
PHYSICAL REVIEW B 87, 174401 (2013)

Spin anisotropy in Cu(en)(H2O)2SO4: A quasi-two-dimensional S = 1/2 spatially anisotropic
triangular-lattice antiferromagnet
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We have studied in detail the effect of the spin anisotropy on the electron paramagnetic resonance spectra and
magnetic properties of Cu(en)(H2O)2SO4, an S = 1/2 spatially anisotropic triangular lattice antiferromagnet.
The angular and temperature dependence of the resonance fields as well as the magnetization and magnetic
susceptibility reflect the exchange and g-factor anisotropy with Jz/Jx,y < 1 and gz/gx,y > 1, respectively. The
exchange anisotropy and Dzyaloshinskii-Moriya interaction are responsible for the main broadening mechanism
at higher temperatures while spin-diffusion effects prevail at helium temperatures. The ratio of the uniform
susceptibilities calculated along the three crystal directions suggests an easy-axis anisotropy with the a axis as
the magnetic easy axis. Its impact on the physical properties of the title compound is discussed.
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I. INTRODUCTION

Two-dimensional quantum magnets provide a fruitful play-
ground for the research of ordering phenomena and new quan-
tum states resulting from the interplay of quantum fluctuations
and magnetic anisotropy.1,2 One example of such states is
the quantum spin liquid. The existence of spin continua in
Cs2CuCl4 has been attributed to the proximity of the system to
the quantum-spin-liquid state in which spin-wave excitations
are fractionalized into spin-1/2 spinons.3 The observation
prompted intensive theoretical investigations to search for
the existence of the spin-liquid state in the S = 1/2 spatially
anisotropic triangular lattice (SATL) with antiferromagnetic
Heisenberg interactions J1 and J2 (Refs. 4–6). The model
described by the Hamiltonian

H = J1

∑
i,j

SiSj + J2

∑
i,k

SiSk (1)

interpolates between the unfrustrated square lattice with a
collinear Néel order (J2 = 0), fully frustrated triangular lattice
(α = J2/J1 = 1), and decoupled chains (J1 = 0). The indices
i, j , and k refer to the nearest-neighbor and next-nearest
neighbor spins, respectively.

A variety of different kinds of disordered ground states
have been reported for this rather simple model.4,7,8 While the
existence of a spiral Néel state has been established around the
isotropic point for the 1 � α � 1.4 region,9 the ground states
of more anisotropic regions are still under debate.8–10

A spin anisotropy, always present in real systems, can
change essentially ground-state properties of isotropic models.
The introduction of an easy-plane spin anisotropy in the SATL
leads to the stabilization of the spiral Néel phase over a
wide region of α (Ref. 11). The Dzyaloshinskii-Moriya (DM)
interaction has a similar effect on the stabilization of the spiral
phase in the SATL for large α (Refs. 12 and 13). The effect
of an easy-axis anisotropy on the ground-state properties of
the SATL has been investigated in detail only for the limiting

cases (α = 0 and 1).14–16 Recently, a proximity to the quantum-
spin-liquid state has been proposed for Ba3CoSb2O9—a
triangular-lattice antiferromagnet with an effective spin 1/2
and a weak easy-axis anisotropy, where an extensive inelastic
neutron-scattering continuum above spin-wave excitations has
been observed in the ordered phase.17

Cu(en)(H2O)2SO4 (en = ethylendiamine = C2H8N2) has
been previously identified as a potential candidate for a SATL
with α � 1 and an effective antiferromagnetic intralayer
exchange coupling J/kB = 2.8 K (Ref. 18). The effective
coupling J is related to the average of the interactions J1

and J2 in the Hamiltonian (1). The system undergoes a phase
transition to the ordered state at TC = 0.91 K. A frustration
ratio f = |θ |/TC ≈ 4, where θ represents the paramagnetic
Curie temperature, indicates a rather weak frustration, as can
be expected for the collinear Néel phase.

Specific-heat studies in magnetic fields B < Bsat ≈ 7 T
reveal a nonmonotonic shift of the transition temperature19—
a typical feature of a field-induced Berezinskii-Kosterlitz-
Thouless (BKT) phase transition20 which can be preserved in
real two-dimensional (2D) magnets with a sufficiently weak in-
terlayer coupling J ′ (Ref. 21). Apparently, Cu(en)(H2O)2SO4

with |J ′/J | ≈ 0.003 meets this requirement. Quantum Monte
Carlo studies of layered Heisenberg magnets provide a critical
value of the ratio, |J ′/J | ≈ 0.01, below which a specific-heat
anomaly associated with the three-dimensional (3D) ordering
vanishes.22 Correspondingly, the pronounced λ-like anomaly
observed in Cu(en)(H2O)2SO4 (Ref. 18) might result from the
interplay of the interlayer coupling and other mechanisms such
as magnetic anisotropy.14,23

The main motivation of this work was the exploration
of the spin anisotropy in the quasi-two-dimensional spa-
tially anisotropic triangular-lattice Heisenberg antiferromag-
net Cu(en)(H2O)2SO4. We first describe the crystal structure
and experimental details, followed by the presentation and
discussion of the experimental results. This includes the
analysis of powder neutron diffraction, electron paramagnetic
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resonance spectra, single-crystal magnetization, and static
susceptibility. Possible consequences of the spin anisotropy
for the ground-state properties of Cu(en)(H2O)2SO4 are
discussed. The paper concludes with a summary and some
comments about possible future directions.

II. STRUCTURAL AND EXPERIMENTAL DETAILS

The crystal structure of Cu(en)(H2O)2SO4 determined at
300 K is monoclinic, space group C2/c with the unit cell
parameters a = 7.232 Å, b = 11.725 Å, c = 9.768 Å, β =
105.50 ◦, and Z = 4 (Ref. 24). The structure consists of neutral
covalent chains running along the crystallographic a axis
which are linked by hydrogen bonds along the b and c axes
(Fig. 1). Cu(II) ions are located in the center of a distorted
octahedron elongated along the a axis with the bond lengths in
the equatorial plane d(Cu–O1), d(Cu–O2) = 1.964 Å, and
d(Cu–N1), d(Cu–N2) = 1.979 Å and the apical positions
d(Cu–O5) = 2.494 Å. The octahedrons within the ab plane
have the same orientation while a rotation by 180◦ appears
along the c axis due to the inversion center located in the
center of the unit cell (Fig. 1).

The absence of an inversion center between pairs of
nearest-neighbor Cu(II) ions within the ab plane (in Fig. 1
denoted as 1, 2, 3 or 1′, 2′, 3′) allows for the antisymmetric
Dzyaloshinskii-Moriya interaction �di,j · (�Si × �Sj ), where �Si,j

denotes the spins of the ith and j th Cu(II) ion and �di,j is
the DM vector. Following Moriya’s symmetry rules25 the DM
vectors �d1,3, �d1,2, �d2,3 should be nonzero. No DM coupling is
expected between the atoms from neighboring ab planes, i.e.,

(b)

(a)

b

a

FIG. 1. (Color online) (a) Crystal structure of Cu(en)(H2O)2SO4

projected to the ab plane. (b) Projection of the crystal structure to the
ac plane. The [SO4]2− anions are omitted for the sake of clarity. The
dashed lines represent hydrogen bonds. The numbers 1, 2, 3, and 1′,
2′, 3′ denote the individual Cu(II) ions in the unit cell.

�di,j = 0 where i = 1, 2, 3 and j = 1′, 2′, 3′. The strength of
the DM interaction depends on the exchange coupling between
the mentioned pairs of atoms. Previous studies18 identified the
ab plane as the magnetic layer, thus DM coupling can be
expected.

Cu(en)(H2O)2SO4 single crystals were prepared in the form
of blue elongated plates using a modified method as published
in the Ref. 24. Deuterated polycrystals were grown as well
stored in the nitrogen atmosphere for further use.

Powder neutron diffraction studies were performed at
Helmholtz-Zentrum Berlin using the powder diffractometer E6
equipped with the VM-1 magnet and 3He-insert. A deuterated
polycrystalline sample of total mass of 1.6 g was powdered,
pressed into a pellet, and stored in a copper can filled with
3He exchange gas to improve the thermal contact between the
sample and surrounding. Diffraction patterns were collected
with a long counting time at several temperatures between 0.4
and 40 K in zero magnetic field using an incident-neutron
wavelength λ = 2.45 Å. The patterns were analyzed with
Rietveld method using the software package FULLPROF.26

Electron paramagnetic resonance (EPR) measurements
were performed at the Dresden High Magnetic Field Labora-
tory using an X-band spectrometer (Bruker ELEXSYS E500)
at a fixed frequency of 9.4 GHz in the temperature range from
2 to 300 K and magnetic fields up to 0.5 T. A single crystal with
the approximate dimensions a′ × b′ × c′ = 2 × 0.7× 0.5 mm3

was glued on a Suprasil-quartz rod. The angular dependence
of the EPR spectra was investigated by rotating the crystal
within the b′c′, a′c′, and a′b′ planes.

Magnetization and static-susceptibility measurements were
performed in a commercial superconducting quantum in-
terference device (SQUID) magnetometer. A single crystal
with a mass of 45 mg and dimensions 10 × 3.6 × 0.9 mm3

was used for the bulk measurements. Using standard Pascal
constants, the susceptibility data were corrected for the core
diamagnetism.

III. RESULTS AND DISCUSSION

A. Neutron diffraction

Recent comparative magnetostructural studies of
Cu(en)(H2O)2SO4 and its deuterated analog Cu(d-en)(D2O)2

SO4 revealed only a slight reduction of the exchange
interactions27 in accordance with the negligible structural
differences observed at room temperature.28 The analysis
of the neutron diffraction patterns of the deuterated analog
(Fig. 2) confirmed the preservation of the monoclinic space
group C2/c symmetry down to the lowest temperatures.
The rather significant contraction observed for the c lattice
parameter below 40 K can be ascribed to hydrogen-bonding
effects (Fig. 2, inset). Such significant changes were observed
in other Cu(II) materials where the hydrogen bonding plays
an important role in controlling both the long-range and
local structure. It was found that the pronounced effect of
the hydrogen-bonding interactions appeared below nitrogen
temperatures.29

It should be noted that the diffraction pattern recorded at
0.45 K, well below the ordering temperature, does not contain
any additional Bragg reflections arising from the scattering
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FIG. 2. (Color online) Diffraction pattern of Cu(d-en)(D2O)2SO4

collected at 0.45 K. Circles represent measured data, the solid line is
the calculated pattern fitted to the data. The vertical lines indicate the
position of Bragg nuclear reflections and the dashed line represents
the difference between the data and the calculated pattern. Inset:
Temperature evolution of Rietveld refined c-lattice parameter of
Cu(d-en)(D2O)2SO4.

on the ordered magnetic moments of the Cu(II) ions. The
absence of forbidden reflections in the powder experiment can
be attributed to a weak magnetic signal and to the extremely
high incoherent scattering due to the presence of hydrogen
atoms in the structure. Both facts lead to a very unfavorable
signal to background ratio.

B. EPR resonance fields and g factor

The EPR spectra investigated in the paramagnetic phase
above 2 K consist of a narrow single resonance line in all
orientations and temperatures. The resonance lines were fitted
to a Lorentzian formula with two fit parameters, the resonance
field Br (=μ0H r) and the linewidth �B. The former was
used for the calculation of g factors applying the resonance
condition h̄ω = gμBBr. The angular dependence of the g

factor was fitted using the standard relation

g2 = g2
z cos2 θ + g2

x sin2 θ cos2 ϕ + g2
y sin2 θ sin2 ϕ, (2)

where gx , gy , and gz are the g factors corresponding to the
local anisotropy axes x, y, and z defining the principal axes of
the g tensor. θ is the angle between the magnetic field and the
local z axis and ϕ is the angle between the projection of the
magnetic field in the xy plane and the local x axis.

A few crystals were used for a room-temperature x-ray
study to determine the orientation of the crystallographic axes
a, b, and c with respect to the crystal edges a′, b′, and c′. The
longest crystal edge a′ was identified with the crystallographic
a axis and the shortest crystal edge c′ is parallel to the b

axis. The local-anisotropy axes were chosen considering the
octahedral coordination of the Cu(II) ion; the local z axis was
identified with the a axis and the xy plane—the equatorial
plane of the octahedron, was identified with the b′b plane, in
which the local x axis is tilted by 45◦ from the b axis [Fig. 3(a)].

The extremal values of the g factor found within the b′b
plane do not coincide with the choice of the principal axes
of the g tensor; the maximum and minimum values were
found along the b′ and b axes, respectively [Fig. 3(b)]. The
observed shift together with a vanishing difference between the

(a)

(b)

(c)

FIG. 3. (Color online) (a) Coordinate system of the local
anisotropy axes x, y, and z. (b) Angular variation of the g factor
of Cu(en)(H2O)2SO4 in the b′b plane at various temperatures. (c)
Angular variation of the g factor of Cu(en)(H2O)2SO4 in the ab plane.
For clarity, only data at selected temperatures are shown. The solid
line represents the fit to Eq. (2) performed for the data at T = 2.5 K.

extremal g values at low temperatures suggest a partial mixing
of the gz component resulting from a slight deformation of the
octahedron (Fig. 1). Correspondingly, the axes of the chosen
coordinate system can deviate from the actual one by a few
degrees. Therefore, the analysis of the angular variation of
the g factor was performed in the ab plane, where the angular
change is dominated by a θ dependence [Fig. 3(c)]. A deviation
from the actual orientation of the g tensor was taken into
account by corrections to the polar angles introduced as free
fit parameters pθ , pϕ . Denoting 	 as angle of crystal rotation,
the relations θ = 	 + pθ and ϕ = pϕ were used in Eq. (2). We
found the nearly temperature-independent parameters pθ =
(90 ± 0.5)◦ and pϕ = (45 ± 1)◦ which support the choice of
the coordinate system as depicted in Fig. 3(a).

Fits of the g-factor variation within the ab plane at different
temperatures yield the temperature dependence of gx , gy , and
gz as shown in Fig. 4. To check the reliability of the obtained
results, we studied in a separate experiment the temperature
dependence of the resonance field with magnetic field applied
along the a and b axes. The corresponding gb factors lie
between the gx and gy factors and ga follows the temperature
dependence of gz. A systematic shift �g = ga − gz ≈ 0.002
in the whole temperature region can be ascribed to a slight
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FIG. 4. (Color online) Temperature dependence of g factors in
Cu(en)(H2O)2SO4 obtained from the analysis of the g-factor variation
within the ab plane (open symbols). The full symbols represent the
ga and gb values obtained in a separate experiment. The solid lines
represent fit curves obtained by the fitting to Eq. (5). The dashed lines
are guides for eyes.

(within a few degrees) crystal misorientation and/or the already
mentioned deviations of the coordinate system.

At low temperatures, the temperature dependence of gz

is opposite to that observed for gx and gy . Such a behavior
has experimentally been observed in other low-dimensional
magnets30–33 and agrees with theoretical predictions for the
resonance fields in the presence of dipolar coupling and
exchange anisotropy.30–32,34 Both interactions represent spin-
symmetric perturbation terms in the spin Hamiltonian

H ′
S =

∑
i,j

Si
¯̄JSj , (3)

where ¯̄J denotes a tensor of the anisotropic interaction between
the ith and j th spin resulting from both, the dipolar coupling
H ′

DD and the exchange anisotropy H ′
AE. For antisymmetric

spin perturbations H ′
A, such as the DM interaction, it was

shown that they influence the resonance frequency of one-
dimensional magnets only for a DM vector parallel to the
chain axis.30

A look at the temperature dependence of the g factors in
Fig. 4 suggests the presence of at least dipolar and anisotropic
exchange interactions in Cu(en)(H2O)2SO4. Considering the
H ′

AE and H ′
DD terms, the relation between the resonance field

Bres and resonance frequency ω has been derived for B ‖ z

(Ref. 31) as

h̄ωz = g0
zμBBz

res

[
1 − χz(T )

Ng2
zμ

2
B

(2Jzz − Jxx − Jyy)

]
, (4)

where χz(T) is the susceptibility, g0
z represents the high-

temperature value of gz, and the J ’s are diagonal terms
of the ¯̄J tensor. Analogous expressions for B ‖ x and B

‖ y can be obtained by changing (x, y, z) into (y, z, x)
and (z, x, y), respectively. Assuming a fixed microwave
frequency and sufficiently high temperatures, where χ (T) can
be approximated by a Curie-Weiss law, Eq. (4) transforms

gz(T ) = g0
z

[
1 − S(S + 1)

3(T − θ )
· Kz

kB

]
. (5)

The parameter Kz is the aforementioned combination of
J ’s. By use of this equation and taking θ = −3.3 K from
Ref. 18, we obtained the fit lines shown in Fig. 4. The fits
yield the high-temperature values g0

x = 2.044, g0
y = 2.081,

g0
z = 2.278 as well as the estimates of the effective spin-

anisotropy parameters Jxx/kB = 0.021 K, Jyy/kB = −0.003
K, and Jzz/kB = −0.026 K. The sum of the parameters is close
to zero as expected for the trace of an anisotropic exchange
tensor. As was shown in Ref. 25, the order of magnitude of the
exchange anisotropy is given by |J AE| ≈ (�g/g)2 |J |, where
J is an isotropic coupling and �g is the deviation from the
free-electron value. Using g = 2.134, the average value of the
high-temperature g factors, and J/kB = 2.8 K, the estimate
of the exchange anisotropy |J AE|/kB = 0.011 K agrees well
with the average value of above |J ii |’s (i = x, y, z), namely,
〈|J ii |/kB〉 = 0.017 K.

The spin anisotropy introduced by dipolar coupling be-
tween adjacent spins, separated by the distance r within the

ab plane, can be estimated by J DD
ii = μ0μ

2
Bg2

i

4πkBr3 (1 − 3r2
i

r2 ), where
ri represents the components of the position vector �r . Using
the coordinates of the adjacent Cu(II) ions 1, 2, and 3 (Fig. 1)
the shortest distances are r23 = 7.145 Å and r21 = 6.840 Å.
The anisotropic coupling between the Cu pairs (2, 3) and
(2, 1) then leads to the average value 〈|J DD

ii |/kB〉 = 0.011 K,
which agrees well with |J AE|/kB . This suggests, that despite
rather long distances between the Cu ions, dipolar coupling
provides an important contribution to the spin anisotropy in
Cu(en)(H2O)2SO4. Theoretical and experimental studies of
the contributions J DD and J AE in low-dimensional Cu(II)
compounds revealed that J AE can be comparable to J DD

(Ref. 35). Finally, the anisotropic exchange couplings Ji =
J + Jii evaluated using J/kB = 2.8 K and the J ii’s found
above indicate an easy-plane anisotropy with the lowest value
J z along the a direction.

C. Temperature and angular dependence of the EPR linewidth

The angular dependence of the linewidth was investigated
in the ab and b′b planes. The angular dependence in the ab

plane changes significantly with temperature [Fig. 5(a)]. At
lowest temperatures, when 2D antiferromagnetic short-range
order becomes relevant, alternating small and large maxima
appear, typical for the (3cos2θm-1)2 dependence resulting from
spin-diffusion processes in two-dimensional magnets with
weak interlayer coupling.36,37 Here, θm represents the angle
between the magnetic field and the normal to the magnetic
layer. Apparently, the observed angular dependence indicates
the rotation of the magnetic field out of the magnetic layer.

With increasing temperature, the small and large peaks
gradually merge together forming one wide maximum with
a period of 180◦ resembling a simple cos2θ dependence
of the g factor (Fig. 3). For non-S-state ions such as
Cu(II), spin anisotropies are the dominant contribution to the
second moment due to a large spin-orbit coupling, possibly
leading to the cos2θ dependence of the linewidth.36,38,39

Previous studies indicated rather weak interlayer coupling
in Cu(en)(H2O)2SO4. Thus the contributions from both spin
anisotropy and spin-diffusion processes can be expected.
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FIG. 5. (Color online) (a) Angular dependence of the EPR
linewidth in the ab plane studied at constant temperatures. The lines
represent fit curves obtained by use of Eq. (8). (b) Angular dependence
of the linewidth in the b′b plane studied at constant temperatures. The
solid lines represent fit curves obtained by use of Eq. (6). For clarity,
only data obtained at selected temperatures are shown.

The linewidth within the b′b plane follows at all temper-
atures an angular dependence, which indicates a dominant
spin-anisotropy contribution [Fig. 5(b)]. The absence of double
maxima suggests that not the previously expected ab plane,18

but the b′b plane is identified as the magnetic layer with the
normal parallel to the z axis. Using theoretical predictions for
the contribution of the symmetric anisotropic exchange and
antisymmetric exchange to the second moment, MS

2 and MA
2 ,

respectively,36,38 the simplified relation

�B = A + B cos2 ϕ (6)

has been derived when assuming a coincidence of the principal
axes of the DM vector, ¯̄J , and ¯̄g tensors. Here, θ = θm = π /2
and ϕ = 	 + δ. 	 is the angle of rotation within the b′b plane
and δ is a free parameter involving a potential deviation from
the chosen coordinate system of the ¯̄g tensor. Under these
conditions, the second term in Eq. (6) stands for the MA

2
contribution while the first term involves the contribution of
MS

2 and spin-diffusion processes. The fit procedure provides
nearly identical results for δ being either 0◦ ± 2◦ or 90◦ ± 2◦
[Fig. 5(b)]. The deviation of the parameter δ from 45◦ suggests
a different coordinate system for the DM vector, which cannot
be simply determined when applying Moriya’s symmetry
rules.

To obtain a proper formula for the analysis of the angular
variation of the linewidth within the ab plane, the coordinate
system for the DM vector has been rotated by 45◦ around the
z axis, then angle ϕ = 0 ◦ (equivalent to the choice ϕ = 90◦)
was fixed and θ = θm = 	 + π/2. The resulting formula was

applied in the form36,38

�B = A∗ + B∗ cos2 θ + C∗(3 cos2 θ − 1)2, (7)

where the second term contains both MS
2 and MA

2
contributions.

This equation does not yield a reasonable agreement with
the experimental data even at 2.5 K, where the third term
in Eq. (7) prevails. The deviations could be attributed to
the simplified choice of the magnetic layer. Thus, a detailed
analysis of potential magnetic layers was performed in the
following way: all possible layers were constructed by the
combinations of the arbitrary three ions within the unit
cell. For each layer, a separate transformation θm(	) has
been derived and the corresponding angular variation of the
linewidth has been calculated using the simplified relation
A∗ + C∗[3 cos2 θm(	) − 1]2. The best qualitative agreement
between this relation and the data in the ab plane at 2.5 K was
achieved for magnetic layers determined by the combination
of the Cu(II) ions denoted as 2, 2′, 1′ and 3, 3′, 1′ (Fig. 1).
Considering the distances between the Cu(II) ions and the
relative position of the magnetic dx2 −y2 orbitals, the layer 3,
3′, 1′ has been chosen for further analysis. Accordingly, Eq. (7)
is modified to

�B = A∗ + B∗ cos2 θ + C∗[3 cos2 θm(	 + δ′) − 1]2, (8)

where the angle δ′ was added to include a possible deviation
due to the crystal misorientation or other sources.

From the fit [Fig. 5(a)] we found a nearly temperature-
independent shift δ′ ≈ 13◦. This value roughly corresponds to
the deviation of the monoclinic angle from 90◦. The increase
of the parameters A∗ and C∗ towards lower temperatures
might be associated with the growth of short-range magnetic
correlations. The opposite temperature dependence of the
parameter B∗ that is dominated by contributions from spin
anisotropies is expected by theory.38 At high temperatures, the
(3cos2θm-1)2 term vanishes, which may be related to a strong
overlap with the spin-anisotropy contributions enhanced at
higher temperatures and to structural changes indicated by
our neutron studies. The increase of the c lattice parameter
(Fig. 2, inset) could interfere with the formation of the
two-dimensional magnetic correlations due to the weakening
of the exchange coupling between the Cu-spin pairs (3, 3′) and
(3, 1′) at higher temperatures [Fig. 1(b)].

The temperature dependence of the EPR linewidth has been
investigated for fields applied along the a and b axes (Fig. 6).
For both orientations, the linewidth is characterized by a slight
linear decrease down to about 100 K followed by an upturn for
the b direction, while the linewidth for the a direction remains
nearly constant; a slight upturn appears here below 10 K. The
broadening at low temperatures can be associated with the
development of intralayer magnetic correlations. Theoretical
studies of 2D magnets showed that the formation of short-range
order results in a broadening that qualitatively can be described
by a 1/χT dependence.37 As can be seen from Fig. 6, both
upturns follow a 1/χpT dependence, where χp is the powder
susceptibility taken from Ref. 18.

The linear dependence of the linewidth develops at tempera-
tures comparable to the average value of Debye temperature θD

≈160 K calculated from the low-temperature lattice specific
heat of Cu(en)(H2O)2SO4, estimated in Ref. 27. Such a linear
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FIG. 6. (Color online) Temperature dependence of the EPR
linewidth for magnetic fields applied along the a (squares) and b

(triangles) axes. The solid lines represent fits to Eq. (9) and the dashed
line corresponds to 1/χpT .

increase in low-dimensional Cu(II)-based magnetic systems
has been ascribed to a modulation of the spin anisotropies by
phonons.40,41 The high-temperature linewidth can be described
by

�B = Q + PT, (9)

where P = P S + P A. P S and P A represent the contributions
of the phonon modulation of the symmetric anisotropic
and antisymmetric exchange, respectively. The parameter
Q corresponds to the second moment in the asymptotic
regime M2(J/kBT → 0), which can be expressed via the
microscopic spin-Hamiltonian parameters. From the fit using
the data for the field aligned along the b direction, we obtain
Q = 0.9 mT and P = 2.75 × 10−4 mT/K. Following Ref. 40,
the asymptotic value of the second moment for a Lorentzian
lineshape is given by

M2

(gμB)2
= 2QHex

zSπ
, (10)

where H ex is the exchange field, z is a number of nearest
neighbors, and S = 1/2. Using z = 4 and J/kB = 2.8 K, we
obtain Mb

2 /(gμB)2 ∼= 1170 mT2. An explicit calculation of
the dipolar contribution to M2 has been performed in Ref. 28,
yielding M

dip
2 /(gμB)2 ∼= 265 mT2. Apparently, the asymptotic

value of the second moment is dominated by other, more
significant broadening contributions.

Theoretical studies of the line broadening due to spin-
anisotropy effects40 gave the asymptotic value of the second
moment M2 ≈ 2/3zS(S + 1)K2, where the parameter K

reflects the strength of the total spin anisotropy. After the
subtraction of the dipolar contribution from Mb

2 ,Kb/gμB ≈
20 mT was evaluated. Moriya’s estimate of the strength of
the antisymmetric exchange, d ≈ (�g/g)J , yields d/gμB ≈
60 mT for �g = gb − g,gb ≈ 2.06 and g = 2. Since the
symmetric anisotropic exchange is two orders of magnitude
smaller, the main contribution to the line broadening in
the asymptotic regime can be ascribed to the antisymmetric
exchange.

For fields aligned along the a direction, we obtain Q =
1.3 mT and P = 3.8 × 10−4 mT/K. With Eq. (10), we
estimate Ma

2/(gμB)2 ∼= 1660 mT2 and Ka/gμB ≈ 26 mT,

while d/gμB ≈ 280 mT, when �g = ga − g and ga ≈ 2.28.
Given that the magnetic layer can be formed by the Cu(II)
ions denoted as 3, 3′, 1′ (Fig. 1), the exchange coupling
and, correspondingly, the antisymmetric exchange should be
absent along the a direction. Then, the main contribution to the
asymptotic line broadening is caused by the spin anisotropy
induced by dipolar coupling J DD, which in Cu(en)(H2O)2SO4

is of the order (�g/g)2J and equals to J DD/gμB ≈ 40 mT.
The temperature dependence of the linewidth along the a axis
is consistent with the theoretical prediction for the second
moment of a symmetric anisotropic exchange calculated for a
ferromagnet on a square lattice.38

Concerning the slope of the linewidth P both contributions
P S and P A vary as J 4 · λ2/ν5 where λ and ν represent spin-
orbit coupling and the phonon velocity, respectively.41 The
slight anisotropy of the slopes P a/P b ≈ 1.4 can be ascribed to
the anisotropy of elastic properties as well as the dominance of
different kind of spin anisotropies along the a and b directions.
The average value of the slope divided by J 4, P/J 4 ≈
5 × 10−6 mT/K5, is very close to the values experimentally
observed in two-dimensional copper(II)-bromide salts, for
which the phonon modulation of the spin anisotropies as the
main source for the line broadening at high temperatures was
reported.41

D. Magnetization and static susceptibility

The magnetic-field dependence of the magnetization of
Cu(en)(H2O)2SO4 has been studied at T = 2 K in magnetic
fields applied along the a, b, and b′ directions (inset of
Fig. 7). Corrections due to the sample shape are negligible.
The magnetization is linear with a slight upward curvature
above 2 T. The observed anisotropy in the magnetization
coincides with the g-factor anisotropy extracted from the
EPR and static-susceptibility data. Analyzing the susceptibility
(Fig. 7) by use of Curie-Weiss law yields the g factors,
ga = 2.12, gb = 1.96, gb′ = 2.01, and the paramagnetic
Curie temperatures θa = −2.4 K, θb = −2.7 K, and θb′ =
−2.9 K. These temperatures correspond directly to the
exchange coupling constants J a , J b, and J b′ .

FIG. 7. (Color online) Temperature dependence of the corrected
molar static susceptibility χm/g2 in the field 1 T applied along
the a, b, and b′ directions. Inset: Magnetic-field dependence of the
magnetization for the magnetic fields applied along the a, b, and b′

directions at 2 K.
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The anisotropy of the g factors is of easy-axis type with the
largest value along the a axis. An easy-plane anisotropy of the
exchange coupling with the lowest value of J along the a axis
is evident also in the susceptibility corrected for the g-factor
anisotropy (Fig. 7). The result qualitatively coincides with the
exchange anisotropy found from the analysis of the resonance
fields in Sec. III B. A coexistence of two anisotropies was
found in a series of quasi-two-dimensional Cu(II)-pyrazine
antiferromagnets where EPR spectra show an easy-axis
anisotropy of the g factor, while an easy-plane anisotropy was
observed in the corrected molar susceptibilities χm

i /g2
i (i = x,

y, z) in the vicinity of the ordering temperature.23

Recently, the role of the exchange anisotropy, antisym-
metric exchange, and g-factor anisotropy in the ground-state
properties of low-dimensional and geometrically frustrated
magnets was investigated theoretically.11,14,42,43 One of the
criteria reflecting the resulting anisotropy is the ratio of the
uniform susceptibilities χz/χx,y depending on the magnetic
lattice and the type of spin anisotropy. The estimate of this ratio
has been used as a main tool for the experimental determination
of the spin anisotropy in the spin-1/2 Kagomé antiferromagnet
ZnCu3(OH)6Cl2 with spin-liquid ground state.44 The analysis
revealed χz/χx,y < 1 and the result led to the conclusion
of the presence of an easy axis. For Cu(en)(H2O)2SO4, the
ratio of the uniform susceptibilities was evaluated using the
relation between the experimental (molar) susceptibility and
the uniform susceptibility χi = χm

i kBJ i /(NAg2
i μ

2
B), (i = a,

b, b′) with the g factors and J ’s as found from the Curie-Weiss
analysis stated above. The ratio χa/χb′ is very close to
0.84 in the whole temperature range and the average value
of χa/χb is 0.91. Considering calculations of the uniform
susceptibility performed for Kagomé and square-lattice anti-
ferromagnets with spin anisotropy,14,42 ratios values smaller
than 1 suggest the prevalence of an easy-axis anisotropy in
Cu(en)(H2O)2SO4.

The variation of the J ’s extracted from the susceptibility
data is of the order (�g/g)J which suggests that the anisotropy
might be introduced by antisymmetric DM coupling. The
rather large difference in the exchange anisotropies obtained
from the analysis of the resonance fields and the magnetic
susceptibility might be ascribed to an interplay of the spin
anisotropies and demagnetizing field resulting in a shift of the
resonance fields.45 An overlap of the DM anisotropy with easy-
axis anisotropy was suggested in the two-dimensional antifer-
romagnet K2V3O8 (Ref. 46). The effect of DM anisotropy can
be amplified by an external magnetic field which introduces
spin gaps in the excitation spectra.47 In this context, further
experimental studies of Cu(en)(H2O)2SO4 at low temperatures
are necessary for a better understanding of the spin anisotropy.

IV. CONCLUSION

We studied in detail the spin anisotropy in
Cu(en)(H2O)2SO4 by use of EPR, magnetization and

static-susceptibility measurements. The largest g factor
and the smallest exchange coupling has been found along
the a axis. The effective exchange anisotropy is of the
order (�g/g)2J and originates from the dipolar anisotropy,
which is the main broadening mechanism of the EPR signal
along the a axis, while the DM interaction dominates the
broadening along the b axis. The spin anisotropies determine
the high-temperature EPR spectra. The occurrence of
spin-diffusion effects at lowest temperatures in the ab plane
enabled the identification of the potential magnetic layer.
In this context, the vanishing of these spin-diffusion effects
at higher temperatures could be associated with structural
changes as observed by powder neutron diffraction.

The exchange and g-factor anisotropies obtained from the
EPR spectra was confirmed by the susceptibility data. The
ratio of the uniform susceptibilities and the anisotropies of
the g factor and exchange coupling suggest an easy-axis
anisotropy in Cu(en)(H2O)2SO4. This anisotropy could govern
the phase transition to the ordered state in zero magnetic
field and might explain the observation of the λ-like anomaly
in the specific heat. In applied magnetic fields aligned
along the a axis a crossover between the intrinsic easy-axis
anisotropy and a field-induced easy-plane anisotropy should
appear. Experimental studies of the magnetic phase diagram
in the quasi-two-dimensional [Cu(pyz)2(pyO)2](PF6)2 anti-
ferromagnet showed that the interplay of the intrinsic spin
anisotropy and the applied field results in a variety of physical
properties depending on the orientation of the magnetic
field.48

The determination of the magnetic structure in the ordered
phase is another issue. The present analysis of the spin
anisotropy suggests an antiferromagnetic ordering with the
main component of the magnetic moments along the a axis. A
significant reduction of the order parameter due to frustration
has been reported for the collinear Néel phase of SATL
antiferromagnets.10,49 Thus, the determination of the magnetic
moments could provide some information about the degree of
frustration in Cu(en)(H2O)2SO4.

In this context, theoretical studies of SATL with a weak
easy-axis anisotropy would be desirable to determine a ground-
state phase diagram as well as the order parameter.
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