
PHYSICAL REVIEW B 87, 165434 (2013)

One-dimensional spin-orbit interferometer
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We demonstrate that the combination of an external magnetic field and the intrinsic spin-orbit interaction results
in nonadiabatic precession of the electron spin after transmission through a quantum point contact (QPC). We
suggest that this precession may be observed in a device consisting of two QPCs situated in series. The pattern of
resonant peaks in the transmission is strongly influenced by the non-Abelian phase resulting from this precession.
Moreover, an unusual type of resonance which is associated with suppressed, rather than enhanced, transmission
(i.e., antiresonance) emerges in the strongly nonadiabatic regime. The shift in the resonant transmission peaks
is dependent on the spin-orbit interaction and therefore offers a way to directly measure these interactions in a
ballistic one-dimensional system.
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I. INTRODUCTION

In recent years, it has been recognized that the existence
of interactions which couple spin to orbital motion gives rise
to the possibility of manipulating the spin via external gates,
leading to the suggestion of spintronic devices which require
only electric fields for their operation.1 The importance of the
spin-orbit interactions lies both in their role in spin dephasing
via the Dyakonov-Perel2,3 and Elliot-Yafet4,5 mechanisms, and
in the potential creation of spin-polarized current.6–12

In this work, we investigate the possibility of the dynamical
manipulation of spin via a combination of electric and
magnetic fields in a one-dimensional system. We consider
the interactions which couple to the first power of spin and
therefore have the structure of a magnetic dipole. In the
literature, the dominant interaction of this form is usually
considered to be due to the inversion asymmetry of the
two-dimensional (2D) interface, known as the Rashba effect,
while the Dresselhaus effect arising from inversion asymmetry
in the bulk crystal has been considered to be negligibly small.
While for the narrow-gap semiconductors InAs and InSb, the
Rashba interaction is dominant, the coefficient of the Rashba
interaction varies by two orders of magnitude between the
narrow- and medium-gap materials13 and we expect that in
GaAs the situation is reversed. It has previously been possible
to determine the relative size of the Rashba and Dresselhaus
interactions in 2D GaAs via Faraday rotation,14 where they
were determined to be approximately equal in magnitude. The
Dresselhaus interaction was also found to be approximately
constant over a range of samples, which is puzzling since it is
expected to scale quadratically with the width of the quantum
well, as was noted by the authors of Ref. 14.

While previous experimental studies of the Rashba and
Dresselhaus spin-orbit interactions have focused on the 2D
situation,14–16 we shall consider the spin-orbit interactions in
a ballistic, one-dimensional (1D) channel. It should be noted
that in the situation where transport is ballistic (e.g., in mea-
surement of Shubnikov–de Haas oscillations15,16), the energy
scale associated with the spin-orbit interactions is proportional
to the Fermi momentum kF . This should be contrasted with the
measurement in Ref. 14, which was conducted in the diffusive
transport regime. In the latter case, the spin-orbit interactions
were effectively proportional to the average momentum in the

external electric field, which is several orders of magnitude
smaller than kF . In this work, we suggest a method to measure
the spin-orbit interactions in a quantum wire which relies
on spin-orbit-induced nonadiabaticity inside a ballistic 1D
channel.

In an external magnetic field, it becomes possible to
tune the 1D system through a level crossing by varying
the Zeeman splitting, giving rise to Landau-Zener physics,
and therefore spin-dependent transmission, or spin filtering,
which has been previously studied in magnetic semiconductor
quantum wells17 as the basis for a spin transistor, and in spin
focusing.18 Whereas Ref. 17 considers a spatially rotating
magnetic field provided by external magnets, we consider
a spatially rotating effective magnetic field provided by the
combination of a uniform external field and the spin-orbit
interaction, and adiabatic protection is offered by the coherent
nature of transport rather than a giant g factor, as in Ref. 17.
In addition, we shall consider a double barrier potential,
so that 1D motion between the barriers forms a closed
trajectory, and the electron is subjected to a periodic force;
in contrast to Ref. 18, we suggest a measurement of the
spin-orbit interaction based on interference via the phase
accumulated over one period, which is exactly analogous to the
technique of Landau-Zener-Stückelberg interferometry which
has historically been applied to superconducting qubits19–21

and recently to a quantum dot system.22

For simplicity, we consider a quantum point contact formed
from a 2D electron gas with only the Dresselhaus interaction
present, although we also found numerically that hole systems
show similar behavior. For a wire oriented along the x = (100)
direction, we find upon projection of the bulk Hamiltonian onto
one-dimensional states

HD = b6c6c
41

[
px

(
p2

y − p2
z

)
σx + py

(
p2

z − p2
x

)
σy

+pz

(
p2

x − p2
y

)
σz

] → b6c6c
41 px

(
p2

y − p2
z

)
σx, (1)

where b6c6c
41 ≈ 28 eVÅ

3
h̄−3 is the Dresselhaus constant,13 and

we have set 〈py〉 = 〈pz〉 = 0, assuming that the y and z

confinements are along (010) and (001), respectively. Here,
σi are the Pauli matrices describing spin.

According to Eq. (1), the Dresselhaus magnetic field is
parallel to the wire. The field is inhomogeneous in the
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FIG. 1. (Color online) (a) The solid blue line shows the effective
potential in a single QPC, modeled as a Gaussian, the length of
the channel is 2 μm. The dashed red line shows the Fermi energy.
(b) The components of the effective magnetic field parallel (blue,
solid) and perpendicular (red, dashed) to the QPC. The perpendicular
component is the external magnetic field. The parallel component is
the Dresselhaus effective field, which decreases semiclassically at the
top of the potential shown in the panel (a).

presence of an electrostatic barrier [Fig. 1(a)] since the
effective magnetic field is proportional to the momentum
which vanishes semiclassically at the turning points. When
an external magnetic field is applied perpendicular to the
contact, the combination of the Zeeman interaction and
the Dresselhaus interaction forms a total driving torque on
spin which is inhomogeneous in space and rapidly switches
direction [see Fig. 1(b)]. We propose that the nontrivial spin
dynamics resulting from the inhomogeneous driving field
may be observed in a double barrier interference experiment,
and such an experiment will distinguish between adiabatic
and nonadiabatic spin motion and therefore serve as a direct
measurement of the size of the Dresselhaus interaction. The
same logic is applicable to the Rashba interaction.

The structure of the paper is as follows: In Sec. II,
we formulate the concept of nonadiabatic spin precession
and present the criteria for its existence, based on typical
experimental parameters. In Sec. III, we introduce the idea
of an interferometer consisting of a double quantum point
contact (DQPC), and discuss the adiabaticity of the “orbital”
dynamics which is required for interference to be observed.
In Sec. IV, we present results of numerical solution of
the Schrödinger equation describing electron transmission
through the interferometer in the presence of external magnetic
and spin-orbit fields, and demonstrate how measurement of
the Dresselhaus/Rashba interaction can be performed in the
device. In Sec. V, we discuss the antiresonances which are
observed in the numerical result and show that they are a
strong signature of nonadiabatic spin dynamics. In Sec. VI,
we present our conclusions.

II. NONADIABATICITY DUE TO SPIN

We consider a one-dimensional channel formed by electro-
static confinement in a 2D electron gas (2DEG) in GaAs,
where the 2D quantum well is grown along the (001)
direction. In the presence of an external magnetic field
and the Dresselhaus interaction, the conductance is deter-
mined by the solution of the spin-dependent transmission
problem. The effective Hamiltonian for a single channel

reads as

H = p2
x

2m
+ U (x) − 1

2
g∗μB

�B · �σ + b6c6c
41 px

(
p2

y − p2
z

)
σx,

(2)

where U (x) is the electrostatic barrier, for GaAs, m = 0.067me

is the effective mass and g∗ = −0.44 the g factor.13 p2
y and p2

z

refer to the average of the differential operators in the bound
states along y and z, respectively. We assume the 2D limit,
so that p2

y � p2
z . We shall present numerical results with a

value of g∗ which is appropriate when the channel is wide and
several 1D subbands are populated. Due to interactions in the
channel, g∗ may be significantly enhanced in the lowest 1D
subband, with values reported ranging from g∗ ≈ 1 (Ref. 23) to
g∗ ≈ 3 (Ref. 24). In the situation where g∗ is renormalized due
to interactions, the external magnetic field should be rescaled
accordingly.

Let us consider the polarization of the asymptotic states.
We will assume that only a few transverse channels are open
in the QPC, and in the highest channel, the Fermi energy is
close to the top of the barrier. In the asymptotic region, the
confinement along y becomes infinitely wide as the channel
smoothly connects to the 2D leads [Fig. 2(a)], so that for
scattering states at the Fermi energy,

p2
y,U (x) → 0, px → pF , (3)

and hence

H (x → ±∞) = p2
x

2m
− 1

2
|gμB | �Beff. · �σ , (4)

where we have absorbed the total spin-dependent interactions
into an effective magnetic field

�Beff(±∞) = �B + b6c6c
41 pF p2

z

1
2 |gμB | x̂. (5)

For the purpose of numerical calculations which we present
in Sec. IV, we assume that the value of pz corresponds to
an infinite well with width 10 nm and set the Fermi energy
equal to 5 meV. Based on the values given in Ref. 13, we may
estimate the effective Dresselhaus field to be

BD = b6c6c
41 pF p2

z

1
2 |g∗μB | = 16 T . (6)
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FIG. 2. (Color online) (a) A DQPC formed from a ballistic
quantum wire. The double barrier potential is created by two narrow
wires above the 1D channel. (b) The effective 1D potential, which
consists of the potential due to gates U1 and additional Gaussian
barriers of height U2 = 4 meV separated by a distance d , which is
fixed at 2 μm. The contribution U1 to the effective potential (red) due
to side gates is approximately constant between the barriers.
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When the external magnetic field is directed along y, the
asymptotic form of the Hamiltonian will form a spin basis
with polarization in the x-y plane, and for fields in the typical
experimental range B < 15 T, the orientation of spin for an
electron incident on the barrier will always be significantly
tilted towards the x direction. The angle θ between spin
and the y direction is close to 60◦ for fields of the order of
10 T, and can be tuned to nearly 90◦ by reducing the field
to 1 T. Near the center of the QPC, where the electrostatic
potential is maximum, the longitudinal momentum vanishes
semiclassically, and the total effective magnetic field is
directed perpendicular to the wire, so that θ switches to zero
[Fig. 1(b)].

Spin dynamics is nonadiabatic when the effective magnetic
field changes sufficiently rapidly and hence the Landau-Zener
parameter is not small25:

δs = 1

g∗μBB2
eff

∣∣∣∣dBeff

dt

∣∣∣∣ � 1. (7)

Let us assume that the effective field Beff switches by an
angle of 60◦ over a typical time �t = �x

vF
corresponding to the

distance �x over which the electrostatic potential is rapidly
varying. Then, expressing δs in terms of the Fermi energy
εF ≈ 5 meV, we find

δs = 1

gμB |Beff|
vF

�x
cos 60◦ = 1

2

εF

gμB |Beff|

1

�xkF

. (8)

Taking |Beff| ≈ 10 T, we find that εF

gμB |Beff| ≈ 20, so in order to
go to the nonadiabatic regime one needs the following:

�xkF � 10 → �x � 0.1 μm. (9)

For a single barrier, the conductance is proportional
to the transmission coefficient averaged over incident spin
polarizations and is therefore insensitive to spin dynamics.26

In a geometry consisting of two barriers, however, nontrivial
precession between the barriers may be observed due to
interference between spin in counterpropagating directions in
the region between the barriers. This effect exists only when
the external field is perpendicular to the contact since for a
parallel field, the total effective field and therefore spin will
be constant in direction, either parallel or antiparallel to the
contact with no mixing between the spin modes. Similarly,
when the external field is perpendicular but sufficiently large
to dominate the effective field in the asymptotic region, the
effective field will rotate by a sufficiently small angle that
the electron will adiabatically follow a single spin channel
throughout the motion. This illustrates why the structure of
transmission in the double barrier is strongly sensitive to the
nonadiabaticity of the spin motion.

III. ADIABATIC TRANSMISSION THROUGH
A DOUBLE BARRIER

Let us first consider the spin-independent transmission
problem for a system consisting of two QPCs in series, with
the potential as shown in Fig. 2(b). We shall assume that
the inelastic mean-free path exceeds the system size, so that
transport through the system is coherent.

We model the conductance in the Landauer-Büttiker
picture27,28 by one-dimensional scattering in the presence

of two barriers separated by a distance d. Recall that for a
single barrier located at the origin, we have a scattering state
corresponding to an electron emerging on the right with unit
amplitude

ψ(x � 0) = eikx, ψ(x � 0) = t11e
ikx + t21e

−ikx, (10)

where t11,t21 are components of the T matrix, which for the
spinless situation is a 2 × 2 matrix

T =
(

t11 t∗21
t21 t∗11

)
, (11)

and is related to the transmission probability via

P (ε) = 1

|t11|2 . (12)

Near its top, the barrier has parabolic shape

U (x ≈ 0) = U (0) − mω2
xx

2

2
(13)

and the wave function can be expressed in terms of the
parabolic cylinder function29

ψ(x) = D− 1
2 +ia(

√
2mωxxe− iπ

4 ), (14)

where

a = εF − U (0)

ωx

(15)

is the (dimensionless) Fermi energy relative to the top of the
barrier. From the asymptotic form of the parabolic cylinder
functions29

Dν(
√

2ξe− iπ
4 ) = |

√
2ξ |ν exp

(
πa

4
+ i

π

8
+ i

4
(
√

2ξ )2

)
,

ξ → +∞|
√

2ξ |ν

× exp

(
−3πa

4
− 3π

8
i + i

4
(
√
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−
√

2π

�(−ν)
|
√

2ξ |−ν−1

× exp

(
−πa

4
− 7π

8
i − i

4
(
√

2ξ )2

)
,

ξ → −∞ (16)

we obtain

t11 =
√

2π

�
(

1
2 − ia

)e− πa
2 =

√
1 + e−2πae−iφ0 ,

t21 = −ie−πa, (17)

where

φ0 = Arg

[
�

(
1

2
− ia

)]
. (18)

The T matrix for transmission through the double barrier
potential is given by the product of two T matrices for a single
barrier with the phase evolution operator

T ′ = T

(
eikd 0

0 e−ikd

)
T . (19)
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Since the state emerging on the right has unit amplitude, the
transmission probability is simply given by

P (ε) = 1

|t ′11|2
= 1

|t2
11 + |t21|2e2ikd |2

= 1

|1 + e− 2πε
ωx (1 − e2ikd )2|2

(20)

and exhibits resonant transmission peaks at kd = nπ corre-
sponding to standing waves between the barriers.

Initial measurements of the quantized conductance in a
DQPC by Wharam et al.30 did not reveal resonant structure,
although it was later reported by Hirayama and Saku that
resonances became visible when the separation between the
two QPCs was reduced to 0.2 μm.31 Since the authors claim
that the inelastic mean-free path exceeds the size of the device,
the loss of interference does not originate from inelastic
decoherence, but is rather due to the fact that the region
between the QPCs consists of a wide cavity in which a large
number of transverse modes are permitted. Here, the loss of
phase memory may be attributed to the exchange of phase
among the large number of transverse modes and is therefore
a purely single-particle effect. In other words, phase memory is
lost in the course of chaotic motion in the 2D region separating
the QPCs.

In order to observe the transmission interference peaks, it
is necessary to suppress mixing between transverse modes in
the region between the barriers, which is equivalent to the
statement that the evolution of the standing wave along y must
be adiabatic, and therefore the Landau-Zener condition must
be satisfied for the transverse adiabatic parameter:

δt = 1

ω2
y

dωy

dt
= 1

ω2
y

px

m

dωy

dx
� 1, (21)

where we have assumed a parabolic confinement in the y

direction with level spacing ωy . For a typical QPC, the
oscillator frequency ωy is maximum at the center of the wire
(x = 0), but decreases smoothly to zero in the two-dimensional
leads. Modeling the transverse confinement by a Gaussian

ωy(x) = ω0e
−κ2x2

, (22)

where κ is the barrier width, which is of order κ ∼ 1 μm, we
find

δt = −2κ2xpx

mω0
eκ2x2

. (23)

Away from the contact x → ±∞, the adiabatic parameter
diverges due to the collapsing of the transverse level spacing.
We therefore see that a loss of interference is unavoidable in
a system consisting of two QPCs which are separated by a
wide cavity. Hereafter, we consider an interferometer which
consists of a 1D channel of fixed width in which a double
barrier is formed by an additional potential U2(x) (i.e., an
inhomogeneous shift of the 1D band bottom) rather than by
the energy of transverse confinement. In the region between
the barriers, the 2D potential has the form

U2D(x,y) = mω2
yy

2

2
+ U2(x), (24)

and the oscillator frequency ωy is approximately constant
inside the channel, so that an electron remains in a single
transverse mode during motion between the barriers.

The potential (24) can be manufactured, for example, by a
rectangular split gate in the plane of the 2DEG, with two thin
wires placed perpendicular to the channel in a plane separated
from the 2DEG by an insulating layer [Fig. 2(a)]. When there
is a bias between the wires in the upper layer and the 2DEG,
a smooth electrostatic potential will be formed in the channel
below. The 1D channel is quantized into oscillator levels, with
the 1D effective potential being

U (x) = U1(x) + U2(x), U1(x) = ωy(x)

(
n + 1

2

)
, (25)

where n is the transverse oscillator level. We also suppose that
the channel is not near pinch-off, so that the additional barrier
U2(x) may be made high without depleting the channel. As
long as the wires are placed inside the edges of the point
contacts, the level spacing will be constant, and transport
between the potential barriers in the channel created by the
wires will be adiabatic.

IV. RESONANT TRANSMISSION OF SPIN

We expect that the presence of nonadiabatic spin precession
will result in an observable change in the conductance when
the distance between the barriers is of the order of the length
of a spin cycle,

ls = 2πvF

1
2g∗μBB

= εF

1
2g∗μBB

2π

kF

= εF

1
2g∗μBB

λ = 1.2 μm

(26)

when the Fermi energy is 5 meV. We reiterate that to observe
the effect of nonadiabaticity on the conductance, it is necessary
to have δs � 1 at the barriers, and δt � 1 everywhere in the
region between the barriers.

Due to the small g factor of electrons, the longitudinal
oscillator frequency ωx must be sufficiently small in order to
resolve the Zeeman splitting in the external magnetic field,
and we take the value of ωx = 0.19 meV corresponding to a
Gaussian half-width of 0.4 μm. When d < 2 μm, we find that
the potentials of the two barriers overlap, reducing the velocity
and hence the magnitude of the Dresselhaus effective field
between the barriers. In principle, it is possible to engineer a
system with d = 1 μm while maintaining a large Dresselhaus
field by using a third wire above the point contact which is
positively biased to create a deeper cavity between the barriers.
In our numerics, however, we will consider only the simpler
geometry consisting of two wires in a plane above the point
contact, and take a larger separation, d = 2 μm [see Fig. 2(b)].
The 1D Hamiltonian is

H = p2
x

2m
+ U (x) − αpxσx − 1

2
g∗μB

�B · �σ , (27)

where α = b6c6c
41 p2

z and we have dropped the term proportional
to p2

y , which does not qualitatively influence the result.
When the external magnetic field is directed along x, the
Hamiltonian becomes diagonal in the basis of states with spin
aligned along the contact, and the transmission coefficients
for the spin-up and -down channels are simply given by
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FIG. 3. (Color online) The dimensionless conductance g of the DQPC interferometer (d = 2 μm) versus the constant contribution to the
potential U1 defined in (25). The conductance is plotted for three values of the external magnetic field: (a) 5 T, (b) 10 T, (c) 15 T, parallel (dotted
line) and perpendicular (solid line) to the contact. The arrows in (b) refer to the three plots in Fig. 5.

the sum of two zero-field transmission coefficients shifted
relative to one another by the Zeeman splitting |g∗μBB|;
the Dresselhaus interaction does not have any effect. For the
perpendicular orientation of the external field, the behavior
of the transmission coefficient is expected to be significantly
more complex due to nonadiabaticity since the Hamiltonian
does not decouple in any locally defined basis.

We have solved the scattering problem using numerical
integration of the Schrödinger equation via the fourth-order
Adams-Moulton method, which was required due to the pres-
ence of the first power of momentum in the Hamiltonian (27).
The conductance in units of e2

h
due to a single transverse

channel, according to the Landauer formula, is related to the
2 × 2 spin-dependent transmission amplitude A by

g = trA†A. (28)

The calculated conductance for fields 5, 10, and 15 T in the
parallel and perpendicular orientations is plotted in Fig. 3
versus U1, which is the contribution to the effective 1D
potential which is constant between the barriers defined in (25).
The difference between the resonant structure observed for
the two field orientations is due to the Dresselhaus interaction.
Whereas the interaction does not influence the resonant pattern
for the case of parallel field, it does so for the perpendicular
orientation. We plot the field dependence of the resonant peak
positions in Fig. 4. For a parallel applied field, the positions
of the peaks are shifted linearly in the magnetic field, with
slope equal to the magnetic moment ± 1

2g∗μB and opposite
spins exhibiting shifts in opposite directions. The situation
for perpendicular field, however, is markedly different: in the
low-field regime the positions of the peaks depend nonlinearly
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FIG. 4. (Color online) Position of the magnetoconductance peaks
as a function of magnetic field for parallel (a) and perpendicular
(b) orientations of the fields.

on the applied field and evolve into straight lines with slope
± 1

2g∗μB as the field is increased. In the high-field regime, the
positions of the peaks are still offset relative to those in the
parallel orientation, even though spin dynamics is becoming
adiabatic. This is due to the fact that the Dresselhaus interaction
not only induces a non-Abelian phase when nonadiabatic
precession occurs, but also contributes to the Abelian phase
even in the adiabatic regime, so that the peaks in high field
remain offset due to the accumulation of a dynamical phase
in the scattering regions in which spin undergoes significant
precession.

In addition to the nonlinear shift in the positive trans-
mission resonant peaks, we observe a feature in the regime
where nonadiabaticity of the spin motion is strong, namely,
resonant behavior associated with negative spikes in the
conductance, which we shall refer to as antiresonances. These
antiresonances, marked by letters (A) and (C), appear in the
middle plateau in Fig. 3(b) at 10 T, and are suppressed as
the magnetic field is increased into the adiabatic regime.
Recall that in the spinless situation, sharp peaks appear in the
transmission corresponding resonant transparency at energies
where a quasi-bound state exists between the barriers. It is clear
that appearance of negative peaks corresponding to resonant
enhancement of reflection can not exist for parallel fields,
and is therefore closely tied to nontrivial spin dynamics. In
Fig. 5, we display the electron wave functions corresponding
to energies (A), (B), and (C) marked in the conductance plot
Fig. 3(b). We observe that the wave function at energies
corresponding to the antiresonances (A) and (C) is strongly
enhanced between the barriers signaling the presence of a
quasi-bound state at the two resonant energies. We reiterate
that these states appear at 10 T and are associated with a
suppression in the transmission. At high magnetic field, the
states gradually disappear; they are evident only vestigially at
15 T [Fig. 3(c)]. It should be noted that while antiresonances
have previously been discovered in spin-independent transport
in DQPC systems,32,33 the resonances presented here are
magnetic field dependent and clearly associated with the
nonadiabatic nature of spin motion.

Practically, the nonlinear field dependence of the splitting
of usual (“positive”) transmission resonances shown in Figs. 3
and 4 might provide a robust way to probe and to measure the
Dresselhaus and the Rashba interactions. On the other hand,
observation of antiresonances might be a challenge because of
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FIG. 5. The probability |ψ |2 plotted on the same scale at three values of U1, corresponding to the two antiresonances (A, C) and one
off-resonant case (B) indicated in Fig. 3(b). The wave function is strongly enhanced between the barriers at antiresonance, clearly demonstrating
the existence of quasi-bound states.

their relatively small spectral weight (we observe numerically
that the antiresonances are more pronounced for heavy holes
than for electrons). On the other hand, the antiresonances are
a qualitatively new feature related to the non-Abelian and
nonadiabatic spin dynamics and we shall explain the physical
mechanism behind these features in the next section.

V. PHYSICAL MECHANISM FOR ANTIRESONANCES

Let us consider the region very near the top of the barrier, in
which px ≈ 0. Since the external magnetic field is dominant
near the barrier, the scattering of a state which is incident on the
single barrier is completely described by the spin-dependent
T matrix for a single parabolic barrier with constant magnetic
field; regarding the T -matrix elements as functions of energy,
we have

T̂ (ε) =
(

t̂11(ε) t̂12(ε)
t̂21(ε) t̂22(ε)

)
. (29)

Hereafter, we indicate the explicit inclusion of spin by the hat
above the T matrix; the dimension of T̂ is hence 4 × 4. The
2 × 2 matrices t̂ij are diagonal in the basis of states with spin
directed along the external field �B,

t̂ij (ε) =
(

tij (ε + εB) 0
0 tij (ε − εB)

)
. (30)

Here, we have written εB = | 1
2g∗μBB| and the spin-

independent matrix elements tij (ε) were given in Eq. (11).
[Note that ε ± εB appearing in (30) are arguments of the
functions tij .] In the situation where 2εB � ωx , the Zeeman
splitting may be clearly resolved, a middle plateau exists, and
for energies lying on this plateau, each barrier acts as a spin
filter, preferentially reflecting spins which are aligned with the
magnetic field and transmitting spins which are antialigned.

Away from the potential barriers, the electron momentum is
large and hence it is possible to perform a Born-Oppenheimer
separation of orbital and spin motion. Writing the wave
function as

ψ(x) = ei
∫

kdxχ (x), (31)

where χ is a spinor and

k =
√

2m(ε − U ), (32)

we find that χ obeys the following Schrödinger equation:

i
dχ

dτ
= −(εBσy + αkσx)χ. (33)

Here, τ is an effective time defined by

k

m

d

dx
= d

dτ
. (34)

When deriving Eq. (33) from Eq. (27) one has to remember
that between the barriers, α � k

m
. The solution χ (τ ) may be

written in terms of the SU(2) evolution operator U (τ ):

χ (τ ) = U (τ )χ (0). (35)

We have used the same letter for the evolution operator as for
the potential, however, the meaning should be clear.

In the region between the two barriers, the wave function
consists of counterpropagating waves which carry precessing
spin. The spins which propagate in opposite directions are
related by an operation corresponding to the reversal of
“effective time,” which differs from the usual time-reversal
operator in that σx does not change sign since the x component
of the effective magnetic field αpx is also reversed. It is
therefore necessary to augment the time-reversal operator by a
rotation of π about the y axis. The unitary evolution operator
then obeys the relation

U (−τ ) = e− iπσy

2 U (τ )†e
iπσy

2 . (36)

Since the region in which the electron sees a relatively
constant magnetic field extends over a large number of de
Broglie wavelengths, while the scattering region consists of
a small number of de Broglie wavelengths, the T matrix for
the complete process is simply given by the product of the
individual T matrices at each barrier with the matrix describing
phase and spin evolution between the barriers,

T̂ ′ = T̂

(
ei�U (τ ) 0

0 e−i�U (−τ )

)
T̂ , (37)

where ei� is a U(1) phase and

U (τ ) =
(

α −β∗
β α∗

)
, U (−τ ) =

(
α∗ −β

β∗ α

)
. (38)

The spin-dependent 2 × 2 transmission amplitude is given by

A = t̂ ′−1
11 = [t̂11e

i�U (τ )t̂11 + t̂12e
−i�U (−τ )t̂21]−1. (39)
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When the energy lies on the middle plateau, ε + εB ≈ εB �
0,ε − εB ≈ −εB � 0, we obtain, making use of the explicit
forms (11),

t̂ ′11 ≈ −ei�

(
1 0
0

√
1 + e2πεB/ωx

) (
α −β∗
β α∗

)

×
(

1 0
0

√
1 + e2πεB/ωx

)
+ e−i�

(
0 0
0 eπεB/ωx

)

×
(

α∗ −β

β∗ α

) (
0 0
0 eπεB/ωx

)

=
( −αei� −β∗eπεB/ωx ei�

βeπεB/ωx ei� (αe−i� − α∗ei�)e2πεB/ωx − α∗ei�

)
.

(40)

The spin-dependent transmission amplitude is

A = e−i�

|α|2 + e2πεB/ωx (1 − α2e−2i�)

×
(

(αe−2i� − α∗)e2πεB/ωx − α∗ −β∗eπεB/ωx

βeπεB/ω −α

)
. (41)

The off-diagonal matrix elements A12,A21 correspond to
transmission with spin flip. The conductance is given by

g = trAA† = |A11|2 + |A12|2 + |A21|2 + |A22|2. (42)

We may immediately identify the off-resonant situation when
the exponential factor e2πεB/ωx is dominant, so that the
transmission amplitude and conductance are given by

A = e−i� αe−2i� − α∗

(1 − α2e−2i�)

(
1 0
0 0

)
, g = |α|2 ≈ 1, (43)

which corresponds to the filtering of spin at each barrier.
The condition for resonance is obtained by setting the

transmission probability equal to unity,

1 − α2e−2i� = 0 → α = ei(�+nπ), (44)

implying |α| = 1, β = 0. Hence,

A = e−i�

|α|2
(−α∗ 0

0 −α

)
, g = 2. (45)

The condition for antiresonance, on the other hand, is
obtained by setting the transmission probability equal to zero,
which occurs when

αe−2i� − α∗ = 0, 1 − α2e−2i� �= 0. (46)

This is possible only if α = |α|ei(�+nπ) and |α| < 1. The phase
condition is the same as that for the case of a resonance
[Eq. (44)]. However, |α| < 1 is possible only in a nonadiabatic

case. In this case, we have

A = e−i�

|β|2e2πεB/ωx

( −α∗ −β∗eπεB/ωx

βeπεB/ωx −α

)
,

g = e−2πεB/ωx . (47)

We see that in order to obtain an antiresonance, it is necessary
for spin to precess nontrivially, so that a lower spin component
develops over the course of the trajectory. When motion is
significantly nonadiabatic, the lower component of spin may
undergo resonant enhancement, leading to suppression of
transmission. When the parameters are driven deeper into the
adiabatic regime, we find that the antiresonant behavior can
reverse to become a more common resonance, which explains
how the negative spike marked (A) in Fig. 3(b) appears as a
small positive “bump” on the middle plateau in Fig. 3(c).

In order to observe the antiresonances, it is necessary that
nonadiabatic spin dynamics persists into the high-field regime
since the Zeeman splitting must be sufficiently large to create
a middle plateau in which one spin channel is filtered. This
requires that the Zeeman splitting be larger than the longi-
tudinal oscillator frequency g∗μBB > ωx , while remaining
significantly smaller than the Dresselhaus interaction. While
this can be accomplished by making the parabolic barrier
wider, this would also require the distance between barriers
to be increased, which is a sensitive issue since the size of the
system may be required to exceed the ballistic mean-free path.
We therefore expect that while the nonlinear splitting of peaks
shown in Figs. 3 and 4 should be confirmed experimentally
with relative ease, realization of the antiresonances may
provide a challenge.

VI. CONCLUSION

We suggest a spin-orbit interferometer consisting of two
QPCs connected in series. It is shown that due to the
Dresselhaus spin-orbit interaction, the spin dynamics in the
interferometer is nonadiabatic in presence of an external
magnetic field. As a result of this nonadiabaticity, the positions
of the resonant peaks in the transmission are sensitive to the
direction of the magnetic field and the value of the Dresselhaus
interaction. This effect could be used to directly measure the
size of the Dresselhaus interaction in a ballistic channel. While
we performed our calculations for an electron system with the
Dresselhaus interaction, it is clear that the same effect exists
generically for holes and for the Rashba spin-orbit interaction.
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