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Making use of the energetics and equations of state of defective uranium dioxide that are calculated with
first-principles methods, we demonstrate the possibility of constraining the formation energy of point defects by
measuring the transition pressures of the corresponding pseudo phase of defects. The mechanically stable range
of fluorite structure of UO2, which dictates the maximum possible pressure of relevant pseudo phase transitions,
gives rise to defect formation energies that span a wide band and overlap with the existing experimental estimates.
We reveal that the knowledge about pseudo phase boundaries can not only provide important information on
energetics that is helpful for reducing the scattering in current estimates, but also be valuable for guiding
theoretical assessments, even to validate or disprove a theory. In order to take defect interactions into account
and to extrapolate the physical quantities at finite stoichiometry deviations to that near the stoichiometry, we
develop a general formalism to describe the thermodynamics of a defective system. We also show that it
is possible to include interactions among defects in a simple expression of a point defect model (PDM) by
introducing an auxiliary constant mean field. This generalization of the simple PDM leads to great versatility
that allows one to study nonlinear effects of stoichiometry deviation on materials’ behavior. It is a powerful tool
to extract the defect energetics from finite defect concentrations to the dilute limit. Besides these, the full content
of the theoretical formalism and some relevant and interesting issues, including reentrant pseudo transition,
multiple-defect coexistence, charged defects, and possible consequence of instantaneous defective response in a
quantum crystal, are explored and discussed.
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I. INTRODUCTION

Defects usually play a prominent role in various properties
of a solid. For this reason, the physics and chemistry of defects
have been the subjects of much study for several decades.1

Many of these works focused mainly on the dilute limit, i.e.,
with a small defect concentration. This is the case of interest
in doped semiconductors and/or compounds in the immediate
vicinity of the stoichiometry. At certain conditions (usually
with high temperature) deviation from the stoichiometry can
span over a wide range of chemical composition. Binary
oxides CeO2 and UO2 represent the paradigms for such
kind of nonstoichiometry in the fluorite-related structures,
and many others exist as well.2 For a comprehensive un-
derstanding of these materials, knowledge from just near the
stoichiometry is insufficient. This is because many physical
quantities depend strongly on nonstoichiometry, and exhibit
quite different behavior when at finite deviations. On the other
hand, defects at high pressure have received little attention so
far, and our knowledge about their general behavior at highly
compressional conditions is very limited, in spite of the fact
that they are crucial for Earth modeling and for planetary
evolution description, where plenty of defects present a variety
of nonstoichiometric minerals in the interior of these celestial
bodies. The capability to capture correctly the energetics and
other physical properties across the whole stoichiometry range
at different temperature-pressure conditions is an essential
requirement for the purpose of predicting and controlling the
behavior of these complex materials. Nevertheless, a general
theoretical method for this purpose is still elusive.

Even at ambient conditions and near the stoichiometry, our
understanding about nuclear oxides such as UO2 and (U,Pu)O2

is also limited and unsatisfactory.2 Although there are many
papers and reports that have been published on various aspects
of diffusion in these oxides, a reasonable level of understanding
has been reached only in the case of oxygen, from which the
formation energy of the oxygen Frenkel pair can be deduced
when the migration energy of the corresponding diffusion pro-
cess is known.2–6 Nevertheless, measuring oxygen diffusion
in stoichiometric oxides is difficult because of the need to
maintain the stoichiometry, which is almost impossible for
a large temperature range.3 The difficulty also lies in the
interpretation of available experimental data. While theoretical
calculations can be applied to individual processes, transport
and other data often correspond to a superposition of several
entangled processes and make extraction of the desired infor-
mation complicated.4–6 In addition to chemical diffusion and
self-diffusion, electrical conductivity5 and neutron scattering7

have also been performed to measure the defect concentrations
and formation energies. In all of these experiments, a poor
understanding of the experimental conditions, as well as
the inherent difficulties in the measurement and subsequent
interpretation of data, has caused dispersed results.3,6,8

There are also very few experimental data existing for cation
defects in nuclear oxides.3 For example in UO2, only crude
estimates of the activation energy for uranium self-diffusion
and migration energy of uranium vacancy are available. With
the aid of a point defect model (PDM), one can extract the
Schottky defect formation energy from these estimates. But
since a great uncertainty remains in the experimental data, the
reliability of the derived value is doubtful.8

Progress in density functional theory of electrons and in
computational algorithms make it possible to calculate the
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relevant energetics directly from quantum mechanics. Such
kind of first-principles methods have provided better data
than previous semiempirical interatomic potentials, and are
comparable to experimental measurements. The electronic
structures,9–11 structural phase transformations12,13 and equa-
tions of state (EOS),13–15 oxygen diffusion,16–18 and some
defect clustering structures18–22 have been modeled. Unfortu-
nately, this advance has never reached a satisfactory level for
defect energetics, even though much effort has been devoted
to it.8,19,20,23–32 It cannot even reproduce the experimental
fact that oxygen defects dominate the whole stoichiometry
range.8,20 Also one should note that including oxygen clusters
can give rise to the expected predominance of oxygen
defects,14,21,22 but its relevance to the experimentally measured
defect formation energy is unclear.32 This discrepancy among
experimental and theoretical results might be due to the
limited accuracy of the theoretical assessments, for example
the possible metastable electronic states that could be en-
countered in calculations of strongly correlated materials,33–36

the approximation employed to treat the partially localized 5f
orbitals,37–41 the variation of the charge state of defects,29–32

and the small size of the simulation cell for defective structure
modeling that is currently accessible. All of these might
render uncertain error in the final results. But this also can
arise from the error lying in the experimental estimates that
are widely used as the benchmark for theoretical modeling:
The data are scattered and not fully self-consistent, and in
some cases these estimated data cannot reproduce the fact
of the predominance of oxygen defects, too.3,6,8 This makes
the problem entangled and very hard to treat. Therefore any
approach that can constrain the defect energetics and reduce
its uncertainty is of decisive help for solving the problem.

In this report, we investigate the possibility of a such
kind of method by examining the physics that governs
the pressure-driven pseudo transitions15 between different
defect species. By establishing a theoretical relationship of
the pseudo phase boundary on defect formation energies,
we show that strict constraints can be imposed on these
energy parameters, which might then be used to refine the
experimental estimates. To achieve the final goal, however, one
has first to measure the curve of pseudo transition pressures
and obtain accurate equations of state of defects, and then
make use of the theoretical method that we will present
below, to get reliable estimate of defect formation energies.
In this sense this report is the first step—but also the most
important step—towards this accomplishment. By developing
the theoretical basis of this constraining procedure, it not
only provides us a new angle to understand the long-standing
problem, but also establishes a general method in treating
highly defective materials under high pressures. For the
clarity of discussion, we will first present a simple theoretical
framework using PDM that is intuitive and easy to understand,
and then a generalization to the general case will be made.

In Sec. II we discuss the PDM that allows us to calcu-
late the pseudo phase diagram of point defects, and then
establish a relationship between pseudo phase boundary and
defect energetics. Using this powerful tool, the influence of
intrinsic defect formation energy on pseudo transition is then
investigated in Sec. III. The obtained information represents
a constraint on the possible value of the formation energy

of the defects. Though our discussion is mainly focused on
uranium dioxide in this paper, we also extend the investigation
by considering virtual models to explore other interesting
phenomena such as reentrant pseudo transition and multiple-
defect coexistence, in Sec. III B. It is well known that PDM
does not take defect-defect interactions into account and can be
applied to only the vicinity of the stoichiometry. In order to deal
with highly defective regions and extrapolate the energetic and
thermodynamic information obtained at finite stoichiometry
deviations to the dilute limit, a general formalism that can treat
defect interactions is developed in Sec. IV. This generalization
is necessary for a realistic description of the nonlinear depen-
dence of thermodynamic properties on nonstoichiometry. A
brief discussion and remarks on charge state of defects, as
well as other relevant issues, are then given in Sec. V, which
is followed by a summary of the main conclusions.

II. SIMPLE THEORETICAL FRAMEWORK

At dilute limits where defect concentration is negligibly
small, imperfectness in crystal has little impact on ther-
modynamic and mechanical properties, despite a profound
modification on electrical conductivity and/or magnetism that
might often occur. At large stoichiometry deviation, the defect
concentration is governed by the ratio of chemical composi-
tions rather than by thermal excitation; therefore the density of
defects could be enormous. In this case, noticeable influence
on general thermodynamic quantities can be expected, so as
on relevant mechanical properties.

To understand the general effects of nonstoichiometry on a
material’s behavior, we require a physical model that expresses
the defect density as a function of external conditions—
usually the hydrostatic pressure and temperature—and how
the presentation of defects modifies thermodynamic functions
such as enthalpy or Gibbs free energy. Having such a function
that incorporates defect effects, all relevant thermodynamic
properties can be derived straightforwardly. In this section we
first present the basic picture by considering the simple PDM.
A general formalism will be developed in Sec. IV.

In the PDM,3,42 the spatial size of an individual defect is
assumed to be of zero dimension, and all interactions among
them are neglected. In this simple model, defect concentrations
are determined by the corresponding formation energy of
isolated defects. Considering a structure that contains one
defect of type i, its Gibbs free energy can be written as

Gi(P,T ) = Ec(V ) + Fph(V,T ) + PV, (1)

in which P , T , and V stand for hydrostatic pressure, tem-
perature, and volume of the simulation cell, respectively. The
cohesive energy at zero kelvins in static approximation reads

Ec(V ) = −D + 9

8
B0V0

[(
V0

V

)2/3

− 1

]2

(2)

when expressed in Birch-Murnaghan equation (other EOS
models can be used as well). Here variables with subscript
0 denote the corresponding value in the equilibrium condition
of zero pressure, and B is the bulk modulus. The contribution
of lattice dynamics to the free energy can be approximated in
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the Debye model as

Fph(V,T ) = 3kBT ln[1 − exp(−�D/T )]

− kBTf (�D/T ) + 9
8kB�D, (3)

where kB is the Boltzmann constant and f the Debye function.
The Debye temperature can be evaluated approximately by43,44

�D = �
p

D

[
BMp

BpM

(
v

vp

)1/3]1/2

. (4)

Here the superscript p denotes the reference state (here the
defect-free UO2), v is the effective volume per atom, and
M is the effective atomic weight. The parameters in these
equations, namely D, B0, and V0, can be obtained by fitting to
ab initio results of density functional theory, while �

p

D can be
taken from x-ray diffraction measurement.45,46 The details of
determining the value of these parameters have been discussed
and presented in Ref. 14.

Having known Gi , the formation Gibbs free energy (FGE)
of intrinsic point defects can be constructed. For example, the
FGE of a Frenkel pair (FP) of species X is then expressed as

�GX FP = GN−1
Xv

+ GN+1
Xi

− 2GN, (5)

and for the Schottky defect (S) as (taking UO2 as the example)

�GS = GN−1
Uv

+ 2GN−1
Ov

− 3
N − 1

N
GN. (6)

Here N denotes the number of atoms in a defect-free cell and
GN is the corresponding Gibbs free energy; GN±1

Xv,Xi
is the Gibbs

free energy of the cell containing the respective defect. In a
closed regime where no particle exchange with the exterior
can occur, the defect concentration must satisfy8,14,20

[VO][IO] = exp

(−�GO FP

kBT

)
, (7)

[VU][IU] = exp

(−�GU FP

kBT

)
, (8)

[VO]2[VU] = exp

(−�GS

kBT

)
. (9)

The composition equation that expressed in point defect
populations is

x = 2 ([VU] − [IU]) + [IO] − 2[VO]

1 − [VU] + [IU]
, (10)

where x is the stoichiometry deviation (for example that in
UO2+x). Notice that Eq. (10) is different from the conventional
definition of

x = 2 ([VU] − [IU]) + [IO] − 2[VO], (11)

which is valid only when no cation defect is involved. We
thus complete the formalism of the PDM, in which the defect
concentrations are determined by solving Eqs. (7)–(10).

Since no interaction among defects has been taken into
account in the PDM, the total Gibbs free energy of a defective
system is a linear superposition of the contribution of each
individual defect. That is,

G ≈ G0 +
∑

i

�Gi

nref
i

ni, (12)

where G0 is the Gibbs free energy of the defect-free matrix.
The defect concentration ni runs over [IO], [VO], [IU], and
[VU], respectively, with the superscript “ref” indicating the
corresponding value in a defective reference system, and
�Gi = Gref

i − G0. From Eq. (12) thermodynamic quantities
as a function of stoichiometry deviation x can be derived.

III. PSEUDO PHASE DIAGRAM AND
PSEUDO TRANSITION

In defective crystals, distinction of the physics mainly
originates from the predominant defect species. Thanks to
the exponential dependence of defect concentrations on the
formation energy, most regions in the phase space spanned
by temperature, pressure, and chemical composition (T -P -x)
are dominated by only one type of defect. One can then use
the concept of pseudo phase to simplify the description of
defective (nonstoichiometric) materials.15 In this picture, each
pseudo phase corresponds to a region that is governed by a
homogeneous distribution of a single type of defect. Here no
effects of migration and creation or annihilation of defects
are considered, which is justified if we focus mainly on the
long-time averaged properties only.

With variation of the thermodynamic conditions of T , P ,
and x, the predominant defect might change from one type
into another; i.e., pseudo phase transition (PPT) might take
place. Physical quantities that are affected by defects also
change rapidly along this transition.15 From this perspective,
the physics of defects can be greatly simplified to that of
each individual pseudo phases and their respective behavior
at the PPT. It is thus important to understand the extent of
the control region of each pseudo phase, namely, the pseudo
phase diagram (PPD). From Eqs. (7)–(10), it is evident that
such a diagram is completely described by the energetics of
each defect. Conversely, if we know the PPD, then constraints
on defect formation energies can be established.

It is natural to define the transition point of a PPT as where
defect concentration increases/decreases to half of its saturate
value; then the corresponding pseudo phase boundary (for
example in UO2+x) is determined by

1

2x
= exp

(−�GS + 2�GO FP

kBT

)
(13)

for a transition between Uv and Oi when x > 0, and

− 2

x
= exp

(
�GS − �GU FP

kBT

)
(14)

between Ui and Ov when x < 0 (only point defects are
considered). Because all �G are functions of T and P (and
also depend on x via defect interactions, which we discarded
here but will discuss in detail below), solutions of Eq. (13)
and (14) provide a set of constraints on formation energy of
intrinsic defects.

A. Realistic system: UO2

This subsection is devoted to a realistic system of UO2,
where involved parameters are obtained by density functional
theory calculations. Since early experiments were driven by
application of UO2 as a nuclear fuel, most investigations
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FIG. 1. (Color online) Comparison of the pseudo phase diagram of UO2+x calculated with Crocombette (JPC; Ref. 32) and Geng’s (Ref. 14)
formation energies of defects. The constraints on intrinsic defect formation energies when the pseudo transition pressure is bounded between
0 and 40 GPa are also shown.

focused mainly on formation energy of intrinsic defects,
which closely relates to the parameter D in Eq. (2). To be
consistent with conventional notations, we use ES, EO FP,
and EU FP to denote the formation energy of Schottky defect,
oxygen Frenkel pair, and uranium Frenkel pair at zero pressure
and temperature, respectively. Based on the defect energetics
calculated by Geng et al. for uranium dioxide,14 the PPD on
the P -x plane is evaluated and shown in Fig. 1. It can be seen
that in the region of x < 0 an increase of temperature from
300 to 2500 K has little influence on the pseudo boundary.
However, on the x > 0 side, such a size of change in T leads
to an increase of the pseudo transition pressure about 5 GPa.
Overall, the impact of x on the PPD at the PDM level of
approximation is small, and with an opposite trend for the
hypo- and hyperstoichiometry regions.

There are a few other theoretical assessments of the defect
energetics for UO2 available in the literature.8,19,20,23–32 Un-
fortunately in most cases only formation energy at 0 GPa and
0 K were given, from which, however, one cannot determine
the pseudo transition pressure because the information about
the variation with temperature and pressure is lost. Under
an assumption that the compression behavior and phonon
contribution are the same for all of these calculations, which
is a simple but reasonable approximation, we can estimate
the corresponding pseudo transition boundary by adjusting
the D in Eq. (2) accordingly to yield the respective formation
energy at 0 GPa and 0 K using Geng’s equation of state.14

Here we choose the data of J. P. Crocombette (JPC) for the
purpose of comparison, since they are typical ones that have
considered possible charge states of defects, thus producing a
formation energy of oxygen Frenkel pair and Schottky defect

that seems in a good agreement with experimental estimates.32

By adjusting D to reproduce the ES and EO FP of JPC, we
obtained the estimated PPD of JPC’s data. Note here we have
made an assumption that the charge state of each defect is fixed
during compression or heating, and the formation energy of
the uranium interstitial was taken from Geng’s data because in
JPC’s work no value for this defect type was given.

The PPD calculated with JPC’s formation energy is drawn
in Fig. 1 for comparison. On the x < 0 side, the transition
from Ov to Ui takes place at a much higher pressure. This
is reasonable since JPC’s data have a lower formation energy
for Ov than Geng’s evaluation, which gives rise to a stronger
stability of this defect. On the x > 0 side, the uranium vacancy
was predicted to be the predominant defect at low pressure,
and the transition to Oi occurs at about 8 GPa. This result is
consistent with previous PDM evaluations at zero hydrostatic
pressure, where Uv was predicted to be the major defect
component. Nevertheless, the prevailing Uv is contradictory
to the experimental observation that the oxygen defect should
dominate this region, indicating that the experimental estimate
of the defect formation energy might be inconsistent in
itself.3,6,8 This difficulty could stem from the procedure of
extraction defect energetics from diffusion measurements.
Usually the employed physical models were very simple and
might lead to inaccurate explanation of the measured data.3–6

On the other hand, as mentioned above, PPD provides
valuable information about possible range of the defect
formation energy. For UO2, the PPT in fluorite structure (if
exists) should be bounded between a pressure range of 0 and
40 GPa, because at higher pressures UO2 transforms into
the Pnma phase,47 which is followed by an isostructural
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FIG. 2. A schematic diagram which illustrates the range of defect
formation energy that is covered by pressure-driven pseudo transition
(upper part) and the corresponding experimental estimates (lower
part) in nonstoichiometric UO2.

transition,13 and finally converges to isotropic P 63/mmc

structure12 according to recent theoretical predictions. Under
this restriction, the formation energy of intrinsic defects should
satisfy

−3.9 eV � ES − EU FP � 0.04 eV (15)

when x < 0, and

−0.07 eV � 2EO FP − ES � 8.23 eV (16)

when x > 0 for a PPT to occur between a pressure of 0 and
40 GPa. These constraints are marked in Fig. 1 together with
dashed lines that indicate the corresponding bounded range of
pressure.

Theoretical assessment explicitly suggests that Uv defi-
nitely becomes unfavorable under compressional conditions.
Therefore the experimental observation that Oi prevails in the
x > 0 region implies that there should be no PPT from Uv to
Oi at any pressures greater than zero. Then from Eq. (16) one
gets

ES � 2EO FP + 0.07 eV, (17)

which puts a strong constraint on possible value of defect
formation energies. For example the experimental estimates of
EO FP lie in between 3.0–4.6 eV and ES between 6.0–7.0 eV.3,7

If we take ES as 7.0 eV, then EO FP must be less than 3.5 eV.
This value is, however, incompatible with the most reliable
experimental assessments.4,5,7 On the other hand, if we take
the neutron scattering measurement7 of 4.6 eV as a reliable
estimate for EO FP, then ES must be greater than 9.3 eV. This
in turn disqualifies most theoretical estimates with charged
defects.29,32 In a word, all of these indicate that we need
further scrutiny on these estimates, and any alternative and/or
complemental information on defect energetics are decisive
to reach the final conclusion. The inequalities of Eqs. (15)
and (16) cover most ranges of the experimental estimates, as
shown in Fig. 2. Thus they can provide new understanding
about this issue if we can measure the compression-driven
PPT of point defects experimentally.

B. Virtual system: Model study

Defective behavior of materials at high pressure is de-
termined by the variation of defect formation enthalpy with
compression. It is also affected by possible structural tran-
sitions of the matrix. The above discussion elaborated what
might happen in a compressed nonstoichiometric UO2. In
other materials, however, much more complex phenomena can

FIG. 3. (Color online) Pressure-driven reentrant pseudo transition
of defects at 300 K and x = 0.25. Upper panel: Energy variation;
lower panel: defect concentrations.

be expected. From a theoretical perspective, it is helpful to
explore all possibilities in order to grasp the general feature of
the physics of defects. In the simple PDM approximation, the
physics is mainly determined by the parameters appeared in
Eq. (2), i.e., the value of D, B0, and V0 of each defective
configuration that were employed to derive the formation
Gibbs free energy (FGE). Therefore we can arbitrarily alter
these parameters to probe other interesting behaviors of defects
that are allowed in theory but not in the realistic UO2.

1. Reentrant transition

The first phenomenon we would like to discuss is reentrant
transition. It is a rare type of phase change even for a
conventional physical state, where one phase that has been
transformed into another reappears. On the phase diagram the
corresponding phase boundary is a reentrant curve. Analogous
phenomenon can also take place in the PPT, where the
predominant defect species first changes into another type,
and then transforms back. The condition of this transition is
completely governed by Eqs. (7)–(9). Put explicitly, if the
derived equation [Eq. (13) or (14)] has multiple solutions,
then the corresponding PPT is reentrant.

Figure 3 demonstrates a virtual dioxide compound that
has a reentrant PPT. In the upper panel, a graphical solution
of Eq. (13) is drawn where the solid line is the term of
−�GS + 2�GO FP. Another term of kBT ln( 1

2x
) is also shown

as a dashed line in the figure. The points of intersection A and
B correspond to the solutions of Eq. (13), which also are
the locations where the PPT takes place. In the lower panel,
the change of defect concentrations along compression is
illustrated, from which one can clearly see that cation vacancy
reappears at higher pressures.

It is necessary to point out that this result was obtained
by subtracting 145 GPa from the bulk modulus of all
defective UO2 configurations and thus might be an artifact.
Nevertheless, such a virtual model can help us acquire a
profound understanding of a material’s behavior that has
reentrant PPT, if it exists. The resultant modifications on
the EOS and thermodynamic properties across this transition
region are interesting. Figure 4 illustrates the compression
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FIG. 4. Isothermal compression curve of a reentrant PPT as
showing in Fig. 3. Inset: The relative variation of thermal expansivity.

behavior of the same PPT as in Fig. 3, in which the restoring
of the compression curve at the high pressure end is evident.
There are two volume collapses in the reentrant PPT at points
A and B, respectively. Between A and B, the curve is steeper.
This is consistent with the requirement for a pressure-driven
reentrant transition to occur; namely, the intermediate phase
should have a larger bulk modulus and a smaller equilibrium
volume. This condition guarantees a double volume collapse
along compression, which is a necessity for a first-order
reentrant transition. Other thermodynamic properties also
show a discontinuous or quasi-discontinuous jump at the PPT
points. The inset in Fig. 4 draws the relative variation of
thermal expansivity α with respect to its initial value along
the 300 K compression curve. It deviates from the trend of
the initial phase (as the dashed line shows) at point A and
plunges to a new value, but at point B it jumps back to the
previous curve, a key feature of the reentrant transition. Other
physical quantities, such as specific heat and compressibility,
demonstrate similar characteristics.

2. Coexistence of defects

The picture of pseudo phase of defects is only valid when
the dominating region of the associated defect type is well
defined. For point defects at low temperature, it is usually
the case. However, with elevated temperature and/or when
complex defect clustering is involved, competition might lead
to coexistence of different defect species, where the notation
of pseudo phase could lose its physical importance.

For realistic UO2, pseudo phase can always be defined,
whether oxygen clusters (e.g., the COT-o cluster) are involved
or not. At high temperatures, the zone of the pseudo phase
boundary becomes wide, and renders the PPT as a smooth
crossover.15 In spite of this, the material behavior still can
be understood within the framework of pseudo phase. In some
conditions, however, a situation that one defect species appears
but never gains the dominant role might be possible. This
will completely invalidate the picture of pseudo phase, and a
detailed analysis of defect concentrations becomes necessary

FIG. 5. (Color online) Multiple-defect coexistence at 300 K and
x = 0.25; see text for details.

(in contrast to this, the defect concentrations are determined
by stoichiometry deviation if pseudo phase can be applied).

An example of this is presented in Fig. 5, which was
generated with JPC’s formation energy data.32 In addition to
that, the value of the COT-o cluster14 was also reduced by
4.865 eV; namely, we have artificially decreased the stability
of oxygen clusters. The result is that oxygen interstitial Oi gets
some promotion, but not enough to become the major one, and
persists only within a narrow pressure range. It is evident from
Fig. 5 that in this virtual system Ui and COT-o (at least for
most pressure ranges) can be depicted using pseudo phase, and
there is a PPT from Ui to COT-o at a pressure of 7 GPa. On the
other hand, Oi , which appears from 20 to 50 GPa, depletes
the concentration of COT-o slightly. But it never gains
dominance, and the phenomenon must be taken as a defect
coexistence rather than being a PPT. To understand the
difference between these is crucial for a correct description
of defective materials using the concept of pseudo phase.

IV. DEFECT INTERACTIONS

The above discussion is based on the approximation of
PDM, which is valid at the dilute limit. With an increase of
defect concentrations, however, interaction between defects
becomes significant. This could lead to a severe deviation from
the prediction of PDM. On the other hand, non-stoichiometry
might affect the EOS and energetics of defects, thus modify
the PPD. To obtain the correct defect behavior near the
stoichiometry, a close cooperation between experimental
measurements and theoretical analysis is necessary. For that
purpose, a thorough and comprehensive understanding of
defect interaction is crucial. This is because with such accurate
information, we can deduce the formation energy at the dilute
limit from the measured PPD at finite stoichiometry deviations.
It is worth mentioning that the same extraction procedure can
be done using the simple PDM, but the resultant error is usually
quite large. In this part of the paper, we will first derive a
general formalism that includes defect interactions, and then
we will show that the conventional PDM can be adapted to
take these interactions into account effectively with a simple
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constant mean-field approximation, which greatly expands the
applicability of the PDM.

A. General formalism

If one is interested mainly in macroscopic properties of a
defective material averaged over a long enough time scale,
the most important contribution comes from defects in static
distributions. For a classical crystal at finite temperature, de-
fects have nonzero probability of migrating between available
sites. This alters the dynamics and transport property of the
system. Nevertheless, diffusion does not modify the overall
macroscopic properties very much as long as the distribution
of defects is still in an equilibrium state. This is because
migration is a transient process and most of the time defects
are trapped in their equilibrium sites. In a migration process,
defects induce dynamic deformations in the local lattice, and
scatter with phonons. This effect might drive phonons away
from equilibrium distribution. However, considering that this
change is very small compared to thermal fluctuations and our
interested time scale is many orders longer than the phonon
relaxation time, it is justified to ignore this effect.

The main assumptions in the theory include the following:
(a) We work on a lattice model, (b) only static distribu-
tion of defects is considered, (c) the distribution must be
homogeneous, (d) dynamic effects due to defect migration
are ignored, (e) no defect creation and annihilation are
considered, and (f) when defect clusters are involved, taking
them as single objects, namely, ignoring association and/or
dissociation effects.

With these assumptions, let us consider a grand-canonical
ensemble on a lattice in which the number of particles
fluctuates around the average value. Assume there are in total
K sublattices, which are occupied by M species of particles.
Using Nm

i denotes the number of the mth kind of particle that
is siting on the ith sublattice, where i can take any value from
1 to K and m varies from 1 to M . It is evident that each system
in the ensemble is characterized by the occupation of particles
on the lattice, and thus the ensemble can be grouped according
to {Nm

i }. That is to say, each system can be labeled uniquely
by a set of {Nm

i } together with an auxiliary index s, where s

runs over all possible configurations that has the same {Nm
i }.

In this way, if using ρq denotes the probability of configuration
({Nm

i },s) in the ensemble, where ({Nm
i },s) has been shortened

as q for brevity, then the Gibbs free energy of the ensemble is

G =
∑

q

[ρqFq + kBTρq ln(ρq)]. (18)

Here F is the Gibbs free energy of an individual configuration,
and the contribution of configurational entropy has been
separated out and presents as the second term in Eq. (18). The
thermodynamically equilibrium state is achieved when G takes
a minimum. The normalization condition requires

∑
q ρq = 1.

If Nm denotes the total number of the mth particle in the
ensemble, then Nm = ∑

i

∑
q Nm

i ρq . Introducing Lagrange
multipliers μm and λ, the minimization equation of G becomes

δG

δρq

+
∑
m

μm

δ
(
Nm− ∑

i

∑
q Nm

i ρq

)
δρq

+ λ
δ
(
1− ∑

q ρq

)
δρq

= 0.

(19)

Making use of Eq. (18), this leads to

ρq = exp

(−Fq + ∑
i μmNm

i

kBT

)/
�, (20)

where the partition function � = ∑
q exp(−Fq+∑

i μmNm
i

kBT
). It can

be shown that μm is just the chemical potential of the mth
type of particle. The free energy of the qth configuration, Fq ,
which consists of the cold crystal energy at 0 K and phonon
contributions to the internal energy and entropy (as well as
a term of PV , if at finite pressure), can be calculated with
modern first-principles methods. Since defects in an individual
configuration manifest as an imperfect occupation of the lattice
sites, the equilibrium thermodynamics of defects is therefore
completely described by Eq.(20), in which the contribution of
defect interactions arises from Fq .

When the energy scale of temperature is much smaller than
the formation energy of defects, which usually is the case
for most applications, the partition function is dominated by
the perfect occupation (i.e., the ground state), namely � �
exp(−F0+

∑
i μmN0

m
i

kBT
), where the subscript 0 denotes the ground

state. In this situation Eq. (20) reduces to

ρq = exp

(
− �G

kBT

)
, (21)

where the FGE of configuration q is given by �G = Fq −
F0 + ∑

i μm(Nm
i − N0

m
i ) = �F + ∑

i μm�Nm
i . For a single

point defect �N = ±1. Thus the FGE of intrinsic defects
such as Frenkel pairs and Schottky defects can be derived
straightforwardly from Eq. (21), and has the same form as
Eqs. (5) and (6). Furthermore, equations similar to PDM
[Eqs. (7)–(9)] also can be constructed easily using Eq. (21),
indicating that the simple formalism of the PDM is much more
flexible than what was originally proposed.

It is necessary to point out that for a system defined on a
lattice, there is an orthogonal and complete basis set called
correlation functions, which are an alternative but powerful
representation of all possible occupation configurations of
particles on the lattice using increasingly complex point
sets ranging from a single point to nearest pairs and bigger
clusters.48 Any functions defined on the lattice can be expanded
with such a basis. For defective crystals, the matrix and intersti-
tial sites define such a lattice naturally. If we further introduce
a special species of white atom, and regard all vacancies as
those occupied by white atoms, then such orthogonal and
complete correlation functions ξ can be defined. In this way,
the probability for a configuration to appear becomes

ρq =
∑

j

Yq,j ξj , (22)

and the Gibbs function of Eq. (18) can be rewritten as

G =
∑

j

vj ξj − T Sc, (23)

with the configurational entropy given by Sc =
−kB

∑
q[(

∑
j Yq,j ξj ) ln(

∑
j Yq,j ξj )], and the interaction

strength of cluster vj = ∑
q FqYq,j . It is obvious that Eq. (23)

has the same form as the theory for alloys.49–51 Namely, both
alloying and defects on a lattice can be described by the
same unified theoretical framework. Within this method, the

174107-7



HUA Y. GENG, HONG X. SONG, AND Q. WU PHYSICAL REVIEW B 87, 174107 (2013)

interaction strength of clusters can be evaluated with cluster
expansion method using ab initio total energy calculations,52

and the configurational entropy may be evaluated by the
cluster variation method.53

B. Effective point defect model

For a point defect on an infinitely large lattice (the dilute
limit), the formalism discussed above naturally leads to the
conventional PDM.3,42 When defect concentration is finite but
interaction between the defects is weak and can be ignored
safely, the same conclusion holds. This is because for a
configuration containing y noninteracting point defects, the
corresponding FGE is just y times that of a single one, and then
Eq. (21) gives rise to ρqy

= (ρq1 )y , which is exactly the result of
PDM. Alternatively, for noninteracting defects, the presence of
a defect has no influence on others, and we therefore can isolate
a defect by cutting it and the associated local lattice out from
the matrix, and then extend the surrounding lattice to an infinite
range. This operation keeps the defective behavior. It maps
noninteracting defects with finite concentrations onto a group
of systems at the dilute limit, which justifies the application of
the PDM.

When interactions between defects are substantial, it is al-
most impossible to isolate a defect from others. At a condition
that the distribution of defects is homogeneous, however, we
can approximate the interaction by a constant mean field. In
this approximation, the defects and the associated local lattice
environment that are cut out from the matrix keep the original
size, and are subject to a field that takes a role of modeling the
interactions with other homogeneously distributed defects that
have been removed. To construct accurately an environmental
field of such kind is difficult, if not impossible. For practical
purpose, we may simplify it by using regularly distributed
defects to simulate the field approximately. This sacrifices the
rigidity of the theory, but makes the problem more tractable.
What one needs to do now is to periodically repeat the piece
of defective lattice that has been cut out from the matrix
along the three-dimensional lattice vectors. In this way the
periodical images of the defect take the role of modeling the
homogeneous environment produced by other defects. Just one
such configuration of course cannot capture the whole features
of the defect interactions. By averaging over all possible
regular defective distributions, nevertheless, one eventually
can reach a converged result.

Generally the free energy of a system in the ensemble can
be written as

Fq = F0 +
∑

i

Aini + 1

2

∑
i,j

Bijninj

+ 1

6

∑
i,j,k

Cijkninjnk + · · · , (24)

where ni is the concentration of defect i in this system. If only
up to linear terms are kept, then Eqs. (18) and (21) reduce
back to the conventional PDM. The terms of higher order
describe effective defect interactions, and should be important
for any real materials with high defect density. On the other
hand, if we know the values of parameter F0, A, B, and C, the
free energy (as a function of defect concentration ni) of any

defective configuration can be evaluated from Eq. (24) directly.
To determine these parameters, one can solve Eq. (24) by a
least-squares fit method using ab initio calculated Fq of a set
of configurations. Furthermore, since the �G in Eq. (21) can
be rewritten as

�G = �F 0 + �F (ni,nj , · · ·) +
∑

i

μm�Nm
i , (25)

where the first term on the right-hand side represents the
contribution of noninteracting defects, and the second term
arises from defect interactions, Eq. (21) then leads to

ρq = ρ0
q

(
n0

i

)
exp

(
− �F

kBT

)
, (26)

where ρ0 is the probability predicted by the conventional PDM
which gives a defect concentration of n0 (determined by �F 0).
For example, if there are di defects of the ith type appearing
in the configuration q, where ni = di/Di and Di is the total
available sites for that defect, PDM gives ρ0

q (ni) = ∏
i(ni)di .

Because of the structure of �F as shown in Eqs. (24) and (25),
ρq can be factorized into the same form as ρ0

q . Namely,

ρq =
∏

i

(ni)
di = ρ0

q (ni). (27)

We finally get

ni = n0
i exp

[
−1

kBT Di

(
1

2

∑
j

Bijnj+1

6

∑
j,k

Cijknjnk + · · ·
)]

.

(28)

This explicitly demonstrates that the simple formalism of the
PDM is still valid even when defect interactions are present, as
long as the defect distribution is homogeneous. The effect of
interaction is to modify the defect concentrations in a constant
mean-field way (here constant means that the interaction
has been averaged over the whole configurational space so
that no dependence on the distance between defects presents
explicitly), and the formation energy of a single point defect
�fi has to be changed from its dilute limit value �f 0

i to

�f 0
i → �fi = �f 0

i + 1

2Di

∑
j

Bijnj

+ 1

6Di

∑
j,k

Cijknjnk + · · · , (29)

and the defect concentration equations also become

n0
i = exp

(
−�f 0

i

kBT

)
→ ni = exp

(
− �fi

kBT

)
. (30)

C. Behavior near the stoichiometry

In practice, one usually has to employ a finite size cell with
periodic boundary conditions to simulate the defective struc-
tures. The formation energy and defect concentrations thus
obtained in most cases do not correspond to the dilute limit.
Making use of the effective PDM generalized in the above
subsections, we can quantify not only how the interactions
modify defect concentrations, but also the variation of defect
formation energy as a function of defect concentrations, thus
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TABLE I. First-principles results for the energy curve of UO2±x ,
where x is the deviation from the stoichiometric composition of
uranium dioxide. N is the total number of atoms in the simulation
cell. D (in eV), r0 (in Å), and B0 (in GPa) are the cohesive energy
per atom, the equilibrium lattice parameter of the effective cubic cell,
and the zero pressure bulk modulus, respectively.

Structure x N Functional D r0 B0 Phase

uC11 − 2
5 13 LSDA + U 7.541 5.708 173.60 CaF2(AFM)

C1−1 − 1
4 11 LSDA + U 8.002 5.443 189.32 CaF2(AFM)

C11
1
4 13 LSDA + U 7.937 5.402 246.63 CaF2(AFM)

uC1−1
2
3 11 LSDA + U 7.616 5.284 114.59 CaF2(AFM)

C6−1 − 1
24 71 LSDA + U 8.184 5.447 214.85 CaF2(AFM)

providing a viable way to extrapolate defect energetics to the
dilute limit. Taking UO2 as a prototype, we will show in this
part how interactions could alter defect behaviors.

According to Ref. 15 and the above discussions, pseudo
phases in UO2 are well defined: At most of the thermodynamic
conditions in which we are interested, only one type of defect
presents, and all other components are suppressed completely.
This implies that only the diagonal terms in Eq. (24) make
sense. Namely, only interactions between the same kind of
defect need to be considered, which greatly reduces the number
of ab initio calculations that are required for extraction of
the interaction strengths B and C. Using configurations with
different simulation cell size of 2 × 2 × 2, 1 × 2 × 2, and
1 × 1 × 1 of the cubic fluorite unit, we extracted the defect
interaction strength by solving a set of equations of Eq. (24).
The employed energy curves for the smallest cell are listed in
Table I (in which the defective structures are labeled following
the same rule as in Ref. 14), and others are taken from Table I
in Ref. 14. In particular, the results in Table I here were
calculated using the VASP code, with the same LSDA + U
setting as in Ref. 14. All structures were fully relaxed at a series
of fixed volumes. Since the supercell size of these structures
is relatively small, 36 irreducible k points were employed to
ensure the total energy convergency.

With the effective PDM of Eq. (30), it is not necessary to
work on the ensemble average of Eq. (18) any longer. Instead,
the problem changes to “how the effectively independent de-
fects distribute on the lattice.” For the purpose of investigating
the compression behavior of defects, it is helpful to employ a
reference supercell, and normalize all involved energetics with
respect to it. In doing so, however, the number of defects might
no longer be an integer. A rescaling procedure is thus required
when evaluating the formation energy of a single defect. Let
�e be the defect contribution in Eq. (24) that is evaluated in the
reference cell, i.e., �e = F − F0, with a defect concentration
n. The number of unit cells in a supercell which contains one
and only one of this type of defect is 1/(nNd ), where Nd is the
number of available sites for this defect in a unit cell. Then the
energy difference for creating a defect is �E = �e/(nNdNr ),
where Nr is the number of unit cells making up the reference
supercell. In this way, the formation energy of a Frenkel pair
for X species becomes

�fX FP = �EXv
+ �EXi

, (31)

TABLE II. Formation energy (in eV) of intrinsic point defects in
UO2 of Frenkel pairs (O_FP and U_FP) and Schottky defect (Sch).

�f
0

is the value approximated with a 2 × 2 × 2 supercell, �f 0 is
the dilute limit value extrapolated using Eq. (29) up to cubic terms,

and δ = �f
0 − �f 0.

Label O_FP U_FP Sch

�f
0

5.38 14.34 10.53
�f 0 4.77 13.78 10.21
δ 0.61 0.56 0.32

and the Schottky defect formation energy is

�fS = 2�EOv
+ �EUv

+ 3

N
F0. (32)

Here N is the total number of atoms in a defect-free reference
cell. For a 2 × 2 × 2 supercell of fluorite UO2, N = 96 and
Nr = 8. Also for a cubic fluorite unit, Nd takes 8 for Ov ,
and 4 for Oi , Uv , and Ui , respectively. These formulations,
together with Eq. (29), allow for extrapolating the intrinsic
defect formation energy to the dilute limit by decreasing the
defect concentration to an arbitrarily small value. The obtained
results are summarized in Table II. We can see that a 2 × 2 × 2
cell is not big enough to converge the formation energy to
the dilute limit. The deviation from the extrapolated value is
less than 1 eV. The largest one is the oxygen Frenkel pair in
which δ reaches a value of 0.6 eV. It is at the same level as
the finite-size correction of charged defects,32 where a value of
about 0.6 eV was also obtained for O_FP. This good agreement
demonstrates that our treatment on defect interaction is at least
qualitatively correct.

Inclusion of defect interactions in the PDM makes it pos-
sible to study the fine behavior over the whole stoichiometry.
Figure 6 shows the relative variation of thermal expansivity α

and compressibility χ as a function of stoichiometry deviation
x at 300 K and 0 GPa, in which the solid points denote
the exact value of the configurations that were employed to
extract the interaction strength. It is evident that the linear
approximation of Eq. (24) (namely the conventional PDM)
fails to reveal the fine behavior of nonstoichiometric UO2.
Far from the point that was used to approximate the defect
formation energy, it deviates from the exact value drastically.
On the other hand, both quadratic and cubic approximations
predict a curved variation of physical quantities correctly.
It is interesting to note that the sharp tip appearing at the
stoichiometry is very similar to the “W” shape anomaly in
alloys.43 Nevertheless, the underlying physics is different.
Here it mainly originates from two facts: (a) the curvature
due to defect interactions, and (b) the predominant defect
types at the hyper- and hypostoichiometry sides are different,
which gives rise to different variation trends of the physical
quantities. From this perspective, measuring the departure of
relevant physical quantities from a linear behavior near the
stoichiometry would reveal the strength of defect interactions,
and constrain the application range of the conventional PDM.

The above discussions reveal the power of including defect
interaction into statistical mechanics models such as the PDM.
Although by comparison with available experimental data
one can assess the validity of our approach, due to the
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FIG. 6. (Color online) Relative variation of thermal expansivity (α) and compressibility (χ ) with stoichiometry deviation x at different
level of approximations. Notice the sharp tips at x = 0 due to defect interactions.

uncertainty of these data as mentioned in Secs. I and III, a
quantitative validation has to be made with direct ab initio
calculations. To this end, we made an independent calculation
on a defective configuration of C6−1, using a supercell of
1 × 2 × 3 of the cubic fluorite unit, in which one oxygen atom
has been removed to create one oxygen vacancy. The obtained
energetics are listed in Table I, and the calculated thermal
expansivity and compressibility are compared with that of
effective PDM in Fig. 6 as the open square points. Note that in
this separate calculation we employed only the experimental
observation that the oxygen vacancy prevails in UO2−x , and
did not invoke any other approximations. Therefore the good
agreement between these two results as shown in Fig. 6
provides a solid verification of the validity of our constant
mean-field treatment of defect interactions for homogeneously
distributed defects, as well as the effective PDM that is based
on it.

V. DISCUSSION

A. Charged state

UO2 is a semiconductor with a finite energy gap, it is
possible that defects in it are charged rather than being
neutral. Except for a very few studies,29–32 most ab initio
investigations on defective UO2 assumed a neutral simulation
cell, as we did here. In principle, such “neutral” calculations
do not correspond to literally neutral defects, since local
transfer of electrons might lead to a partial charge of the
defects. Nevertheless, the finite size of the simulation cell
imposes a constraint on the charge redistribution, and thus
the defect might not reach its full charge state. This problem
becomes very severe when at the dilute limit or near the
stoichiometry, where defects can be fully charged only by

exchanging electrons with valence/conduction bands, which is
a kind of global charge redistribution. For large stoichiometry
deviation, however, defects interact with the matrix strongly,
leading to deep defect levels which are near either the gap
middle or hybridization with valence/conduction bands. In
both cases a neutral defect could be expected because it is
difficult to ionize the defect at low temperatures in the first
case and no charged defect can be supported in the second
one.

For oxygen clusters, Crocombette argued that charged
state makes them unfavorable at the stoichiometry.32 It is
reasonable. Actually, “neutral” calculations also indicated that
oxygen clusters have negligible concentrations when near
the stoichiometry.21,22 Putting this information together, we
ascertain that it should have no defect clustering when x ≈ 0.
But this does not mean that oxygen clustering is negligible
at nonstoichiometry. The experimental evidence for such
clustering was in fact observed at large values of x,54–56 which
is compatible with recent neutral calculations that predicted
prevailing COT-o clusters at the hyperstoichiometry region.
On the other hand, ab initio electronic structure revealed that
the defect levels of the COT-o cluster hybridize strongly with
the valence band of the matrix,36 which implies that the cluster
might be “neutral,” or at least that these “neutral” results should
partially reflect some physical reality. In these considerations,
Crocombette’s conclusion about charged oxygen defects32

might lose the relevance when far from the stoichiometry.
But overall the charged state of defects in UO2 is still an open
issue.

In the derivation of the general formalism of defects in
Sec. IV, we did not consider the charged state. To include this
is straightforward. One just needs to add an additional index
to each type of defect to mark its charge state, and include
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the chemical potential of free electrons to take the charge
contribution at the Fermi level into account. Equation (18)
then becomes

G =
∑
q,Q

[ρq,Q(Fq,Q + Qεf ) + kBTρq,Q ln(ρq,Q)], (33)

where Q is the total charge of the system, and εf the Fermi
level. From this expression, the effective PDM which includes
both defect interactions and variable charge state of defects
can be derived easily.

B. Detection of PPT

Although PPT and the corresponding boundaries can
be employed to constrain/extract the dilute limit of defect
formation energy—an important quantity for understanding
the stoichiometric behavior—to measure these boundaries is
not a trivial work. At large stoichiometric deviation, the volume
change at PPT is prominent, and thus it can be detected
by measuring the quasi-discontinuous jumps in the EOS of
defects.15 Figure 7 plots a compression curve of UO2+0.15

along a Hugoniot shocked from 300 K and 0 GPa. The volume
collapse due to PPT from Uv to Oi (here we ignored oxygen
clustering) is evident and therefore detectable. On the other
hand, this pseudo transition pressure depends sensitively on
the formation energy of Oi : It spans over a wide range of
40 GPa when there is a change in �fOi

about 4.0 eV. This
property guarantees a good precision for the constraints on
defect energetics.

At small value of x, however, the volume jump would be
too weak to be perceptible. This is usually the case when |x| <

0.02.15 In these cases, we cannot locate the PPT via measuring
thermodynamic or mechanical quantities. However, since PPT
changes the predominant defect species and thus the position of
the defect level within the energy gap, transport properties are
also modified. We therefore can detect the occurring of a PPT
by measuring the sudden changes in electrical conductivity

FIG. 7. Dependence of pseudo transition pressure from uranium
vacancy to oxygen interstitial along a shock Hugoniot on the change of
formation energy of oxygen interstitial. The stoichiometry deviation
is x = 0.15.

(or optical properties).5 This method has high sensitivity that
allows us to access the vicinity of the stoichiometry.

C. Instantaneous response

In the above discussions and also in Ref. 15, we froze
the defect concentrations when evaluating the thermodynamic
quantities. It is a theoretical requirement for the first derivatives
of the Gibbs function, such as volume and entropy. But for
higher order derivatives of the Gibbs function, it has no reason
to do so because they are also defined by thermodynamic
relations. In practice, however, a justification for this operation
can be made. This is because for a classical crystal, the change
of defect species can proceed via only atomic diffusion, which
is a very slow process, and thus no defect can respond to rapid
thermal fluctuations.

Then an interesting question arises, which is, what if defects
can instantaneously respond to any disturbances? Simple
analysis shows it might be fantastic. At first the magnitude
of anomalies due to PPT would be amplified greatly, thus
easing the difficulty in PPT detections. Figure 8 demonstrates
this effect on the thermal expansivity α, bulk sound velocity,
and specific heat at constant pressure CP . The influence can
be fully comprehended by comparing with Fig. 2 in Ref.
15, where defect concentrations were fixed when evaluating
these quantities. Second, the compressibility would diverge at
zero temperature. Considering the relationship between sound
velocity and the compressibility, this implies a vanishing sound
velocity (and the bulk modulus) in the vicinity of a PPT at low
temperatures if defects have instantaneous response. On the
phonon spectrum, it would manifest as an abnormal softening
in acoustic branches at long wavelength (i.e., � point in the
reciprocal space). This observation is tantalizing. But can it
be true? We cannot answer it yet. Classical atomic diffusion
of course cannot lead to a rapid response. But what if for a
quantum crystal? In a quantum world particles are described
by a wave function. If the wave functions of all defects are in a
coherent state, then an instantaneous and simultaneous change

FIG. 8. (Color online) Anomalies in the thermal expansivity
(α), isothermal bulk sound velocity, and specific heat at constant
pressure (CP ) along a Hugoniot that shocked from 500 K and
0 GPa in nonstoichiometric UO2 when defect concentrations have
an instantaneous response to thermal fluctuations. The solid circle (at
the bottom left corner) marks the experimental bulk sound velocity
measured at ambient conditions in perfect UO2.
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of the defect species might be possible.57 In this mechanism
the requirement for a large-scale atomic diffusion has been
removed, and a single change in defecton state is enough
for a quantum pseudo transition to occur. Nevertheless, more
theoretical works are necessary in order to pin down this
possibility definitely.

VI. CONCLUSION

A general formalism for the thermodynamics of defects in a
crystal was derived based on the statistics of a grand-canonical
ensemble on a lattice. By introducing idle white atoms for
vacancy and extending the sublattice of interstitial sites, this
formalism has the same form as the lattice theory for alloys
and compounds—a reflection of the unified physics underlying
these seemingly different systems. With an approximation of
constant mean field, this theory reduces to an effective point
defect model in which defect interactions are included by
an auxiliary field, whereas individual defects are treated as
independent. In this way, we mapped a many-body defect
system onto a single defect system by coupling it with an
effective external field. If ignoring this field, the conventional
PDM is recovered. This generalization greatly expands the
applicability of the simple PDM. In order to explore the full
content in this theory, we also studied possible reentrant PPT
and multiple-defect coexistence with virtual systems.

Using PDM, we investigated the possibility of constraining
defect energetics by measuring pseudo phase boundaries.

By calculating the possible PPT between interested defects,
we showed that the experimental estimates available in the
literature, as well as a variety theoretical assessments, on
defective energetics of UO2 are not fully consistent. On
the other hand, the range of energetics constrained by the
PPTs overlaps with these estimates largely, and therefore
has a potential to reduce the inconsistency in these data. By
including defect interactions into the PDM, we demonstrated
that the information obtained at finite stoichiometry deviation
can be extrapolated to the dilute limit. Finally, we investigated
the fine behavior of thermal expansivity and compressibility
in the vicinity of the stoichiometry of defective UO2, and
some relevant issues of charged defects, detection of PPT, and
possible instantaneous response of defectons in a quantum
crystal are briefly discussed, in which we highlighted the
detection of PPT by measuring electrical conductivity when
near the stoichiometry, and the complexity arising from
possible charged state of defects. Through these investigations,
we clearly demonstrated that it is valuable to explore the whole
nonstoichiometric range in order to acquire a comprehensive
understanding about a defective material thoroughly.
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