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Strong magnetoresistance of disordered graphene
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We study theoretically magnetoresistance (MR) of graphene with different types of disorder. For short-range
disorder, the key parameter determining magnetotransport properties—a product of the cyclotron frequency and
scattering time—depends in graphene not only on magnetic field H but also on the electron energy ¢. As a result,
a strong, square root in H, MR arises already within the Drude-Boltzmann approach. The MR is particularly
pronounced near the Dirac point. Furthermore, for the same reason, “quantum” (separated Landau levels) and
“classical” (overlapping Landau levels) regimes may coexist in the same sample at fixed H. We calculate the
conductivity tensor within the self-consistent Born approximation for the case of relatively high temperature,
when Shubnikov-de Haas oscillations are suppressed by thermal averaging. We predict a square-root MR both at
very low and at very high H : [0,x(H) — 0::(0)]/0.::(0) = C /H, where C is a temperature-dependent factor,
different in the low- and strong-field limits and containing both “quantum” and “classical” contributions. We also
find a nonmonotonic dependence of the Hall coefficient both on magnetic field and on the electron concentration.
In the case of screened charged impurities, we predict a strong temperature-independent MR near the Dirac
point. Furthermore, we discuss the competition between disorder- and collision-dominated mechanisms of the
MR. In particular, we find that the square-root MR is always established for graphene with charged impurities in

a generic gated setup at low temperature.
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I. INTRODUCTION

Study of magnetotransport in low-dimensional systems is
a powerful tool to probe the nature of disorder and extract
information about localization phenomena. In particular,
measurements of magnetoresistance (MR) of two-dimensional
(2D) electron gas in conventional semiconductors, like GaAs,
allowed one to identify a variety of different regimes, such as
Drude-Boltzmann quasiclassical transport, weak localization
regime, and the quantum Hall effect (see Refs. 1 and 2 for
review).

One of the simplest theoretical approaches to the problem,
the so-called self-consistent Born approximation (SCBA),
was developed in Refs. 3-6 for 2D electrons with quadratic
spectrum mostly for the case of the short-range disorder.
The SCBA approach ignores localization effects. This implies
that the relevant energy scale (the maximum of the chemical
potential © and temperature 7') is large compared to the
inverse transport scattering time t,,, which coincides with the
quantum scattering time 7, for the short-range disorder. The
key parameter of SCBA is w.t,, where w, is the cyclotron
frequency. For weak magnetic fields, w.7, < 1, calculations®
reproduce the semiclassical Drude-Boltzmann result. In the
opposite limit, w.7, > 1, the semiclassical approach fails,
and the conductivity is given by a sum of contributions coming
from the well-separated Landau levels (LLs).>

Magnetotransport in graphene was studied theoretically
in Refs. 7-14. In Refs. 7 and 8 a general expression for
the SCBA conductivity tensor of graphene with short-range
disorder was derived and analyzed in detail for the case
of well-separated LLs. Other types of disorder were also
discussed,”!! including disorder potentials having special
types of symmetries.'”> In the collision-dominated regime
(when the rate of inelastic collisions due to the electron-
electron interaction exceeds the impurity-induced scattering
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rate), the MR of graphene at the Dirac point was calculated
in Ref. 13 within the Boltzmann-equation framework by
using the relativistic hydrodynamic approach. In Ref. 14, a
T -dependent interaction-induced contribution to the MR (on
top of a substantial positive T -independent MR) was observed
experimentally and analyzed theoretically.

A specific property of graphene compared to conventional
2D semiconductors is the linear energy dispersion of the
carriers,

ex = Lvlik, (1)

resulting in the density of states, which increases away from
the Dirac point:

Nlel
2mv2h?
Here v = 108 cm/c is the Fermi velocity, & is the energy
counted from the Dirac point and N =2 x 2 =4 is the
spin-valley degeneracy. Corresponding wave functions are
given by exp(ikr)|x,), where |x,) is the spinor with the
components (e~'%/2, 4 ¢'%/2)/4/2, and ¢ denotes the polar
angle of the momentum k.

Important consequence of the linear dispersion of graphene
is that the cyclotron frequency turns out to be energy
dependent:

@

vo(e) =

eH hQ?
= ——, for
cm(e) €

wc(e) = > Q. 3
Here H is the magnetic field and m(e) = /v is the energy-
dependent cyclotron mass. The frequency,

Q=" )

ly
is proportional to the distance between the lowest LLs [see
Eq. (24) below], where ly = /ch/eH is the magnetic length.
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Another consequence is the energy dependence of quantum
and momentum relaxation times for the short-range scattering
potential. Here we by definition assume that the random
potential is a short-range one if its radius R satisfies the
following inequalities,

a < R<KM, )

where a is the lattice constant and A is the electron wavelength
(this definition is different from one chosen in Refs. 16 and 17).
Such a potential does not mix valleys and can be written as’*'®

A 1 0
V(l’)=V(r)<0 1>, Vi) =upy 8r—r), (6)

where summation is taken over the impurity positions. The
correlation function of V (r) is given by (V(r)V(r')) = «8(r —
r'), where k = nimpu%) and 7, is the impurity concentration.
Calculating by golden rule the quantum and transport scat-
tering times we find that they are different and both energy
dependent:”!3

yh
7y(e) = ER
where y = 2h%v?/k. The difference between T, and 7, is due
to weak anisotropy of the scattering arising from the spinor
nature of the wave functions. Indeed, the squared scattering
matrix element, |Uyy|? is proportional to |{xy | )(</,)|2 and,
therefore, depends on the scattering angle ¢ — ¢’. Below we
assume that y > 1 and, consequently, et,(¢)/h > 1. The
latter inequality allows us to neglect localization effects. We
also assume that disorder does not affect density of states.
This condition is also satisfied for large y, with an exception
for exponentially small energies,!” & ~ A e "7/2 (A is the
bandwidth of graphene), which are irrelevant for this paper.
Under such assumptions the conductivity in zero magnetic
field is given by the Drude formula:

7 (&) = 274(e), 7

2¢?
O'D =09 = 4 s fOI'
h
We see that both w, and 7, are energy dependent and,
therefore, the parameter,

H=0. ®)

£

2
X =0Ty =3, 9)

can be small or large at the same sample for different ¢. Here
we used Egs. (3) and (7) and introduced the energy,

e« =Ny > hQ, (10)
which scales as a square root of the magnetic field:
£ 0 VH. (11)

As seen from Eq. (9), at sufficiently high T the temperature
window might include both the “quantum” (x > 1) and the
“classical” (x < 1) regions, so that the total conductivity might
show some peculiarities specific both for the quantum and
classical transport.

In the first part of the paper we calculate MR and the Hall
coefficient of graphene with the short-range disorder assuming
that max(T, ) > h Q2 and, consequently, the number of filled
LLs is large.
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The most interesting finding is related to the case &, —
0 (H — 0). We demonstrate that the dominant contribution
to the low-field resistivity comes from the energy scale &,,
which is deep below max(T, ) in this case. This contribution
is calculated within SCBA based on the approach of Ref. 7.
Assuming that temperature is not too small,

ho (s < T (12)

(this condition ensures that the Shubnikov—de Haas os-
cillations are suppressed by energy averaging within the
temperature window) we find that for low fields (e, << T') the
relative longitudinal resistivity scales as a square root of H:

AQur 0.784¢,
CEEP o VH. (13)
0:x(0) T cosh*(u/27T)

Here AQxx = Qxx(H) - Qxx(o)v and QAX(O) = 1/O‘O- ForT «
1, MR is exponentially small because the energy scale ¢ ~ &*
is well beyond the temperature window. However, for T 2 u,
low-field MR is quite large and increases with decreasing
the temperature. From the side of the lowest fields, the
square-root dependence (13) is limited by exponentially small
fields corresponding to &, ~ e™" &~ Ae~"7/2. Calculation of
MR at &, < €™ is not controlled because at such energies y
is renormalized to unity,'” so that impurity potential becomes
effectively strong and SCBA fails. One may expect that
for e, < ™" MR becomes parabolic which implies that
one should replace factor e,/T with (e,/T)(e./ s*mi“)3 in
Eq. (13).

We show that the square-root dependence of MR is also
obtained in the opposite limit of large field, &, — oo (H —
00):

AQxx ~ 0-968*T///L2, for
0::(0) | 0.68,/u,  for

and &, > T?/u,
and &, > u.
(14)

T> u,
uw>T,

Furthermore, we discuss the behavior of the Hall coefficient
R as a function of the magnetic field and the electron
concentration and demonstrate that it is a nonmonotonic
function of both variables.

In Fig. 1 we plotted schematically the dependence of the
longitudinal resistivity and the Hall coefficient on the magnetic
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FIG. 1. Schematic plot of the dependence of the longitudinal
resistivity and the Hall coefficient on the magnetic field for p <« T'.
Region of exponentially weak fields corresponding to &, < &pi, 1S
marked by the gray color. Our theory is applicable for higher fields.
Vertical dashed lines correspond to ¢, ~ T and €, ~ T/ .
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field for © <« T. Importantly, square-root MR is predicted both
for very low and very high fields. More detailed pictures are
presented below (see Figs. 4-6). It is more convenient to plot
all dependencies not as functions of H but as function of
E4 X /H . This allows us to present the results for u <« T and
u > T in a similar way.

In the second part of the paper, we analyze the case of
the charged impurities and discuss the effect of the electron-
electron interaction on magnetotransport. The role of the
interaction turns out to be twofold: Interaction leads to a
screening of the charged impurities and provides an additional
scattering channel which limits conductivity of graphene at
the Dirac point (in contrast to a conventional semiconductor).
The importance of both effects depends on the value of the
dimensionless parameter o which characterizes the strength of
the Coulomb interaction. In this work, we use « as a parameter
of the theory. Specifically, in the case of charged impurities
we discuss separately two cases: o« ~ 1 and o < 1. We first
neglect electron-electron collisions and demonstrate that for
weak coupling (¢ < 1) charged impurities yield square-root
(parabolic) MR at the Dirac point in the low- (high-)field
limit. Then we present a qualitative discussion of the role of
inelastic collisions and establish conditions of the applicability
of our results in the context of the hydrodynamic treatment.
Specifically, we compare our results with those obtained in
the collision-dominated regime in Ref. 13 and discuss the
competition between the two mechanisms of the strong MR
at the Dirac point: (i) due to inelastic collisions'® and (ii)
due to screened charged impurities. In particular, we show
that the external screening of the charged impurities by the
gate electrode favors the disorder-dominated mechanism, so
that the square-root low-field MR is always established in
a generic gated (i.e., typical for most transport experiments)
setup at sufficiently low temperatures. The competition of the
electron-electron collisions and scattering of the short-range
impurities is also discussed and the conditions needed for
realization of the square-root MR are presented.

II. BASIC EQUATIONS

A. Qualitative analysis

In the beginning of this section, before turning to the
rigorous calculations, it is instructive to make some qualitative
estimates clarifying the physics of the predicted square-root
MR. To this end we note that behavior similar to that given
by Eq. (13) may be obtained already within the semiclassical
Drude-Boltzmann approximation. The main ingredient needed
for obtaining the square-root MR is the specific energy
dependence of w, and 7, given by Eqs. (3) and (7), respectively.
Indeed, the classical approach based on the Boltzmann kinetic
equation yields

%

1 + [we(8)Ti(e)]?
44

=@O —J;> (16)

e

alb(e) = s5)

where we used Eqs. (7)—(9). Importantly, the second term in
the right-hand side of Eq. (16) is peaked near ¢ = 0 within the
width on the order of ¢,. Let us consider for simplicity the case
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u < T assuming that e, < T. Averaging of Eq. (16) over en-
ergy within the temperature window yields two terms: the field-
independent contribution oy and the contribution of the peak,

Aoy (H) ~ —(&+/T)op. a7)

Analogously, for the transverse conductivity we obtain

2
Doy p_ _ Elelg
ny(s) = WcTy0,, = O'Om. (18)
After averaging over energy, Eq. (18) yields
D Exb M
ny ~ 00 T2 ~ T |A0xx(H)| s (19)

so that the total transverse conductivity is smaller'® than
the field-dependent part, Ao,,(H), of the longitudinal
conductivity. The longitudinal resistivity reads

(o] + onx(H)
[0 + Ao ()P + [0 2(H)]’
1 oAan(H) + [ohD]

(o)) O‘g

Qxx(H) =

(20)

Since in our case,
2
[62(H)]” < o9l Ao (H)I, 1)

we can neglect o2 in Eq. (20). As a result, in contrast
to the conventional case of a parabolic spectrum [where
axzy = —0yAo,(H)], the magnetic-field dependence of

oy (H) directly translates into the MR:

o (H) ~ . 22
0xx(H) D (H) (22)
Hence, we find
A XX A XX H
Qu _AoulH) & m (23)
Qxx(o) 00 T

It turns out, however, that this analysis yields an incorrect
value of the numerical coefficient in the low-field asymptotic of
MR [see discussion after Eq. (60)]. Indeed, a purely classical
Drude-Boltzmann approach is valid for ¢ > ¢, and fails at
relevant energies ¢ ~ ¢, where the LLs start to separate. For
& K &, the LLs are well separated and the longitudinal con-
ductivity contains the density of states squared. After thermal
averaging this also leads to a +/H contribution to MR which
comes from the separated LLs (see, e.g., Refs. 19 and 22) and
has essentially quantum nature (despite that the temperature is
higher than the interlevel distance). In the calculations below
we use a rigorous approach based on the SCBA, which treats
both, classical and quantum, mechanisms of the square-root
MR on equal footing and allows one to describe crossover
between the classical and quantum regions at & ~ &,.

B. Self-consistent Born approximation for graphene
with short-range disorder

Inequality (5) ensures that disorder does not mix two
equivalent valleys of graphene, so that one may calculate
the conductivity in one valley and then simply multiply the
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obtained result by the factor 2. The single-valley Hamiltonian
in the perpendicular magnetic field is given by!>!°

H = Hy+ V(r),

Ao = Uh(& . [12+ iA(r)D,
ch
where e is the absolute value of the electron charge, and V(r)

is given by Eq. (6). The eigenenergies and eigenfunctions of
H, read

&, = hQsign(n)y/2In], Yo (x,y) = e x, (x —kiF;), (24)
where 2 is given by Eq. (4) and

L[ 1) 3 .

E[sign(n)h‘nl(x)], for n=41,+£2,...;
xn(x) = 0

[ho(x)]’ for n=

(25)

Here 5,,(x) are the normalized wave functions of the harmonic
oscillator with the frequency 2 and mass ii/vly. As seen
from Eq. (24), the energy-dependent cyclotron frequency is
connected with Q2 by Eq. (3) while the relevant energy scale
&, is given by Eq. (10) and corresponds to high LLs, so that
we can use the SCBA for calculation of the resistivity.

In the SCBA, the electron Green function in the short-range
potential is given by’

1

Gle)= ————, (26)
& — H() )
where self-energy is found from the following equation:
- 1
X =«{r|————=|r). 27
& — HO -2

As shown in Ref. 7, 3 is 2 x 2 matrix having nonzero matrix
elements between x, and x_,. However, at high energies
corresponding to high Landau levels, £ becomes simply
proportional to the unit matrix:

- 1 0
E(s)%2(8)<0 1), for &> hQ,

A { 20 ge /% sin(
B Znﬁ(sg?)g’
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where
Y(e) = A(e) £il(e) (28)

(signs + and — corresponds to advanced and retarded self-
energies, respectively). In this approximation, ¥ obeys’

>

b)) .
Y n=0 (8 - 2)2 - 8’%

29

Here Ny is the ultraviolet cutoff. The sum entering Eq. (29)
can be calculated by using the identity,

vl 1 N t(r W) 30)
~ In — 7 cot(r W),
= N-W w
valid for  Npuix > Re(W) > 1,Im(W) < Re(W), and
Im(W) > 0. From Egs. (29) and (30) we obtain
£—X 2 Ninax Q)2 (e — X)?
I —mcot|m— | ¢ .
2y (e — X)? 2(h2)?
(31)

The logarithm entering Eq. (31) is a smooth function of ¢
and leads to a linear in & correction to X, which is irrelevant
provided that y > In Nyax (see also discussion of SCBA in
graphene in Ref. 12). We substract this correction from X
and for simplicity use the same notation X for thus redefined
self-energy. Then we find from Eq. (31) the system of coupled
equations for A and I':

A Fosin[2n(e — A)/hw,]
" cosh [2nT /hw.] — cos [27(e — A)/hw,]’
C— [y sinh 27T /hw,]
~ cosh [2nT /hw.] — cos [2m(e — A)/hw,]’
where I'g(¢) = 1 /27,(¢). We also normalize I" by its value at
zero magnetic field introducing the quantity,
I'(e) . v(e)
To(e)  vole)’
Here v(e) is the density of states in the magnetic field. The
solution of Egs. (32) and (33) can be found analytically in the
limiting cases € > &,(x < 1) and ¢ K g,(x > 1):

(32)

(33)

2(e) = (34)

er—8), for &> &,

how,

(35)

for & <K &y,

1+ 2ae™™* +2(2a* — 1)(1 — 2T”)e_Z”/x, for &> &,;

Ix

27[_)5 Znﬁ(%) 1_(

Here
2me
a = cos < ) , (37)
hw,
¥ (y) is equal to unity (zero) for |y| < 1 (Jy| > 1) and
2w.(&1)
y=T)=h|—. (33)
T Ty(En)

£—&,

(36)

T, )2, for

& K &y.

In the first line of Eq. (36) we expanded z up to the second
order with respect to exp(—m/x). As seen from Egs. (3),
(7), and (38), I',, actually does not depend on n for the case
of short-range disorder which we concern with: I';, = I'q =
const. Here

g =1

Ty

(39)
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v(e)

A

A

FIG. 2. Density of the electron states in graphene with short-
range disorder (solid line) and the derivative of the Fermi function,
—onyp/de, for the temperatures 7' < p and T ~ p (dashed lines).

0

Hence, the widths of different LLs are equal, but the distance
hw, between neighbor LLs decreases with increasing . We
also see that self-energy changes periodically with ¢ on the
scale iw.. Both the period and the shape of these oscillations
slowly depend on the energy due to energy dependence of x.
The density of electron states, v(¢), following from Egs. (34)
and (36) is plotted in Fig. 2 for ¢, < u. At low energies,
x < 1, LLs are well separated, while for x > 1 density of
states is given by zero-field density, Eq. (2), up to exponentially
small oscillating terms.

III. CALCULATION OF THE CONDUCTIVITY

The conductivity tensor is given by thermal averaging of
the energy-dependent tensor o;;(€):

oij = /_ e [— 3";8(8)] a1 &), (40)

where n g(¢) is the Fermi distribution function.

The longitudinal conductivity o,,(¢) is calculated by
summation of the ladder diagrams.” The result is given by
Eq. (4.13) of Ref. 7. Using Eq. (30) one may rewrite this result
in terms of z(&):

2(e)?
2(6)? + [we()Te())?

Gxx(e) =0y (41)

For high energies x — 0, so that z — 1 [see Eq. (36)] and
we obtain Drude result, Eq. (15).

For x > 1, we find from Egs. (41) and (36) the conductivity
near nth LL,’

en —¢, 2
oxx(e) = { 31227’1 [1 - (%) ], for
0, for

|8_8n| < FQ» (42)
le — e, > Iq.

We note that Eq. (41) may be obtained from Eq. (15)
by replacement of 1/7.(e) with z(¢)/t(¢). Hence, the only
difference of the SCBA result, compared to the Drude one is
the renormalization of the density of states given by Eq. (34).

The calculation of o,,(¢) is more subtle. Simplest approx-
imation based on summation of the ladder diagrams leads to
Drude-like formula with renormalized scattering rate,

(&)t (e)z(€)
22(8) + [wc(e)Te()?

in a full analogy with Eq. (41). In fact, there also exists another
contribution to the transverse conductivity, which is expressed

ol (&) = o 43)
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via thermodynamical properties of the electron gas:?%?!

o)l (&) = eclon/dH].. (44)

Here n = n(e,H) is the electron concentration in magnetic
field for zero temperature and chemical potential coinciding
with ¢. The derivative over H is taken for fixed . Hence,

axy(e) = 0y (8) + 0y (). 45)

In fact, o/](¢) yields essential contribution to o,(¢) for
& K e, when LLs are well separated [in the opposite case
of overlapping LLs o/ (¢) is exponentially small].

Let us now do the integral in Eq. (40). As follows from
Eq. (36), the dependence o;;(¢) contains fast oscillations on
the scale iw,., the shape and the period of the oscillations being
energy dependent due to energy dependence of x. Therefore,
for relatively high temperature the integration in Eq. (40) may
be performed in two steps. First, we average o0;;(¢) in Eq. (40)
by the energy interval de, such that € > §¢ > hw.(¢). Such
an averaging “filters” the Shubnikov-de Haas oscillations and
results in a smooth function &;;(¢). One can also show that
after averaging /! can be neglected® (provided that y >> 1)
both for overlapping®* (¢ > ¢,) and for separated (¢ < &)
LLs. Hence below we use

Guy(e) = 5] (e).
It is convenient to write &;; in the following form:
Gij(e) = Ui?(S) nij (), (46)

where 7;;(e) are dimensionless factors. From Egs. (36), (37),
(41), and (43) we find asymptotical behavior of n;;:

M 1 —24x2e=27/x = 1—2:—4826_2”2/53, for &> &,
Ci1/x = Crey/s, for &« e&,,
47
~ 1+ 2e727/% — 1 42727/ for &> e, 8)
Mxy 1, for & < &,.

Here C| = 8v/2/37w /7 ~ 0.68. For arbitrary values of ¢ the
factors n;; have been calculated numerically. The dependencies
0,x(¢) and &,,(¢) are plotted schematically in Fig. 3. In this
picture we took into account that o, () = 0y (—¢), 04y (€) =
—0,y(—¢) because of the particle-hole symmetry. In the
high-energy asymptotics we keep exponentially small terms
[proportional to exp(—2m/x)], since they are important in the
calculation of MR in the limit of low temperature and low field
(see below). It is worth also noting that averaged longitudinal
conductivity is not exactly zero at ¢ = 0 but saturates at
e ~ h<Q at a quite small value: &, ~ 00/y3/2 < 0y.

As a second step, we calculate o;; by replacing o;;(¢) with
06;j(¢) in Eq. (40):

” /oo h |:_ BnF(8)i| 5,6, (49)

00 ae

and substitute thus obtained o;; into expression for the
longitudinal resistivity:

UXX
Ory = ————. (50)
ol 40l
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FIG. 3. Dependence of 6., and G,, on energy. The region x > 1
is marked by gray color.

The result of calculations depends on the relation between
three relevant energies 7T,u, and ¢,. The magnetic field
dependence of g, is encoded in the square-root scaling of
&.. Below we discuss separately the cases of low and high
temperatures.

A. Low temperatures 7 < p.

We start with discussing of the high-field limit &, > u.
Since integral over energy in Eq. (49) is concentrated in the
narrow temperature window near € = p we can use low energy
asymptotics for &, and &, ; see Fig. 3. Doing so, and replacing
in Eq. (49) [—0np (g)/0¢e] with 6(e — u), we find

Ciu? u?

O'OE, O'Xy%O'QZ—gi. (G20

~
o’xx ~

We see that 0, < 0y,. Therefore, gxx & 0y /szy and

A XX C *
Q = i x v H, for
0xx(0) Iz

Next we consider the opposite case €, < . In this case, there
are different competing contributions to the MR. First con-
tribution is obtained quite analogously to the high-field limit
by replacing the derivative from the Fermi distribution with

the delta function. In this approximation, oy, = 0y, (1), 0xy =
Oyy(u). As follows from Egs. (47) and (48), in the limit

Ex > . (52)
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of large u these conductivities differ from Drude values by
exponentially small terms only. It is well known that in the
Drude-Boltzmann approximation MR is absent in the limit
of low T. Hence, MR should be exponentially small. Indeed,
substituting 0, (1) and &y, () into Eq. (50), using Eqs. (46),
(47), and (48), and keeping terms on the order of exp(—2m/x)
we obtain

AQxx 8ed —2nul/e?
A —=E «, for &, < pu. (53)
0:(0)  pt "

There are two other contributions which may compete with
this exponentially small result. Both contributions arise due to
the finite value of temperature, which was in fact assumed to
be zero while deriving Eq. (53). Let us now take into account
that the function,

_8np(8) . 1
de AT cosh®[(e — p)/2T]

is peaked near ¢ = p within a finite width on the order of 7.
First of all, there exists a correction to the MR due to a small
variation of x(g) within the temperature window. To find this
correction we put n;; ~ 1, expand 6;;(¢) near ¢ = p up to the
second order with respect to ¢ — u, calculate integral Eq. (49)
and use Eq. (50). As a result, we get a quadratic-in-H MR,

AQxx _ C2 Tzé‘i
0xx(0) e

where C, ~ 1672/3. This correction becomes larger than
Eq. (53) for relatively weak fields such that ¢, < &, where

V2
S R Gy
In"""(8u*/C,T?)

At very low magnetic fields, another contribution comes
into play, namely, the contribution to integral Eq. (49) from
the energies ¢ ~ ¢* which are well beyond the temperature
window. To find this contribution we first write &,,(¢) in the
following way:

(54)

x H?, (55)

(56)

Oxx(€) = oo[l — f(e/ex)]. (57)

The function f(y) has maximum at y = 0 and decays when y
becomes larger than 1, or, equivalently, £ becomes larger than
& (see Fig. 3):

% , for

1—Ciy3/4, for

y > (e > e.);
y KL (e K &y).

JFy) =~ (58)
Here we neglected exponentially small corrections to f atlarge
¢ and introduced dimensionless variable y = g/g, = 1/4/x.
Let us now assume that ¢* is smaller than 7. Then one can
replace [—dnp(e)/de] with its value at zero energy —n'z(0),
while calculating the contribution to o,, coming from the
region ¢ ~ &*. Doing so, we obtain

oxx = 0o[1 = 2C3e.|n ()], (39)
where dimensionless constant C3 is given by the integral,

Cy= /OO dy f(y) = 1.568. (60)
0

It is instructive to compare the obtained result with the “purely
classical” calculation which ignores the existence of LLs. On
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the formal level, such an approximation implies replacement
n;; with unity in Eq. (46). Simple calculation (see also
discussion in Sec. IT A) shows that thus calculated conductivity
can be presented in the same form as Eq. (59), where one
should replace C3 with

D 00 1
cl=| ay(1-—
g /0 y( 1+4x2)
© g
— | ay—"— =n/2=1571 61
/0 yy4+4 / (61)

This value is close but different from Cs, so that discreteness
of LLs should be taken into account.

Now we are ready to calculate resistivity correction. In the
regime under discussion (&, K T K ), Oxx > 0y, S0 that
Oxx ™~ ]/Gxx and

AQx
0xx(0)
Since T« u, we conclude that MR is exponentially small:

~ 2C3,|nx(0)| o VH. (62)

AQxx ~ 2C38* e_“/T.
0xx(0) T

Comparing Eq. (63) with Eq. (55), we see that the former
contribution dominates when ¢, < &, where

(63)

2

g ~ Te*ﬂ/” <T. (64)
Therefore, in accordance with our assumption, ¢, < T in the
regime when Eq. (63) dominates.

Looking now more attentively at the above derivation one
concludes that Eq. (62) is valid at the arbitrary relation between
T and u provided that &, — 0 (but &, > &™"). Hence, the
low-field MR is given by

A Cse.
Qo o 3 o VH. 65)
0xx(0) 2T cosh*(1/27T)

B. High temperatures p < T.

In this case, the low field asymptotics of MR is realized at
&+ < T and is given by Eq. (65), where one can put . = 0,

AQxx ~ C38*
0xx(0) 2T

Hence, near the Dirac point resistivity correction scales as
VH at H— 0, and increases (for fixed H) with decreasing
the temperature.

Let us now consider larger fields, ¢, >> T'. In this case, one
can use low-energy asymptotics,

«vH/T, for e, <T.  (66)

_ CileP op €le|
axx(g) R 78_3, UX}’(S) ~ ?8_2 (67)

Thermal averaging yields
0oC1 /oo &3 1 n 1
Opx = &e——
xx 16 J, 3T | cosh? (5£) = cosh? ()
~ 90’QC1§(3) T3
4 g3’

(68)
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FIG. 4. Resistivity of graphene for the cases T < pwand 7 > u
as a function of &, o« v H.

(o)) /oo de 82 1 1
Oy = — — —
ST e2T | cosh® (5£)  cosh® (5£)

uT
~ 20'() In 28_2 s (69)

*

where ¢ is Riemann zeta function, ¢ (3) =~ 1.2. From Eqgs. (68)
and (69) we find

AQxx ~ 4 Ei 1
- T3 8In2 12 p2e?
0x(0)  9C1E(3) TP 1 4 [9C1£(3)] L

C48£/T3, for T < e, KT ; a0
-~ Cse,.T/u?, for T?/u < e,.
Here C4=4/9C¢(3) ~0.54, Cs=9C¢(3)/16(In2)*> ~

0.96.
The results of calculations are summarized in Fig. 4.

IV. HALL COEFFICIENT

Using the equations derived above one can easily calculate
the transverse resistivity gy, = 0y, / (szx + oxzy) and the Hall
coefficient,

Oxy
R =—. 71
o (71

Below we discuss the dependence of R on H and on the charge
density at zero field,

o) 0
n =/ np(s)vo(s)ds—/ vo(e)de. (72)

o] —00
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The second term in the right-hand side of Eq. (72) is the
concentration of background electrons which compensate the
positive charge of the donors in the neutrality point. One can
easily check that n = 0 for u© = 0.

For T <« u, simple calculation yields that the Hall coef-
ficient up to small corrections is given by the conventional
expression,

1
R=—, (73)
ecn
both at very low (e, < ) and at very high (¢, > ) magnetic
field. For ¢, ~ pu, Eq. (73) is valid up to a numerical factor
on the order of unity (R ~ 1/ecn). Concentration entering
Eq. (73) is given by

" Nplul
n~ vo(e)de' = ) 74
/0 o(eae’ = 0 (74)

Consider now the vicinity of the Dirac point, u < 7. In
this case,

NuT In2
nN ————

75
wv2h? ()
while the transverse conductivity is given by
o =
Oxy(€) 1 1
Oyxy =/ de AT |: " T (k
: cost? () cosh? ()
po [ sinh(57)
N — deaxy(s) . (76)
212 Jo osh’ (57)

For ¢, « T, the main contribution to o, comes from the
energy interval e, < ¢ < T, where the integral in Eq. (76)
is logarithmically divergent. Therefore, one may use large-¢
asymptotic, o, ~ 20062 /&%, and calculate the integral in the
limits ¢, and 7. Doing so we find with the logarithmic
precision: o,y & og(ue?/2T3)In(T /¢.). The longitudinal con-
ductivity is given by Eq. (59) where one can neglect small
correction proportional to €,/ T, thus writing o, ~ 0p. Using
these equations we find

T
R = R() In <8—), (77)

R — 7 uv?h? n (78)
0= eNT3 ecn?’

where

where ny ~ NT?/v*h? is the electron concentration for p ~
T. Hence, the Hall coefficient logarithmically increases with
decreasing the magnetic field. Above we noticed that our
calculations are valid up to the exponentially small fields where
&« ~ Ae~7V/2_ Therefore, the maximal value of the In(T /&)
is limited by 7y /2 — In(A/T).

In the opposite case, &, > T, the conductivity tensor is
given by Egs. (68) and (69) which yield for the Hall coefficient
the following expression:

272
R= RO%’ 79
14+ Ciuce,/T
where  C¢ =64In2/[9C;¢(3)]>~0.82 and C;=
[8In2/9C,2(3)]?> ~ 0.57. We see that the Hall coefficient
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Rmin
Ry

»
T

Ex

FIG. 5. Dependence of the Hall coefficient, o,/ H, on &, vH
atT > u.

linearly increases with the magnetic field, R « ef « H, in
the interval T < &, < T?/q and saturates when &, becomes
larger than T2 /. From Eqgs. (78) and (79) we conclude that
R is a nonmonotonic function of the magnetic field and has a
minimum (for positive p) at magnetic fields corresponding to
&, ~ T. The minimal value of R is given by Ry, ~ Rpy. The
dependence of R on ¢, is plotted schematically in Fig. 5.

Measurements of the Hall coefficient are usually used
for extracting the density of the carriers with the help of
conventional expression (73). From Eqgs. (75), (77), and (79)
we see that such a procedure fails near the Dirac point. Let
us, therefore, discuss the dependence of R on n in detail (see
also Ref. 26). The analysis of the above equations shows that
R is a nonmonotonic function of n both at low and high fields:
It turns to zero for n = 0, has a maximum at certain n = n,,,
and decays as 1/n according to Eq. (73) for n — oo (see
Fig. 6).

As follows from Egs. (75), (77), and (78), at low fields or,
equivalently, high temperatures (e, < T), the Hall coefficient
linearly increases withn atn < ny (u KL T),

R ~

> In(T /&), (80)
ecny

reaches the maximum value,

Rmax ~

1 In(T' /&), 81
T

atn, ~ nr (u ~ T), and decays inversely proportional to the
concentration at n — o0.

R

0 Rmam

FIG. 6. Dependence of the Hall coefficient on electron concen-
tration.
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Athigh field or low temperatures (¢, > T), the dependence
of R on n also has a maximum and is linear at small
concentration. However, as seen from Eq. (79) there are some
differences compared to the low-field case. First of all, the
coefficient in the linear dependence at small n turns out to be

different,
2
R~ (8—> . (82)
ecnp \T

Secondly, the maximum value of R is reached at much smaller
concentrationn,, ~ (T /&, )n correspondingto u ~ T2 /e, <
T. Equation (82) holds below this concentration while at larger
n the Hall coefficient is given by conventional expression (73).
The maximum Hall coefficient reads

L (& 83
ech<?>' (83)

V. CHARGED IMPURITIES

Rmax ~

In the previous sections we discussed magnetotransport in
graphene with the short-range disorder. One can see from
the above derivations that the most interesting result, the
square-root MR atlow H, is a direct consequence of the energy
dependence of scattering time specific for the short-range
impurities: 1/t o |¢]. In this section we discuss scattering
by the charged impurities which are often considered to give
a dominant contribution to the resistivity of graphene. In
particular, the Coulomb impurities yield a linear dependence
of the conductivity on the carrier concentration away from the
Dirac point, in agreement with the experimental data on most
graphene samples.

The matrix element of the scattering on a single charged
impurity is given by

. 2me? /g
1+ Qne?/gx)NTI(g)’

where I1(g) is the static polarization operator and ¢ is the
dielectric constant. If we neglect the screening of the impurities
[which corresponds to IT = 0 in Eq. (84)], and use golden
rule for calculation of the transport scattering rate, we get
1/7¢ o |e|~!, which implies that w,t; does not depend on
energy and, consequently, the mechanism of the MR discussed
above does not work. Note that in contrast to conventional
semiconductors, where condition w.t; = const guaranties
absence of MR, in graphene there should be a parabolic MR
(more pronounced for p < T') within the model neglecting
screening. This is because of a partial cancellation of the
electron and hole contributions to the transverse conductivity.
In particular, exactly at the Dirac point o,, = 0 and hence
pxx(H) = 1/0,(H), so that MR is given by Ap,,/0.:(0) =
(weTy)? x HZ.

Let us now take screening into account. We restrict
ourselves to the analysis of the MR at the Dirac point,
where one expects the most pronounced effect. The general
expression for the polarization operator at the Dirac point was
derived in Ref. 25. For our purposes it is sufficient to know the
asymptotical expression for [1(g) at ¢ < T /hv:

TIln2
Th*v?

Vy (84)

M(g) ~ , for q < T/nv. (85)
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Indeed, as we discussed in the previous sections the main
contribution to resistivity at weak fields comes from the low
energies, ¢ < T. Since transferred momentum 7q is on the
order of ¢/v, we conclude that relevant momenta are smaller
than T /hv.

Further consideration depends on the value of the parameter
o = e? /hvsc which characterizes the strength of the electron-
electron interaction. Whereas for free-standing graphene o ~
2, it can be much smaller for graphene grown or placed
on a substrate with large dielectric constant, as well as for
graphene suspended in a media with large s (for example,
in conventional water). Moreover, « is suppressed due to the
renormalization of the Fermi velocity v.?® Below we use o as
a parameter of the theory and discuss separately two cases:
a~lando < 1.

Before going to the calculations, we note that the screening
of the Coulomb impurities is not the only effect of the electron-
electron interaction on transport properties of graphene. It
was shown in Ref. 13 that inelastic collisions of carriers
also produce a parabolic MR near the charge neutrality point.
In what follows, we will first disregard inelastic collisions,
taking into account only the screening effects (the role of
inelastic collisions will be briefly discussed in Sec. VI). We
will see that the screening of Coulomb impurities changes
the situation and, remarkably, in the absence of the inelastic
collisions, the low-field MR becomes proportional to +/H,
in a full analogy with the short-range scattering, though the
temperature dependence of the MR is different.

In what follows, we focus on the contribution of the over-
lapping Landau levels to the MR and analyze the conductivity
semiclassically within the Drude-Boltzmann approach. As we
mentioned above, such approach allows one to obtain the
correct equation for MR up to a numerical coefficient. For
simplicity, we will consider the low-field asymptotic only.

A. Strong electron-electron interaction: o« ~ 1
In this case, for ¢ < T /hv we find
b wh?v?

170" NTIn2

(86)

We see that at low electron energies the scattering matrix
element does not depend on the energy just as in the case
of the short-range potential. Hence, in order to find low-field
MR one should make the following replacement uy — uj =
h2v? /NT In2 and, consequently,

_ 2N*(In2)’T?

nimpnzhzvz

/

y - (87)
Since y becomes temperature dependent we conclude that
energy ¢, now also depends on T':

e, =hQy/y' x TVH. (88)

Low-field MR at the Dirac point is still given by Eq. (66), where
one should substitute expression (88) for .. It is worth empha-
sizing that charged impurities yield temperature-independent
MR in contrasts to inverse temperature dependence of MR in
the case of short-range potential.
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B. Weak electron-electron interaction: o < 1.

In this case, a new energy scale a7 appears within
the temperature window. For small energies, ¢ < «T, the
characteristic momentum transferred in the scattering event
is on the order of ¢ /hv and we get from Eq. (84): V, ~ 1/I1.
Hence, the potential is effectively short ranged and its strength
is characterized by y’ [see Eq. (87)] in a full analogy with the
previous subsection.

Next, we consider intermediate energies, a7 K ¢ K T.
Analyzing Eq. (84) one might conclude that the screening
can be neglected and V, is given by its value for unscreened
Coulomb potential 27re?/kq. The issue, however, is more
subtle than it appears. Indeed, estimates show that the bare
Coulomb potential leads to an infrared divergency of the
quantum scattering rate: 1/7, ~ fok dq/q?. This divergency
is cured by screening, so that for a given electron energy ¢,
the characteristic value of g turns out to be much smaller than
e/hv, being on the order of «T /Av (see also discussion in
Ref. 13). This, in turn, means that the quantum scattering rate
saturates when ¢ becomes larger than o 7. On the other hand,
for ¢ > aT the screening can be neglected in the calculation
of the transport scattering rate which is then determined by
the bare Coulomb potential. As a consequence, 1/1 starts to
decrease as |¢|~! fore > aT.

On a more formal level, expressing the transferred momen-
tum g = 2(e/hv)| sin(6/2)| through the scattering angle 6, we
represent the scattering rates as

1 T do
— ~ azvzhnimpe/
i 0

T [esin(6/2) + aNT In2)?
1+4+cosf, for i=gq
{ sin? 6, for i=tr"’ (89)
Evaluation of the integrals yields
h / .
ho e/y’, / for ¢ K aT; (90)
7, aT/y’, for &> aT.
E ~ 8/2)//, for ¢ < OlT, (91)
T (aT)?/y’e, for &> aT.

Dependence of the transport and quantum scattering rates on
the energy at small « is plotted schematically in Fig. 7. The
value of y’ is given by Eq. (87).

Let us now consider conductivity at the Dirac point (i1 = 0)
within the Drude-Boltzmann approach. Since most interesting
results are expected at low fields, we restrict ourselves to
discussion of the case ¢, < aT. Using Egs. (3), (10), and

h)7q, B/ Ter
QT ) [T777 T e
e/y /7
(aT)?/'e
6/2’)/, h/Ttr
ol g

FIG. 7. Energy dependence of the quantum and transport scatter-
ing rates.
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(91) we find
ey’ 848?, for ¢ K aT;
0,5 (8) ~ T 82(0:7-)2 (92)
(OLT)4+84 ’ for & >> aT'

Next we perform the thermal averaging of o, (¢) and take into
account that the averaged transverse conductivity at the Dirac
point is zero due to the cancellation of the electron and holes
contributions. Straightforward calculations yield the following
result for MR:

&g, K a’T;

Agxr
g, > o’T.

{azs*/T x «/ﬁ, for 93)
0xx(0)

(ex/aT)* o« H?, for

As seen, with increasing the magnetic field, the square-root
dependence on magnetic field changes to a parabolic one. It is
notable that due to the quadratic dependence of y’ on T [see
Eq. (87)], the MR turns out to be temperature independent
both at weak and at strong fields [see Egs. (88) and (93)].

When deriving of Eq. (93), it was assumed that £* > Q,
which implies that y’ > 1 [see Eq. (10)]. Actually, the latter
condition is not crucial for our semiclassical treatment. Indeed,
at zero field, the energy-averaged longitudinal conductivity
is given by e’y’/ha’. This conductivity should be large
compared to e/, which yields y’ > «?. Another condition
used in the semiclassical analysis is T'z,(T) > h. This
condition, which ensures that the density of states is not
changed essentially at typical energies, leads to a stronger
inequality [see Eq. (90)]: ¥’ > «. Hence, in contrast to the
case of short-range disorder, ' can be smaller than unity. For
a K y' « 1, the MR is parabolic and is given by the bottom
line of Eq. (93) in the whole range of magnetic fields addressed
in the paper.

Finally we note that the potential of the charged impurities
is also screened by the gate electrode. Such screening becomes
important at low temperatures, when characteristic values
of the transferred momentum, g ~ T /hv, become smaller
than the inverse spacer distance, 1/d. In this case, the
amplitude of the screened impurity potential is estimated as
V, = 2med /s = const, so that this case is equivalent to the
case of the short-range disorder.

VI. ROLE OF INELASTIC COLLISIONS

So far we have completely disregarded the effect of
inelastic collisions induced by Coulomb interaction between
the carriers. In fact, such collisions are crucially important for
transport properties of clean graphene in the vicinity of the
Dirac point (i < T).!3?32631-35 A detailed analysis of the
MR in the presence of such collisions is out of the scope of
the current research. Here we limit ourselves to a qualitative
discussion of the problem.

Let us first return to the case of short-range impurity
potential. For electrons with typical energies, ¢ ~ T, the rate
of inelastic collisions is of the order of 1/t,, ~ &*>T /h. This
rate should be compared with the characteristic scattering rate
off impurities [see Eq. (7)], which yields for typical energies
e~T:1/ty ~ 1/t ~ T/yh.Since y is large by assumption,
the existence of the disorder-dominated regime requires rather
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weak interaction:
> <1y «1. (94)

In the opposite limit, &> > 1/y, the hydrodynamic approach
developed in Ref. 13 yields a parabolic MR. As we already
mentioned above, the interaction constant o = > /hvs can be
much smaller than unity for graphene grown on a substrate
with large dielectric constant or for graphene suspended in a
media with large sc. Furthermore, « is suppressed due to the
renormalization of the Fermi velocity v.?® This implies that
inequality «? < 1/y can be satisfied in experiments.

We now briefly discuss the competition between the
scattering off the charged impurities and the electron-electron
collisions. As follows from Eq. (91), for typical energies, & ~
T, scattering rate is estimated as 1 /7, ~ «>T /hy’. Comparing
this rate with the inelastic one, 1/7,, we arrive at the
conclusion that at 3’ > 1 the electron-electron collisions
dominate over the impurity scattering. In this case, the MR
is parabolic and described by the theory developed in Ref. 13.
In the notation used above, one can represent MR obtained in
Ref. 13 for the case u = 0 as follows:

B0 TV (T <T>~<8* )41 (95)
One (O) (O Tee Tir P )// .

We see that in the collision-dominated regime, inelastic
collisions suppress the MR by a factor of ¥’ > 1 as compared
to the collisionless case [see the bottom line in Eq. (93)].

In the opposite limit, " < 1, the scattering by impurities
dominates over the electron-electron collisions. Nevertheless,
the low-field asymptotic of MR [the top line of Eq. (93)] is
not realized. Indeed, the condition €7, /7 > 1, which ensures
that the spectrum is not essentially affected by scattering, is
equivalent to the condition € >> «T/y’ and, therefore, is not
satisfied in the region of relevant energies, & ~ &, < a’T.
However, at high fields, the MR is dominated by impurity
scattering and is given by the bottom line of Eq. (93) provided
that ¥’ > « (as we mentioned above, the latter condition
ensures that the spectrum is not changed at typical energies
e~T).

Let us finally emphasize that the square-root low-field MR
due to the scattering off Coulomb impurities can be obtained in
the gated graphene. The gate screens the Coulomb potential,
thus weakening both the impurity and the electron-electron
scattering. Here we focus on the case of low temperatures T <
hv/d, when for typical energies (¢ ~ T') and wave vectors
(g ~ T/hv) we get V, ~ e’d /> and, consequently, find

1 1 T
S~ (96)
Ty T hy”
h2v? 1
" ~ ~ , 97
v nimquz o Rimpd? o7
1 2T (Td\*
— 2R (L) (98)
Tee h hv
Condition y” > 1 yields
1
nimp <L —5— (99)

a2d?
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Impurity scattering dominates over electron-electron colli-
sions when 1/t > 1/7,., thus giving another restriction,

T < hv/Mipp. (100)

It is easy to see that both inequalities, Eq. (99) and (100), can
be satisfied in the limit of low temperatures for sufficiently
low concentration of impurities. At such concentrations and
temperatures, the MR is given by expressions derived above
for the short-range disorder with the replacement of y by y”.

It is worth noticing that the assumption about the absence of
Shubnikov—de Haas oscillations limits possible temperatures
from below: T > h2//y”. In combination with Eq. (100),
this condition yields a parametrically large range of temper-
atures for the square-root MR, provided that ad/ly < 1.
Thus we conclude, that the low-field square-root MR is a
generic feature in a realistic gated setup in a wide range of
experimentally accessible parameters.

Above we presented estimates both for short-range disorder
and for charged impurities assuming that the electron energies
are on the order of 7. In fact, the situation is more complicated
because the main contribution to the square-root dependence
obtained above comes from small (untypical) energies (¢ <
T). The analysis of electron-electron collisions for such
energies is nontrivial and should take into account the plasmon-
assisted scattering mechanism? (though the plasmons are
not important?-!-3? for those transport properties that are
determined by energies on the order of 7). The MR in the
presence of interaction might still be determined by low
untypical energies. Detailed study of the plasmon-assisted
scattering and its competition with the impurity scattering is a
challenging problem which will be discussed elsewhere.

VII. DISCUSSION AND CONCLUSIONS

To conclude, we have studied magnetotransport in
graphene, focusing on the case of short-range disorder. We
have found that MR depends on three relevant parameters
having dimensionality of the energy, u,7, and ¢,, the field
dependence being fully absorbed by ¢, which is proportional
to ~/H. One of the main predictions of our model is the
square-root field dependence of MR in the limit of low H, both
at very low and at very high temperatures. Such a dependence
persists down to exponentially small fields, corresponding to
gy ~ Ae”TV/2,

We separately analyzed the cases of low and high tempera-
tures and identified four different transport regimes for u > T
and three regimes for u < T (see Fig. 4). All these regimes
can be realized provided that temperature lays within a certain
interval. Let us now find the corresponding criteria.

For w > T and not too small ¢,, MR is determined by
energies close to the Fermi surface, ¢ &~ 1. Above we assumed
that Shubnikov-de Haas oscillations are suppressed by energy
averaging within the temperature window, which implies that
T > how.(n). Using Egs. (3) and (10), the latter inequality
can be rewritten as &, < +/y T . While identifying regimes
shown at the upper picture in the Fig. 4 we implicitly assumed
that ./y T p is larger than p, or, equivalently, 7 > w/y. When
T becomes smaller than p/y the high-field square-root asymp-
totic of MR is not realized because of arising of Shubnikov de
Haas oscillations at e, ~ /¥y T u < . However, the low-field
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square-root asymptotic is determined by energies ¢ ~ ¢, and
remains valid even at low temperature, because Eq. (12) is
always satisfied for T <« p and €, < &;.

In the opposite limiting case, T > u, the main contribution
to MR comes from ¢ &~ ¢,. Rewriting Eq. (12) as ¢, < yT,
we find that three regimes shown in Fig. 4 are realized
provided that yT > T?/u, or, equivalently, T < yu. At
higher temperatures, 7 > yu, MR is given by Cs¢, /2T for
g, < T and C4(s./T)? in the interval T < &, < yT. The
Shubnikov—de Haas oscillations appear at €, > yT.

We predicted a nontrivial behavior of the Hall coefficient
on H in the vicinity of the Dirac point. With increasing the
field, R decreases, reaches a minimum and then starts to grow
again. Furthermore, we analyzed dependence of R on electron
concentration and found that this dependence is nonmonotonic
both for law and strong fields.

We also estimated the MR caused by scattering off
the charged, partially screened impurities and discussed
the competition between disorder- and collision-dominated
mechanisms of MR. Importantly, the main prediction of our
theory, the square-root dependence of MR in the limit of
weak fields, is also valid at sufficiently low temperatures in
the case of charged impurity potential when the screening by
an external gate is taken into account. Specifically, in this
situation, the range of T, where the effect takes place, is
parametrically large for ad /Iy < 1 which is easily accessible
in experiments.

Before concluding the paper, let us discuss some interesting
problems to be addressed in future. First, we note that our
theory is applicable to any other 2D electron systems with
the linear energy spectrum. Simplest examples are surfaces
of three-dimensional (3D) topological insulators and 2D
spin-orbit metals based, in particular, on the CdTe/HgTe
quantum wells with the chemical potential moved away from
the gap.?”3° The latter example needs some comments. The
energy spectrum in 2D spin-orbit metals is not purely linear
(with the only exception for a certain width of the quantum
well), so that the evident generalization of our theory is the
calculation of the MR for the case of a small but finite effective
mass m of the carriers. Besides 2D spin-orbit metals, such a
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theory would apply to a bilayer graphene. We expect that
for a quasilinear spectrum, MR would depend on the relation
between T and mv?. In the most interesting case, u < T,
we expect parabolic MR at T < mv? which would cross over
to the square-root MR at T >» mv?. Furthermore, our work
motivates the following question related to the interaction
effects in graphene: What is the effect of inelastic scattering
(including the role of plasmons) on the Landau-level broad-
ening in graphene? In particular, in a clean sample, Coulomb
interaction is the only source of such broadening (note that it
is this broadening that justifies a semiclassical hydrodynamic
approach). A square-root MR might still arise in the presence
of inelastic scattering in graphene for sufficiently strong
magnetic fields, such that within the temperature window both
regions of separated and overlapping Landau levels are present,
as in the disorder-dominated regime addressed in our work.
Finally, it is interesting to analyze the MR of a suspended
graphene, where scattering by flexural phonons is crucially
important for the transport properties.>®

Note added. After this work was completed, the experi-
mental evidence of square-root MR in monolayer graphene
was reported.’” Furthermore, very recently, the ac magneto-
conductivity was calculated in Ref. 38 for the case of pointlike
impurities in graphene; the results of Ref. 38 in the limitw — 0
are in agreement with our predictions.
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