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Elastic metamaterials with inertial locally resonant structures: Application
to lensing and localization
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We propose a type of locally resonant structure involving arrays of structured coated inclusions. The coating
consists of a structural interface with beams inclined at a certain angle. Such an elastic metamaterial supports
tunable low-frequency stop bands associated with localized rotational modes that can be used in the design of
filtering, reflecting, and focusing devices. Asymptotic estimates for resonant frequencies are in good agreement
with finite element computations and can be used as a design tool to tune stop band changing relative inclinations,
number, and cross section of the beams. Inertial resonators with inclined ligaments allow for anomalous dispersion
(negative group velocity) to occur in the pressure acoustic band and this leads to the physics of negative refraction,
whereby a point force located above a finite array of resonators is imaged underneath for a given polarization.
We finally observe that for a periodic macrocell of the former inertial resonators with one defect in the middle, an
elastic trapped mode exists within a high-frequency stop band. The latter design could be used in the enhancement
of light and sound interactions in photonic crystal fiber preforms.
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I. INTRODUCTION

The work by Nicorovici et al. (1994)1 has developed an
analytical model analyzing optical and dielectric properties
of partially resonant systems. This was highly significant
conceptual work, which paved the way towards modeling of
metamaterial systems. In particular, Nicorovici and Milton
(2006)2 have explained important cloaking effects based on
the anomalous localized resonances. The work by Veselago
(1968)3 has provided motivation and stimulated development
of analysis towards structures possessing the property of
negative refraction. Following the idea of Pendry et al. (1999)4

of split-ring resonators and implementation of the negative
refraction system by Smith et al. (2000),5 Movchan and
Guenneau (2004)6 and Guenneau et al. (2007)7 used an
asymptotic approach for a system of multiscale split-ring
resonators to evaluate the low frequencies of standing waves
and the boundaries of stop bands, which had given a simple
way to an optimal design of a multiscale metamaterial system.
Furthermore, Brun et al. (2010a, 2010b)8,9 in different config-
urations involving a formulation for elastic waves interacting
with a structured interface identified resonance trapped modes
linked to high Q-factor transmission resonances across the
structured interface.

Liu et al. (2000) provided numerical and experimental
demonstrations of locally resonant structures for elastic waves
in 3D arrays of thin coated spheres.10 This work was useful
for acoustic analogs of electromagnetic metamaterials, such as
fluid-solid composites.11 Li and Chan independently proposed
a similar type of negative acoustic metamaterial.12 In a recent
work, Fang et al. experimentally demonstrated a dynamic
effective negative stiffness in a chain of water-filled Helmholtz
resonators for ultrasonic waves.13

In 2006, Milton, Briane, and Willis provided a thorough
mathematical frame for such effects including cloaking for

elastodynamic waves,14 shown numerically for an annular
cloak in Ref. 15 with an alternative model. Milton and
Norris independently furthered the theory of acoustic cloaking
analyzing the underlying continuum elastodynamic governing
equations.16,17 Such neutral inclusions have also been studied
in the elastostatic context using asymptotic and computational
methods in the case of antiplane shear and in-plane coupled
pressure and shear polarizations.18

Cummer and Schurig demonstrated that acoustic waves
in a fluid also undergo the same geometric transform for a
2D geometry,19 which has been since then generalized to 3D
acoustic cloaks for pressure waves.20,21 Such cloaks require an
anisotropic mass density unlike the acoustic cloak for linear
surface water waves studied experimentally and theoretically
in Ref. 22. Demonstration of a design of a focusing flat
lense via negative refraction for surface water waves has been
published in Refs. 23–25 and focusing in a 3D phononic crystal
was modeled in Ref. 26. The extension of these phenomena
to the area of in-plane elastodynamic waves is a further
challenge, with some recent advances27–30 including a first
design of a convergent flat lens using structural interfaces in
Ref. 9. Interestingly, achieving focusing of flexural waves in
perforated elastic plates is far less challenging.31

Cellular lattice structures with low natural frequency were
introduced in Refs. 32 and 33, inspired by the molecular model
described by Wojciechowski.34 Their static and dynamic
behavior was successively analyzed in Refs. 35 and 36. In
such lattice structures the Lamé constants and the density are
of several orders of magnitude smaller than the corresponding
physical quantities of the constituent material composing
the microstructure. As detailed in Ref. 32 applications in
packaging, low-density cores, filters, and insulation depend on
the quasistatic properties of these materials and hence would
significantly change with the alteration of volume fraction of
a periodic system.
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In the present paper, we propose a structured medium
where the average mass density and the elastic constants
are of the same order as the constituent material, and
where a periodic system of torsional resonators can be
tuned to achieve low-frequency standing waves and stop
bands. We also show that it is possible to design some
tunable locally resonant metamaterial for in-plane elastic
waves which serves two purposes: focusing flat lens and
defect localization for low-frequency phononic band gap
guidance. We demonstrate theoretically their mechanism and
further perform finite element computations checked against
asymptotic formulas. Potential applications are in medical
imaging and photonic fiber preforms for optoacoustic switches
via Brillouin scattering,37,38 but also in passive anti-earthquake
systems (thanks to low-frequency elastic stop bands).

II. SETUP OF THE SPECTRAL PROBLEM

Time-harmonic propagation of in-plane elastic waves is
considered. The equations of motion are expressed in term
of the displacement field u(x,t) = U(x)eiωt in the point x =
(x1,x2) at time t where ω is the radian frequency and u =
(u1,u2), U = (U1,U2). The vector Navier equations can be
expressed in the form

μ̂(x)∇2U + [λ̂(x) + μ̂(x)]∇(∇ · U) + ρ̂(x)ω2U = 0, (1)

with density ρ̂(x) = χ (r)(x)ρ(r) and Lamé constants λ̂(x) =
χ (r)(x)λ(r), μ̂(x) = χ (r)(x)μ(r), where χ (r)(x) is the indicator
function which is equal to 1 in phase r and 0 otherwise and
λ(r), μ(r), and ρ(r) the material parameters in the phase r .

The elementary cell of the periodic structure includes a
void containing a resonator as shown in Fig. 1. The resonator
consists of a core region at the center and uniformly distributed
thin ligaments. It is noted that the orientation of ligaments
is not radial, and hence rotation of the core region leads to
compressive or tensile radial stress on the boundary of the void.
In other words, such a system provides a coupling between
shear (due to rotation) and pressure (due to radial stress) at the
boundary of the void.

FIG. 1. Structural interface for a circular inclusion �+

in a continuum medium �−. The beams have length l =√
R2

i + R2
e − 2ReRi cos γ , thickness s, and relative inclination η =

π/2 − γ − α. (a) Simplified model for the asymptotic approximation.
(b) Detail of the geometrical parameters.

We are looking for real positive eigenfrequencies ω

associated with nontrivial solutions of (1) in the class of
Floquet-Bloch vector valued functions

U(x1 + md,x2 + nd) = U(x1,x2)ei(k1md+k2nd), (2)

where k = (k1,k2)T is the so-called Bloch vector describing
the first Brillouin zone Y ∗ = [−π/d,π/d]2, counterpart of the
basic cell Y = [−d,d]2 in the reciprocal space. Moreover, m

and n are integers indexing a node of the lattice in reciprocal
space, and d is the pitch of the array in physical space. We
note that Y ∗ can be reduced to the right-angled triangle �MX

with vertices � = (0,0), M = (π/d,0), and X = (π/d,π/d),
if the geometry of the problem is fourfold (as in the present
case).

The paper presents an outline of the dynamic coupling
between shear and pressure in the boundary conditions. It is
noted that the orientation of the inclination of the ligaments
within the interface affects the direction of rotation of the core
region and hence the coupling between the shear and pressure
waves. Furthermore, the numerical model is developed to
analyze the dispersion of coupled in-plane pressure and shear
waves propagating within an array of inclusions.

III. ASYMPTOTIC ESTIMATES FOR A
SINGLE RESONATOR

The inertial resonator is shown in Fig. 1. For convenience,
we assume that the inclusion at the center is taken as rigid and
the N inclined connecting bars are elastic massless beams or
trusses. The geometrical parameters are shown in Fig. 1(b).

We are concerned with a class of standing waves in a
periodic system containing inclusions with the structured
coating. The vibration modes in this simplified mechanical
model are obtained via the introduction of the rotation
angle δ(t). Let ur and uδ denote the radial and tangential
displacements on the contour of the void. Direct derivation
shows that the rotational motion of the core region is governed
by the differential equation

δ̈ + ω2
0δ = ω2

0

Ri cos η
(uδ sin α − ur cos α), (3)

with geometrical parameters α, η, and Ri defined in Fig. 1(b)
and vibration frequency

ω0 =
√

2κ/M cos η. (4)

Here M is the mass of the central core region, κ = EA/l is
the total longitudinal stiffness of inclined bars, E is Young’s
modulus, l is the beam length, and A = NAs is the total
cross-sectional area of the N bars with the cross section As

and thickness s. We note that ω0 vanishes when the connecting
bars become radial, which corresponds to the degenerate
case, where flexural deformation of the bars has to be taken
into account, and the eigenfrequency of the corresponding
vibration mode is substantially reduced.

Direct calculations show that the averaged tractions tn and
tδ on the contour of the void are given by

tn = κδRi cos η cos α

2πRe

, tδ = −κδRi cos η sin α

2πRe

, (5)
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and hence the coupling between the tangential and normal
tractions is defined as

tδ = −tn tan α, (6)

where α �= 0 for the nondegenerate interface with inclined
bars. A resonance mode, corresponding to the case when
ω → ω0, is of special interest. In this case, the function δ(t)
satisfies δ̈ + ω2

0δ = 0, and hence the displacements on the
contour of the void are related by

uδ tan α = ur . (7)

Equation (3) shows the coupling between the radial com-
pression/extension along the boundary of the void and the
rotation of the central core. In the special case of the radially
symmetric resonance mode of frequency ω0, the effective
boundary conditions, which show coupling between the shear
and tensile deformations on the contour of the void, are given
by (6) and (7). The above deductions are applicable for the
nondegenerate case, when α �= 0, and they fail otherwise.

When the system in Fig. 1 degenerates, as α → 0, the
flexural deformations of the connecting beams have to be taken
into account in order to evaluate the resonance frequency of
the resonator. In the corresponding asymptotic approximation
of the first eigenfrequency, it is feasible to assume the circular
contour as rigid, as shown in Fig. 1(a). The kinetic energy of
this mechanical system is

K(t) = 1

2

MR2
i

2
δ̇2(t), (8)

whereas the potential energy, referred to the structured beam
interface only, is

P(t) = 1

2
κ

[
R2

i cos2 η + s2

3l2

(
3R2

i sin2 η + 3Ril sin η + l2)]
× δ2(t). (9)

Then, the Euler-Lagrange equation, deduced from Eqs. (8)
and (9), corresponds to the balance of angular momentum for
the rigid inclusion, and it takes the form

M R2
i

2
¨δ(t) + κ

[
R2

i cos2 η + s2

3l2

(
3R2

i sin2 η

+ 3Ril sin η + l2
)]

δ(t) = 0. (10)

Under the assumption δ(t) = �eiωt the natural frequency ω0

of the system in Fig. 1(a) is

ω0 =
√

cos2 η + s2

3l2

(
3 sin2 η + 3

l

Ri

sin η + l2

R2
i

)√
2κ

M
.

(11)

The eigenfrequencies, estimated in (4) and (11), can
be efficiently tuned by changing geometric and material
parameters of the composite, such as relative inclinations,
number, and cross section of the beams. We shall see in the
sequel that the asymptotic estimate (11) predicts with a good
accuracy the frequency corresponding to a localized rotational
mode within a square array of inertial resonators (IRs).

Although the formulas (4) and (11) are derived on the
basis of an asymptotic model of a single resonator, this is

exactly what is required for analysis of a standing wave
on an elementary cell of a doubly periodic structure. The
vibration modes for such a standing wave are localized, so
that on the boundary of the elementary cell of periodicity the
amplitude of displacements is negligibly small compared to
the displacement amplitude within the rotational resonator.

IV. NUMERICAL SIMULATIONS

We now investigate numerically the stop band properties of
a periodic structure consisting of inertial resonators (IRs) when
the beams make either a large or a small angle with the normal
to their circular boundaries. We shall see that in the former
case the lowest resonance of IRs induces a nearly flat band
in the high-frequency range (Bragg regime), so that the array
can be considered as a bare phononic crystal. However, in the
latter case the lowest resonance of IRs opens a low-frequency
stop band in a way similar to what split ring resonators achieve
for electromagnetic and acoustic waves in metamaterials.

Stop bands for arrays of inertial resonators. Let us first
look at the case of a structure with voids shaped as shown
in Fig. 2(b). For convenience, we use the normalized Lamé
constants λ = 2.3, μ = 1, which correspond to a Poisson ratio
ν = 0.3485 common for many elastic materials, a Young’s
to shear modulus ratio E/μ = 2.6966, a density ρ = 1, so
that the shear wave speed is vs = √

μ/ρ = 1. We notice the
presence in Fig. 2(a) of a nearly flat dispersion curve (depicted
in light gray dashed line) for which the the group velocity
∂ω/∂k vanishes: This is a standing wave of normalized
frequency ωr = ω d/vs = 3.59 for k = (0,0) and ωr = 3.61
for k = (π,π ), with d/vs = 1. The associated eigenfield is of
rotational nature, as can be seen from right panel of Fig. 2.
The frequency estimate deduced from Eq. (4) leads to the
value ω0 ∼ 3.78 since η = π/3; the total longitudinal stiffness
of inclined bars is κ = 2.6966 × 8 × 0.05/0.3 μ = 3.5954 μ

and M = π 0.22 ρ = 0.1257 μ . This localized mode occurs
at a frequency within the stop band corresponding to a doubly
periodic array (of period d) of voids of radius Re = 0.4.

We now want to tune down the stop band of the meta-
material. For this, we consider a small inclination of the
ligaments (i.e., beams) within the inertial resonators. We
observe a rotational mode at normalized frequency ωr =
2.60. The frequency estimate deduced from Eq. (11) leads
to the value ω0 ∼ 2.77, since η = 14π/30, s/Ri = 0.25,
l/Ri = 1.3; the total longitudinal stiffness is κ = 2.6966 ×
0.05 × 8/0.26 μ = 4.1486 μ as bars are now less inclined and
M = 0.1257 μ. We note that this localized mode occurs at
a frequency below the stop band observed for the doubly
periodic system with voids of radius Re = 0.4. These results
are reported in Fig. 3, where it should be noted that the
matrix material surrounding the inertial resonator is subjected
to displacements of negligible magnitude with respect to the
inclusion and the ligaments.

Compared to the lattice system in Refs. 35 and 36, where
the effective Poisson’s ratio is negative and the effective group
velocities of pressure and shear waves are close to each
other in the long-wave limit, our system represents the full
vector problem of elasticity where both shear and pressure
wave propagate within the medium with distinctively different
velocities. The frequency discussed in the text is rightly in the
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FIG. 2. (Color online) (a) Band diagram for a square array of inclusions (core of radius Ri = 0.2 and outer interface of radius Re = 0.4)
with eight most inclined ligaments. (b) Deformation of the elastic unit cell for the fourth eigenmode (cf. light gray dashed curve on left
diagram) when the Bloch vector is k = (π,π ). Color map indicates displacement magnitude. The rotational nature of the mode is noted, and its
normalized frequency ωr = ωd/vs = 3.71 (d is the pitch of the array and vs the shear wave speed) for a Bloch vector k = (π,π ). The rotational
frequency predicted by the asymptotic estimate (4) is ωr = 3.78. The lower edge of the first stop band is a nearly flat curve (light gray dashed
curve) which corresponds to the frequency of the localized rotational mode. The next two stop bands are shown in gray color. The blue dotted
line corresponds to the shear waves in a homogeneous isotropic medium and its intersection with the first acoustic band gives the frequency at
which all-angle-negative refraction occurs.

range of interest. This frequency can be reduced further by
increase of the mass of the resonator core or decrease of the
stiffness of elastic ligaments, if required. We also mention that
our focus is on the nondegenerate case where ligaments are
not radial and the frequency is expected to be higher. When
the ligaments become radial the rotational mode will become
degenerate, which would lead to a significant reduction of the
frequency of the angular motion.

Elastic trapped mode in a macrocell with defect. Let
us analyze a periodic macrocell consisting of 24 inclusions

arranged as in Fig. 4: This corresponds to a doubly periodic
array of defects (obtained through the removal of an inertial
resonator within a macrocell). We look at the case of IR with
most inclined beams; see Fig. 4. We find a defect mode in the
tiny stop band ωr ∈ [3.68,3.82] whose lower edge is the light
gray dashed curve in Fig. 2. This trapped mode at frequency
ωr = 3.71 is of predominant dilatational nature. The next
trapped mode occurs for ωr = 5.05, that is in the second stop
band ωr ∈ [4.95,5.09] shown in gray in Fig. 2. This trapped
mode is also of predominant dilatational nature.

FIG. 3. (Color online) Same as in Fig. 2 but for eight slightly inclined ligaments. Color map indicates displacement magnitude. The
rotational nature of the mode is noted in panel (b), and its normalized frequency ωr = 2.60 for a Bloch vector k = (π,π ). The rotational
frequency predicted by the asymptotic estimate (11) is 2.77. This mode creates a low-frequency stop band within which negative refraction
occurs.
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FIG. 4. (Color online) Macrocell consisting of 24 inclusions as
in Fig. 2, whereby the central inclusion has been removed, leading
to trapped modes associated with flat dispersion curves in the stop
bands of the periodic structure. The first two trapped modes belong
respectively to the stop band whose lower edge corresponds to the
red curve and to the tiny stop band shown in gray in Fig. 2. (a), (c)
Dilatational component ∂u1/∂x1 + ∂u2/∂x2 for a trapped mode at
frequency ωd/vs = 3.71 (a) and 5.05 (c). (b), (d) Shear component
0.5(∂u1/∂x2 + ∂u2/∂x1) of the trapped modes at frequency ωd/vs =
3.71 (b) and 5.05 (d). We note that the two trapped modes have a
predominant dilatation component.

Focusing effects for an array of resonators. We show the
focusing effect for arrays of inertial resonators. The focusing
effect can be split into two categories: all-angle negative
refraction whereby the array of IRs display an anomalous
dispersion leading to a negative group velocity in certain
directions (a phenomenon existing in phononic and photonic
crystals; see, for example, Ref. 39), and genuine negative
refraction whereby the focusing effect does not depend on
the crystal lattice orientation (it occurs upon resonance of
the IRs). The latter can be classified as a real acoustic
metamaterial.

We analyze here the lensing effect achieved due to the
anomalous dispersion corresponding to the acoustic bands, in
a neighborhood of an intersection of the thick dashed line
with the first band in Fig. 2. We consider a concentrated point
force located near a finite array of resonators with inclined
ligaments, and observe an image formed on the other side,
according to the inverted Snell-Descartes laws of negative
refraction in Fig. 5. Both cases, of vertical and horizontal
point forces, are considered, which give different patterns of
negative refraction.

V. CONCLUDING REMARKS AND PERSPECTIVES

We have proposed a type of structural element in order
to design elastic metamaterials controlling the trajectory of
in-plane coupled shear and pressure waves. The anisotropic

FIG. 5. (Color online) Plot of the magnitude of displacement
field for a point force of polarization (1,0) [(a), (c)] and polarization
(0,1) [(b), (d)] located above an array of 53 inertial resonators with
markedly inclined ligaments [(a), (b)] or within an homogeneous
elastic medium [(c), (d)] at frequency ωd/c = 2. The lensing effect
in panel (a) and the neutral inclusion effect in panel (b) are noted:
The array behaves as a negatively refracting slab lens for pressure
waves and as an invisible slab (i.e., a perfectly matched layer) for
shear waves. The computed image resolution is about a third of
the wavelength (i.e., not subwavelength as is usually the case for
a phononic crystal).

heterogeneous elastic coating with each structural element
can be modeled as a structural interface. Depending on the
inclination of beams inside the coating, the overall behavior of
the array of inertial resonators resembles that of a metamaterial
(with a low-frequency stop band) which can be used in the
design of antiseismic structures (thanks to low-frequency stop
bands). In the periodic structure discussed here, the angle
between the ligaments and the radial directions is a free control
parameter, that enables one to fine tune the system to achieve
band gaps and negative refraction within the required range
of frequencies. There is a distinction between two different
configurations of radial and nonradial elastic ligaments, with
a substantial reduction of the resonance eigenfrequency in the
degenerate case when the ligaments are radial. The coupling
mechanism between the pressure state in the matrix and the
shear stress induced by the rotation of the core resonator is
fundamentally different from the one which occurs in a chiral
lattice. The asymptotic formulas derived here for frequencies
of standing waves and boundaries of stop bands are new and
essential for an optimal design of a metamaterial structure.
The microstructured system can also be tuned so that the
localized rotational modes have frequencies within the Bragg
stop band of an array of voids. Then a standard algorithm
can be implemented to get trapped modes inside defects of
a phononic crystal fiber and use the enhanced interactions of
light and sound inside the defects to design fast optoacoustic
switches.37
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