6A0(0) − 2A1(0)
with

A0(0) ≡ �V

64πr3

M−1∑
j=1

1

s3
θj

2

, A1(0) ≡ �V

64πr3

M−1∑
j=1

1

s θj

2

.

�V denotes a volume element of each ferromagnetic is-
land (spin) and r is a radius of the circle. For H < Hc,
ϕ ≡ Cos−1[−H/Hc] and α = −4A0(0) + 2A1(0), while ϕ =
π and α = −H/Ms + 2A0(0) for H > Hc. Armed with
these values, excitation modes are obtained by diagonalizing
Eq. (13) with rj = r(cθj

,sθj
) and θj ≡ 2πj

M
(j = 1, . . . ,M).

With a proper choice of the U (1) gauge for m±

R(rj ) =
⎛
⎝1

cϕ sϕ

−sϕ cϕ

⎞
⎠

⎛
⎝−cθj

−sθj

sθj
−cθj

1

⎞
⎠ ,

Eq. (13) can be readily diagonalized in terms of the total
angular momentum nJ

HnJ

(
m+(nJ )

m−(−nJ )

)
= σ 3

(
m+(nJ )

m−(−nJ )

)
E,

with

m±(nJ ) ≡ 1√
M

M∑
j=1

ei
2πnJ

M
jm±(θj ), (22)

where nJ is defined modulo M (nJ = 0,1, . . . ,M − 1). HnJ

takes the form of

HnJ
≡ −Msασ 0 − Ms

(
g++(nJ ) g+−(nJ )

g−+(nJ ) g−−(nJ )

)
,

with(
g++(nJ ) g+−(nJ )
g−+(nJ ) g−−(nJ )

)
= −2iB0(nJ )cϕσ 3 + {

A0(nJ )
(−2 + 3c2

ϕ

) − A1(nJ )

× (
1 + c2

ϕ

)}
σ 0 − {

3A0(nJ )c2
ϕ + A1(nJ )

(
1 − c2

ϕ

)}
σ 1,

and

A0(nJ ) ≡ �V

64πr3

M−1∑
j=1

eiqJ j 1

s3
θj

2

,

A1(nJ ) ≡ �V

64πr3

M−1∑
j=1

eiqJ j 1

s θj

2

,

B0(nJ ) ≡ i�V

64πr3

M−1∑
j=1

eiqJ j
c θj

2

s2
θj

2

,
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ω
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FIG. 8. (Color online) (a) Atomic-orbital levels as a function
of the field in a single four-spin cluster case. Equation (13) is
diagonalized, where the demagnetization field for each site (α) comes
from the spins in the same cluster. The saturation field at which nJ = 0
becomes zero is around Hc = 1.26. The level inversion between
nJ = 1 and nJ = 0 is around H/Hc = 0.80, while that between
nJ = 3 and nJ = 2 is around H/Hc = 0.83. (a-1) Atomic-orbital
levels as a function of the field calculated from Eq. (13) in the
decorated square lattice model. Equation (13) is diagonalized, where
the demagnetization field for each site includes not only those from
the spins in the same cluster but also those from spins in the other
cluster. The saturation field is around Hc = 1.71, where the level of
nJ = 0 goes below the others. (b) Atomic-orbital levels as a function
of the field (single three-spin cluster case) with Hc = 0.32.

with qJ ≡ 2πnJ

M
. Eigenfrequency with angular momentum nJ

takes the following form in the particle space:

εnJ
= MsλnJ

− 2cϕMsB0(nJ ) (23)

with

λnJ
≡

√
[−α + 2A0(nJ ) + 2A1(nJ )]

×
√[ − α + 2A0(nJ ) − 6A0(nJ )c2

ϕ + 2A1(nJ )c2
ϕ

]
.

Figures 8(a) and 8(b) show how the spin-wave excitations
for a single cluster with M = 4 and M = 3, Eq. (23), behave
as a function of the field respectively. In either case, doubly
degenerate modes at the zero field, nJ = 1 and nJ = M − 1
(p∓-wave orbital respectively in the square-lattice case; see
Fig. 11), are split on increasing the field, while that with nJ = 0
(s-wave orbital) decreases its resonance frequency, to reach
zero at the saturation field H = Hc. Above the field, the s-wave

atomic-orbital level increases again, to form a quasidegeneracy
with the atomic-orbital level of nJ = M − 2 in the large field
limit

εnJ =0 = εnJ =M−2 + O(1/H ). (24)

The atomic-orbital levels shown in Figs. 8(a) and 8(b)
are those for a single four- (three-)spin cluster, where the
demagnetization field stems only from those spins in the same
cluster. Even when demagnetization fields from surrounding
clusters are included, which is the case with Eq. (13), the field
dependence of the atomic-orbital levels behaves qualitatively
in the same way as in Figs. 8(a) and 8(b). Namely, the decorated
square-lattice model and honeycomb-lattice model respects
the same fourfold (threefold) rotational symmetry as in the
single four- (three-)spin cluster, so that only a value of the
saturation field and specific expression for demagnetization
field will be modified, e.g., compare Fig. 8(a) with Fig. 8(a-1).

From Figs. 8(a) and 8(a-1), notice that there appear a couple
of level inversions between different atomic orbitals, such as
the one between nJ = 0 and nJ = 1 around H = 0.80Hc, and
the one between nJ = 2 and nJ = 3 around H = 0.83Hc. Now
that one of these two atomic orbitals is always either px + ipy

or px − ipy-like orbital while the others are parity even, it is
expected from its electron analog25 that these level inversions
endow the spin-wave volume-mode bands constructed from
these atomic orbitals with nonzero Chern integers. In fact, a
similar type of the band inversion plays a vital role in the
emergence of nontrivial topological phases in quantum spin
Hall insulators.25,26

B. TB model for the square lattice case

To clarify how the level inversion between atomic orbitals
leads to spin-wave bands with nonzero Chern integers, we
next construct from Eqs. (15)–(17) a tight-binding (TB) model
for the decorated square lattice. H0 and corresponding T 0 in
Eqs. (16) and (17) are replaced by those for the single four-spin
cluster. As for H̃1, only the nearest-neighbor hopping integrals
are included. Such approximations may be justified, because
the dipolar interaction decays as 1/R3 with R being a distance
between two spins; an amplitude of the next-nearest-neighbor
hopping is roughly 2

√
2, 8, and 5

√
5 times larger than those

of the second, third, and fourth nearest-neighbor hopping
integrals respectively. In fact, band dispersions for spin-wave
volume-mode bands obtained from this short-ranged TB model
show qualitatively good agreements with those shown in the
previous section (compare Fig. 9 with Fig. 3). For example,
all the sequences of the band touchings described in Sec. III
are identified near similar field strengths, when scaled by the
respective saturation fields; Fig. 9(a)–9(f). Correspondingly,
the Chern integers for all the four spin-wave bands take the
same sequence of the integer values as found in the previous
section (Fig. 10). The comparison also suggests that the
nonparabolic characters of a certain band dispersion around
the � point in Fig. 3 stems from long-range hopping integrals
in H̃1, i.e., long-range character of the magnetic dipolar
interaction, which is consistent with the similar feature of the
forward volume modes.2

The sequence of band touchings between the highest and
the third lowest spin-wave band results from the level inversion

174402-8



CHIRAL SPIN-WAVE EDGE MODES IN DIPOLAR . . . PHYSICAL REVIEW B 87, 174402 (2013)

(a) (b)

(c)

(e) (f)

ω

kx

X(Γ )M(X) M(X)

0.5

1.0

0.4

0.6

0.8

0.4

0.6

0.8

1.5

1.0

0.5

0.0

1.0

0.5

0.4

0.6

0.8

(d)

FIG. 9. (Color online) Side view of spin-wave band dispersions
for decorated square-lattice model calculated from the tight-binding
Hamiltonian, Eqs. (15)–(17) where only nearest-neighbor hopping
integrals are included. As for atomic-orbital levels, Eq. (17), and the
respective wave function T 0 used in Eq. (16), we used those for
the single four-cluster. (a) H = 0.23Hc, (b) H = 0.66Hc, (c) H =
0.71Hc, (d) H = 0.79Hc, (e) H = 0.85Hc, (f) H = 1.4Hc, where Hc

denotes the saturation field for single four-spin cluster, [Hc = 1.26;
see the caption of Fig. 8(a)]. At (a), (b), and (f), the lowest spin-wave
band and the second lowest one form band touchings at � point, X

points, and M point, respectively. At (c), (d), and (e), the highest
spin-wave band and the third lowest one form band touchings at M

point, X points, and � point, respectively.

Fig.9(a) (b) (c) (d) (e) (f) H/Hc

highest

3rd lowest

2nd lowest

lowest

-1

+1 -1

+1

0

0

0

0

0

00

0-1

-1 +1

+1

FIG. 10. (Color online) Chern integers for four spin-wave bands
as a function of the field. (a)–(f) depicted in the figure correspond to
the fields at which band touchings occur as shown in Figs. 9(a)–9(f),
respectively. Note also that the third lowest spin-wave band at Fig. 9(e)
is mainly composed of nJ = 0, while the second lowest and the lowest
bands are mainly composed of nJ = 2,3. From (e) to (f), the former
band goes below the latter two until H = Hc, while, for H > Hc. it
increases its frequency again, in the same way as the s-wave atomic
orbital does in Fig. 8(a). For clarity, we call the latter two as second
lowest and lowest, even though they are not during (e)–(f).

nJ=0

+1

+1

+1

+1
nJ=1

+1

-i

-1

+i

nJ=2

+1

-1

+1

-1
nJ=3

+1

+i

-1

-i

FIG. 11. (Color online) Shapes of the atomic orbitals in the
decorated square lattice model. That of nJ = 0 is s-wave, while those
of nJ = 1,2,3 are px − ipy-wave, dx2−y2 -wave, and px + ipy-wave
respectively.

between the atomic orbital with nJ = 1 and that with nJ = 0
[Fig. 8(a)], while the other sequence between the lowest and
second lowest spin-wave band is from those with nJ = 2 and
nJ = 3 [Fig. 8(a)].

To see this, notice first that the atomic orbitals with nJ =
0,1,2,3 takes s-wave, p− ≡ px − ipy , dx2−y2 , and p+ ≡ px +
ipy-wave orbitals respectively (Fig. 11). Namely, Eq. (22)
suggests that atomic-orbital wave functions for nJ = 1 and
nJ = 3 take imaginary values (‘i’) along the y direction, while
taking real values along the x direction. Meanwhile, those
for nJ = 0 and nJ = 2 always take real values; nJ = 0 takes
+1 for x link and y link while nJ = 2 takes +1 and −1
for x link and y link, respectively. As a result, the nearest-
neighbor interorbital hopping integral between nJ = 1 and
nJ = 0 and that between nJ = 2 and nJ = 3 always become
pure imaginary along the y link. In fact, using symmetry
arguments, one can generally derive from Eqs. (18) and (19)
a nearest-neighbor hopping model composed of nJ = 0 and
nJ = 1 as

Ĥ01 =
∑

n

(ε0γ
†
0,nγ0,n + ε1γ

†
1,nγ1,n)

+
∑

n

∑
μ=x,y

∑
σ=±

(
a00γ

†
0,nγ0,n+σeμ

+ a11γ
†
1,nγ1,n+σeμ

)
+

∑
n

∑
σ=±

(
σb01γ

†
0,nγ1,n+σex

+ H.c.
)

+
∑

n

∑
σ=±

(−iσb01γ
†
0,nγ1,n+σey

+ H.c.
)
, (25)

with real valued a00, a11 and b01. We have ignored (or inte-
grated out within the second-order perturbation) those hopping
terms which involve nJ = 2 and nJ = 3 and those between
the particle space and the hole space. Such approximations are
justified, when the atomic-orbital level of nJ = 0 and that of
nJ = 1 are proximate to each other and when it comes to those
spin-wave bands near these levels.
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The highest and the third lowest spin-wave bands around
H/Hc = 0.78 ∼ 0.82 are mainly composed of the atomic
orbitals with nJ = 0 and nJ = 1 [compare Fig. 8(a) with
Figs. 9(c)–9(e)] and thus can be approximately obtained from
Ĥ01. The Hamiltonian in the momentum space takes the
form25,26

H01,k =
(

ε0 + 2a00
(
ckx

+ cky

) −2ib01
(
skx

− isky

)
2ib01

(
skx

+ isky

)
ε1 + 2a11

(
ckx

+ cky

)),

(26)

with (ckx
,skx

) = (cos kx, sin kx), which gives momentum-
frequency dispersions for the highest and the second highest
spin-wave bands as

E0,k ≡ ε0 + ε1

2
+ (a00 + a11)

(
ckx

+ cky

) + �k

2
, (27)

E1,k ≡ ε0 + ε1

2
+ (a00 + a11)

(
ckx

+ cky

) − �k

2
, (28)

with

�k ≡
√[

ε0 − ε1 + 2(a00 − a11)
(
ckx

+ cky

)]2 + 16b2
01

(
s2
kx

+ s2
ky

)
. (29)

The atomic-orbital level with nJ = 0 and that with nJ = 1
are inverted around H = 0.80Hc, where ε0 − ε1 changes its
sign from positive to negative [Fig. 8(a)]. From their orbital
shapes, the nearest-neighboring hopping integral between
s-wave orbitals should be always positive a00 > 0, while that
between p−-wave orbitals should be negative a11 < 0, which
leads to a00 − a11 > 0. These two observations mean that, on
increasing the field, the two bands given by Eqs. (27) and (28)
first form a massless Dirac-cone spectrum at k = (π,π )
(M point) when ε0 − ε1 = 4(a00 − a11), then two massless
Dirac-cone spectra at k = (π,0) and k = (0,π ) (X point)
when ε0 − ε1 = 0, and finally one massless Dirac spectrum at
k = (0,0) when ε0 − ε1 = −4(a00 − a11). The band touching
at the M point is nothing but that in Fig. 9(c), those at the X

points are those in Fig. 9(d), and that at � point corresponds
to that in Fig. 9(e). In fact, analytic evaluations of Eq. (12)
for Eq. (26) show that the Chern integer for the highest (third
lowest) spin-wave band becomes +1(−1) for 4(a00 − a11) >

ε0 − ε1 > 0 and −1(+1) for 0 > ε0 − ε1 > −4(a00 − a11),
which is consistent with Fig. 10.

Similarly, the other sequence of band touchings formed by
the lowest and second lowest spin-wave bands is explained
in terms of the two-band models composed by nJ = 3 and
nJ = 2 atomic orbitals

H32,k =
(

ε3 + 2a33
(
ckx

+ cky

) −2ib32
(
skx

− isky

)
2ib32

(
skx

+ isky

)
ε2 + 2a22

(
ckx

+ cky

)
)

,

(30)

Note that ε3 − ε2 changes its sign from positive to negative
near H 
 0.83Hc [Fig. 8(a)], while a33 − a22 being always
negative. This means that, on increasing H , the lowest and
second lowest spin-wave bands around H 
 0.83Hc first form
a massless Dirac-cone spectrum at k = (0,0) when ε3 − ε2 =
−4(a33 − a22), then two massless Dirac spectra at k = (π,0)
and k = (0,π ) when ε3 − ε2 = 0, and finally one massless
Dirac spectrum at k = (π,π ) when ε3 − ε2 = 4(a33 − a22).
The band touching at the � point is nothing but that in Fig. 9(a),
those at the X points are those in Fig. 9(b), and that at M point
corresponds to that in Fig. 9(f). Noting that b32 has the same
sign as b01 (see Fig. 11), one can also see from the previous
evaluation that the Chern integer for the second lowest (lowest)
spin-wave band becomes −1(+1) for −4(a33 − a22) >

ε3 − ε2 > 0 and +1(−1) for 0 > ε3 − ε2 > 4(a33 − a22),
which is consistent with Fig. 10.

C. TB model for the honeycomb-lattice case

In the decorated honeycomb-lattice model, we have ob-
served in Sec. III a finite band gap between the lowest
spin-wave band and second lowest one, which are connected
by a dispersion of a chiral edge mode. The gap and chiral
edge mode persists for a sufficiently large field H . Based on
a tight-binding model, we will employ a perturbation analysis
from the large field limit and argue that the gap closes at two
inequivalent K points only in the limiting case (|H | → ∞),
where both the time-reversal symmetry and hexagonal spatial
symmetry are effectively recovered. More accurately, we will
show that an effective spin-wave Hamiltonian in the large field
limit respects these two symmetries within the order of O(1),
while it starts to break them from O(1/H ). As a result, within
the order of O(1), the lowest and second lowest spin-wave
band compose massless Dirac spectra at the K points. Once the
O(1/H ) corrections are included, the time-reversal symmetry
is broken and the hexagonal symmetry (C6v) reduces to its
subgroup symmetry (C6), which leads to a finite band gap at the
K points. These symmetry breakings also endow the two bands
with a nonzero Chern integer with opposite signs, which results
in the emergence of chiral edge mode within the band gap.

The perturbation analysis begins with a tight-binding
Hamiltonian for the honeycomb lattice model, Eq. (15)

H̃0 + H̃1 = Hσ 0 + λV 1 + λV 2, (31)

where σ 0 is a 2 × 2 unit matrix in the particle-hole space and
both V 1 and V 2 are on the order of O(1). For a bookkeeping,
we put λ, which can be set to 1 from the outset [those terms with
λ are O(1), those with λ2 are O(1/H ), and those with λ3 are
O(1/H 2), see below]. V 1 consists of on-cluster atomic-orbital
levels and hopping terms in the excitonic channel, while V 2

consists only of those in the Cooper channel

V 1 ≡ H̃0 − Hσ 0 +
(

t (+,+) 0
0 t (−,−)

)
,

V 2 ≡
(

0 t (+,−)

t (−,+) 0

)
.
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In the large field limit, all the spin-wave excitations reduce
to the ferromagnetic resonance (FMR) with its resonance
frequency being H . Once the O(1) corrections (V 1,V 2)
are included, the FMR resonance is expected to split into a
couple of spin-wave bands whose bandwidth are at most on
the order of unity. To see this situation, let us erase those terms
in the Cooper channel within a given order accuracy in 1/H ,
and derive an effective Hamiltonian only for the particle space.

With a matrix satisfying σ 3ρσ 3 = ρ†, the transformed
Hamiltonian takes the form

Heff ≡ e−iλσ 3ρσ 3 (H + λV 1 + λV 2) eiλρ

=
(

1 − iλσ 3ρσ 3 − λ2

2
σ 3ρ

2σ 3 + · · ·
)

× (H + λV 1 + λV 2)

(
1 + iλρ − λ2

2
ρ2 + · · ·

)
= H + λV 1 + λV 2 − λiσ 3ρσ 3H + iλHρ

− λ2

2
σ 3ρ

2σ 3H − λ2

2
Hρ2 + λ2σ 3ρσ 3Hρ

− iλ2σ 3ρσ 3V 1 + iλ2V 1ρ − iλ2σ 3ρσ 3V 2

+ iλ2V 2ρ + O(λ3). (32)

We choose ρ such that all the matrix elements in the Cooper
channels will cancel each other within the order of O(1)

V 2 = iσ 3ρσ 3H − iHρ,

or equivalently,

(ρ)n,m = i
(V 2)n,m

2H
, (ρ)n,m = i

(V 2)n,m

2H
, (33)

where n is for the indices in the hole space and n is for those
in the particle space; (σ 3)n,m = δn,m and (σ 3)n,m = −δn,m.
With this rotated frame, all the matrix elements in the Cooper
channel are at most on the order of O(1/H )

Heff = H + λV 1 − iλ2

2
(σ 3ρσ 3V 2 − V 2ρ)

−iλ2(σ 3ρσ 3V 1 − V 1ρ). (34)

The last two terms have matrix elements in Cooper channels.
When we further rotate in the particle-hole space such that they
will be set off by generated terms, these two terms simply result
in higher-order terms, O(1/H 2), while the remaining terms
are kept intact. We thus drop them by hand, to keep the first
four terms as the effective Hamiltonian. On the substitution of
Eq. (33) into Eq. (34), we then have the effective Hamiltonian
to the order of 1/H as(

H (2)
eff

)
n,m

= Hδn,m + (V 1)n,m + 1

2H

∑
p

(V 2)n,p(V 2)p,m.

(35)

The superscript (2) in the left-hand side denotes that the
effective Hamiltonian is asymptotically exact within the
second order in λ (or within the first order in 1/H ). The sum
with respect to p is taken only over the hole space. From
Eq. (35), one can readily see that, once the O(1) corrections
(V 1) are included, the FMR resonance localized at H is split
into a couple of spin-wave bands whose bandwidth are at most
on the order of unity.

Within the order of O(1), the effective Hamiltonian derived
so far is invariant under the time-reversal operation and
hexagonal symmetry operations. To see this, let us focus on
the first two terms of Eq. (35). With the atomic orbital index
(nJ = j,m) and cluster index (n,n′) being made explicit, they
take the following form(

H (1)
eff

)
(j,n|m,n′) = δn,n′δj,mεj + t (+,+)

(j,n|m,n′).

In the leading order in 1/H , the interorbital/intraorbital
hopping integral between an orbital with nJ = j at the nth
cluster and that with nJ = m at the n′th cluster is given by

t (+,+)
(j,n|m,n′) =

∑
θl ,θl′

ei(j+1)θl−i(m+1)θl′
1

6R3
. (36)

θl(′) (l(′) = 1,2,3) in the right-hand side specifies a spatial
location of a ferromagnetic spin within a cluster. Within a
cluster that encompasses an A-sublattice site or B-sublattice
site at (xn,yn), we take θl ≡ 2πl

3 or π + 2πl
3 , respectively, such

that the location of the ferromagnetic spin is always given
by (xn − r sin θl,yn + cos θl). R denotes a spatial distance
between a ferromagnetic spin specified by (θl,n) and that
by (θl′ ,n

′)

R ≡
∣∣∣∣
(

xn − r sin θl

yn + r cos θl

)
−

(
xn′ − r sin θl′

yn′ + r cos θl′

) ∣∣∣∣.
Within the order of O(1), a complex conjugation of

hopping integrals can be readily set off by a sign change
of the orbital angular momentum nL ≡ nJ + 1. Namely, the
complex conjugate of Eq. (36) is transformed to itself by a
proper exchange between nL = +1 (nJ = 0) and nL = 2 ≡
−1 (mod 3) (nJ = 1). This in combination with Eq. (24)
indicates that the effective Hamiltonian up to the order of
O(1) is invariant under the following time-reversal operation:(

H (1)
eff

)∗
(j,n|m,n′) = Qjj ′

(
H (1)

eff

)
(j ′,n|m′,n′) Qt

m′m (37)

with a proper basis change

Q ≡
⎛
⎝ 1

1
1

⎞
⎠ ,

which exchanges nL = +1 (nJ = 0) and nL = −1 (nJ = 1),
while keeping nL = 0 (nJ = 2) intact. It is also invariant under
three mirror operations in the hexagonal symmetry, σv,1, σv,2,
σv,3, π rotation C2, and 2π

3 rotation C3,(
H (1)

eff

)
(j,σv,1(n)|m,σv,1(n′)) = Qjj ′

(
H (1)

eff

)
(j ′,n|m′,n′) Qt

m′m,(
H (1)

eff

)
(j,σv,2(n)|m,σv,2(n′)) = Ojj ′

(
H (1)

eff

)
(j ′,n|m′,n′) O†

m′m,(
H (1)

eff

)
(j,σv,3(n)|m,σv,3(n′)) = O†

jj ′
(
H (1)

eff

)
(j ′,n|m′,n′) Om′m,(

H (1)
eff

)
(j,C2(n)|m,C2(n′)) = (

H (1)
eff

)
(j ′,n|m′,n′),(

H (1)
eff

)
(j,C3(n)|m,C3(n′)) = P†

jj ′
(
H (1)

eff

)
(j ′,n|m′,n′) Pm′m,

respectively with

O ≡
⎛
⎝ e−i 2π

3

ei 2π
3

1

⎞
⎠ , P ≡

⎛
⎝ei 2π

3

e−i 2π
3

1

⎞
⎠ .
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σv,ν (ν = 1,2,3) denotes the mirror operation with respect to
the plane subtended by eν (ν = 1,2,3; see Fig. 1) and ez (a
unit vector normal to the plane), C2 is the two-fold rotation,
which exchanges A-sublattice and B-sublattice and C3 is the
three-fold rotation within the plane [see Fig. 1(b)].

Owing to the hexagonal symmetry, the lowest two spin-
wave bands obtained from H (1)

eff comprise two massless
Dirac spectra at two inequivalent K points. Once the
O(1/H ) corrections are included, e.g., ε0 �= ε1, the time-
reversal symmetry is lost and the hexagonal (C6v) sym-
metry (C2,C3,C

−1
3 ,σv,1,σv,2,σv,3,σd,1,σd,2,σd,3) with σd,ν ≡

C2 · σv,ν reduces to C6 symmetry (C2,C3,C
−1
3 ). As a result,

Dirac spectra at the K points acquire a finite mass, which
gives to the lowest two bands nonzero Chern integers.

The Chern integers for the lowest two spin-wave bands
can be evaluated from a nearest-neighboring (NN) TB model.
From the symmetry point of view, the NN TB Hamiltonian in
the momentum space reads

HNNTB,k

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε0 α0a0,k βa1,k γ0a2,k

ε1 βa2,k α1a0,k γ1a1,k

ε2 γ0a1,k γ1a2,k ηa0,k

α0a
∗
0,k βa∗

2,k γ0a
∗
1,k ε0

βa∗
1,k α1a

∗
0,k γ1a

∗
2,k ε1

γ0a
∗
2,k γ1a

∗
1,k ηa∗

0,k ε2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

a0,k ≡ e−ike1 + e−ike2 + e−ike3 ,

a1,k ≡ e−ike1 + e−i 2π
3 e−ike2 + ei 2π

3 e−ike3 ,

a2,k ≡ e−ike1 + ei 2π
3 e−ike2 + e−i 2π

3 e−ike3 .

The first three columns and rows are for the three atomic
orbitals encompassing an A-sublattice site, while the latter
three are for those encompassing a B-sublattice site. εj stands
for a level for an atomic orbital with nJ = j (j = 0,1,2). α0,
α1, β, η, γ0 and γ1 are NN interorbital or intraorbital (effective)
transfer integrals, which can be evaluated from Eq. (35) up to
O(1/H ). It is clear from Eq. (36) that, within the order ofO(1),
γ0 = γ1, α0 = α1, and ε0 = ε1, which makes the lowest two
bands form massless Dirac spectra at the K points [Fig. 12(b)].
A comparison between Figs. 12(a) and 12(b) suggests that the
present NN TB Hamiltonian can qualitatively well reproduce
the band structure of the lowest two bands in the large field
limit, expect for a nonparabolic band structure of the lowest
band near the � point.

Once finite �γ ≡ γ0 − γ1, �α ≡ α0 − α1, and �ε ≡ ε0 −
ε1 are included, the exchange between nL = +1 and nL = −1
changes the signs of these terms, so that the time-reversal
symmetry is broken and the hexagonal symmetry reduces to
the C6 symmetry. These symmetry reductions give a finite
mass to the Dirac spectra. The mass can be evaluated from
2 × 2 Dirac Hamiltonians for the lowest two spin-wave bands,
which can be obtained via k · p perturbation around these K

(a)
(b)

4.8

4.7

4.6
-0.2

-0.1

K K’ K K’

-1

+1

FIG. 12. (Color online) (a) Side view of spin-wave band disper-
sions for the decorated honeycomb-lattice model under a sufficiently
strong field (H = 5.0). Because of a small but finite band gap at
two K points, the Chern integers for the lowest two bands are −1
and +1 respectively. (b) Side view of spin-wave band dispersions
calculated from the effective Hamiltonian to the order of O(1). For
the atomic-orbital levels, we use those for a single three-spin cluster.
To evaluate the nearest-neighbor hopping integral within the order
of O(1), we use Eq. (36). When H = 5.0 is added, the resonance
frequencies of the spin-wave bands in Fig. 12(b) become comparable
to those in Fig. 12(a).

points,

H2×2
k=K+ p = 1

2

(
�ε sin2 θ

2
− 3�γ sin θ

)
σ 3

+ 3

2

(
η cos2 θ

2
− β sin2 θ

2

)
(pxσ 1 − pyσ 2),

and

H2×2
k=K ′+ p = −1

2

(
�ε sin2 θ

2
− 3�γ sin θ

)
σ 3

+ 3

2

(
η cos2 θ

2
− β sin2 θ

2

)
(−pxσ 1 − pyσ 2),

with

tan θ ≡ 3
γ1 + γ2

ε0 − ε1
.

From these Hamiltonians, the Chern integers for the lowest
and second lowest spin-wave bands are evaluated to be σ and
−σ respectively with

σ ≡ sign

(
�ε sin2 θ

2
− 3�γ sin θ

)
.

A substitution of actual numbers into the parameters in the
right-hand side shows that σ = 1, which is consistent with
previous numerical evaluations in Sec. III. The nonzero Chern
integers for the lowest two spin-wave bands results in an edge
mode with the anticlockwise propagation, which has a chiral
dispersion between these two bands.

VI. MICROMAGNETIC SIMULATION

To uphold the existence of proposed chiral spin-wave
edge mode by a standard method in the field, we perform a
micromagnetic simulation by solving numerically the Landau-
Lifshitz-Gilbert equation for the square-lattice model. We
calculate magnetization dynamics by employing the fourth-
order Runge-Kutta method with a time step �t = 1 ps.
Figure 13 schematically shows an entire system studied in
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FIG. 13. (Color online) Schematic view of a simulated system
that comprises ferromagnetic nanograin. Although we took the size of
the ferromagnetic nanograin to be 5 × 5 × 5 nm3 as a demonstration,
the present simulation is scale free. In the beginning of the simulation,
we apply a pulse field either at the center (marked by a black triangle)
or around the boundary (marked by a black cross).

the present micromagnetic simulation. It consists of four
ferromagnetic nanograins in the unit cell. Although we took
the size of the ferromagnetic nanograin to be 5 × 5 × 5 nm3

as a demonstration, the system is scalable; the simulation
does not include any short-range exchange interactions. The
saturation magnetization and Gilbert damping coefficient
of the ferromagnetic grain are 1.75J/μm and 1.0 × 10−5

respectively. We regard each nanograin as a uniform magnet,
to assign single spin degrees of freedom to each nanograin.
Different ferromagnetic nanograins are coupled with one
another through the magnetic dipolar interaction. The sim-
ulated system (0 < X < L and 0 < Y < L, Fig. 13) includes
25 × 25 unit cells. Without the field, the magnetization of
each grain lies within the plane due to the dipolar interaction.
Under a large out-of-plane DC field (Hdc > 4700 Oe), the
magnetization becomes fully polarized along the z direction.
We took H = 1.02Hc in the present simulation.

In order to excite spin-wave modes in a broad frequency
range, we apply a pulsed magnetic field within a plane with
its pulse time tp = 1 ps and its amplitude Hp = 1.0 × 10−4

Oe. The pulse is applied locally at the center and around
an edge of the system for the purpose of exciting volume
modes and edge modes, respectively. After calculating a
time evolution of the magnetization in the system, we
take a Fourier transformation of the transverse moment,
m+(X,Y,t) ≡ mx(X,Y,t) + imy(X,Y,t), with respect to time

s+(X,Y,ω) ≡
n−1∑
j=0

m+(X,Y,j�T ) exp (2π iωj�T ) (38)

with �T = 50 ps and n = 1024. The frequency power
spectrum,

∑
X,Y |s+(X,Y,ω)|, obtained by the pulse at the

center and that by the pulse at the edge are shown in Fig. 14(a)
separately. Spatial distributions of spin-wave excitations,
|s+(X,Y,ω)|, for each case with different frequencies ω are
shown in Figs. 14(b)–14(g). From them, one can see that
the spin-wave volume modes and edge modes are selectively
excited, depending on whether the initial pulse field is applied
at the center or at the edge respectively. In the case of the
pulse field at the center, we observe two band gaps for volume
modes; one from 24 GHz to 30 GHz and the other from 37 GHz
to 46 GHz. In the case of the pulse at the edge, we observed
spin-wave edge modes mainly from 24 GHz to 42 GHz.

FIG. 14. (Color online) Fourier power spectra of magnetization
dynamics. (a) Frequency dependence of the intensity of spin-wave
excitations (see text). (b)–(g) Spatial distribution of the intensity,
which is obtained by the application of the pulse field at center (b), (d),
(f) and the edge (c), (e), (g); (b), (c) ω = 10 GHz, (d), (e) ω = 29 GHz,
and (f), (g) ω = 31 GHz.

A key feature of proposed chiral spin-wave edge mode
is a unidirectional propagation of spin-wave densities, which
is clarified by its frequency-wavelength dispersion relation.
To obtain such a dispersion relation, we next take a Fourier
transformation of the transverse moment with respect to both
space and time. In order to compare the result with Figs. 4
and 5, we integrate the amplitude of the Fourier component
with respect to the Y component of the momentum,

A(kx,ω) =
∑
ky

|s+(kx,ky,ω)|,

s+(kx,ky,ω) =
∑
X,Y

s+(X,Y,ω) exp (ikxX) exp(ikyY ).
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FIG. 15. (Color online) Dispersion relations of spin-wave modes.
(a) Dispersion relation obtained by the application of the pulse field
at the center. (b), (c) Dispersion relation obtained by the pulse at the
edge. The Fourier transformation is taken only over the upper side
(Y > L/2) for (b) and over the lower side (Y < L/2) for (c).

A contour plot of A(kx,ω) as a function of kx and ω gives a
dispersion relation for spin-wave modes. Figure 15(a) shows
the dispersion relation for the case of applying the pulse
field at the center. It resembles those for spin-wave volume
modes obtained in the preceding model calculation at the same
parameter regime [Fig. 3(e)]. Figures 15(b) and 15(c) show the
dispersion relations for the case of applying the pulse field at
the edge. To clarify propagation directions of those two spin-
wave edge modes running along the opposite boundaries of the
system, we take the Fourier transformation only over the upper
(or lower) side of the sample L/2 < Y < L (or 0 < Y < L/2);
the one for the upper side is shown in Fig. 15(b), while the
one for the lower is in Fig. 15(c). Both figures clearly indicate
the existence of two counterpropagating chiral dispersions,
each of which runs across any line of ω = ω0 (25 GHz <

ω0 < 35 GHz) once and only once. The results also suggest
an existence of another spin-wave edge mode from 35 GHz
to 42 GHz, which has a quasiparabolic dispersion. Both of
these edge modes in combination with volume modes shown
in Fig. 15(a) are consistent with the dispersion relations for
spin-wave modes obtained in the preceding model calculation
at the same parameter regime [Figs. 5(a) and 5(a-1)].

When the Gilbert damping coefficient becomes larger,
unidirectional propagations of spin density along the chiral
spin-wave edge mode decay faster. Figure 16 shows spatial dis-
tributions of Fourier power spectra of magnetization dynamics,
|s+(X,Y,ω)|, in the presence of larger Gilbert damping term
(α = 0.001,0.01), where the initial pulse field is applied at the
edge (Fig. 13) and the frequency is chosen within the band gap
(ω = 29 GHz). The results suggest that the coherence length

FIG. 16. (Color online) Spatial-resolved Fourier power spectra
of magnetization dynamics in the presence of stronger dissipation.
Spatial distribution of the intensity at ω = 29 GHz, which is obtained
by the application of the pulse field at the edge. (a) α = 0.001,

(b) α = 0.01.

is roughly 25 unit cell size (500 nm) for α = 0.001 and 8 unit
cell size (160 nm) for α = 0.01.

VII. SUMMARY, DISCUSSION, AND OPEN ISSUES

In this paper, we introduced two simple magnetic thin-film
models, in which ferromagnetic nanoislands on periodic arrays
are coupled with each other via magnetic dipolar interaction.
Under the field applied perpendicular to the two-dimensional
plane, spin-wave excitations in the systems have a chiral spin-
wave edge mode localized at the boundaries of the systems,
whose dispersion runs across a band gap for spin-wave volume
modes. The sense of the rotation of the chiral edge mode is
determined by a sign of the Chern integer for a spin-wave
volume-mode band below the band gap.

To have volume-mode bands with finite Chern integers,
we generally need multiple-band degrees of freedom within
a unit cell. To this end, we considered two periodic arrays of
ferromagnetic particles; decorated square-lattice model and
honeycomb-lattice model. For the decorated square-lattice
model, we observed that on increasing the out-of-plane field,
there appears a sequence of band touchings between pairs
of neighboring volume-mode bands. Owing to these band
touchings, the Chern integers for the volume modes change
their signs and, concomitantly, the chiral edge mode changes
its sense of rotation from clockwise to anticlockwise or
vice versa. For the decorated honeycomb-lattice model, we
observed a finite band gap between the lowest spin-wave
volume-mode band and second lowest spin-wave band, which
are connected by a chiral dispersion of an edge mode. Though
its sense of rotation is unchanged by the strength of the field in
the honeycomb-lattice case, the gap and the chiral edge mode
persists for a sufficiently large field.

To interpret these results, we next construct tight-binding
descriptions for the linearized Landau-Lifshitz equation, in
which atomic orbitals such as s-wave, p±-wave, and dx2−y2 -
wave orbitals are introduced within each unit cell. Among
other, complex-valued characters in the p±-wave orbitals
break both the time-reversal symmetry and mirror symme-
tries of the models. These symmetry breakings lead to a
nonzero Chern integer for spin-wave volume-mode bands
and associated chiral spin-wave edge modes. Using this
tight-binding model, we argue that the level inversions among
different atomic orbital levels give rise to the so-called inverted
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spin-wave bands with nonzero Chern integers. Our tight-
binding analysis for the square-lattice model gives quantitative
criteria for the emergence of finite field ranges within which
spin-wave volume-mode bands have nonzero Chern integers.

For the decorated honeycomb-lattice model, we employ
a perturbation analysis, starting from the large field limit.
The analysis suggests that the effective Hamiltonian in the
large field limit always respects time-reversal symmetry and
the hexagonal symmetry within the order of O(1). Due to
the mirror operations in the hexagonal symmetry, the lowest
two spin-wave bands form gapless Dirac-cone spectra at two
inequivalent K points. Once O(1/H )-order corrections are
included, however, the time-reversal symmetry is lost and
hexagonal symmetry reduces to its abelian subgroup having no
mirror symmetries. As a result, the gapless Dirac-cone spectra
acquire a finite mass of the order of O(1/H ), which leads to
nonzero Chern integer for the two lowest spin-wave bands.
This argument explains why the spin-wave volume-mode
bands with nonzero Chern integers and associated chiral
spin-wave edge mode persists in a very wide range of the
field in the decorated honeycomb-lattice model.

Since a state-of-the-art sample production does not nec-
essarily guarantee perfect periodic structurings, consider-
ing disorder effects associated with the lattice periodic-
ity are experimentally relevant, which can be speculated
from well-established knowledge of integer quantum Hall
physics.12,14,27,28 The effects are twofold. When the strength of
the disorders is smaller than a characteristic frequency scale of
the band gap, those volume modes near the band gap become
localized due to the disorders, while chiral edge mode itself is
free from these weak disorders. As a result, the frequency
regime for the chiral spin-wave edge mode becomes even
wider than that in the clean limit. When the strength of the
disorders is increased to be larger than the scale of the band
gap in the clean limit, the mobility gap closes and reopens.

After the reopening the gap, the topological chiral edge mode
disappears.12,27,28 The proposed chiral spin-wave edge mode is
also robust against the boundary shape; the edge modes persist
in almost arbitrary shapes of the boundary, provided that the
edge mode in the boundary has no interference with the other
mode running along the opposite sample boundary.14,15

It is also a nontrivial issue whether submicrometer-
scale ferromagnetic islands behave as a single spin or not.
In preceding experimental systems mentioned before,18,19

nonisotropic shapes of ferromagnetic islands give rise to
strong magnetic dipolar anisotropies, forcing all the spins in
each island to point along a same direction. In our model
calculations, magnetic anisotropies within each island are not
included from the outset. It is interesting to include these
magnetic dipolar anisotropies into the present Landau-Lifshitz
equation phenomenologically as the single-ion-type magnetic
anisotropies. It is also equally likely that a ferromagnetic
island has a couple of low-frequency relevant modes having
different spin textures within the island. Such modes can be
also utilized as a kind of atomic orbital, so that a system with
only one ferromagnetic island within a unit cell could also have
a chance to provide a volume-mode bands with finite Chern
integers. Exploring such systems is, however, beyond the
scope of the present paper and we leave them for future open
issues.20
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