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We study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between two contact magnetic impurities
placed on bilayer graphene (BLG). We compute the interaction mediated by the carriers of the pristine and biased
BLG as well as the conduction electrons of the doped system. The results are obtained from the linear-response
expression for the susceptibility written in terms of the integral over lattice Green’s functions. For the unbiased
system, we obtain some analytical expressions in terms of the Meijer G functions, which consist of the product
of two oscillatory terms: one coming from the interference between the two Dirac points and the second coming
from the Fermi momentum. In particular, for the undoped BLG, the system exhibits the RKKY interaction
commensurate with its bipartite nature as expected from the particle-hole symmetry of the system. Furthermore,
we explore a beating pattern of oscillations of the RKKY interaction in a highly doped BLG system within the
four-band continuum model. Besides, we discuss the discrepancy between the short-range RKKY interaction
calculated from the two-band model and that obtained from the four-band continuum model. The final results for
the applied gate voltage are obtained numerically and are fitted with the functional forms based on the results for
the unbiased case. In this case, we show that the long-range behavior is scaled with a momentum that depends
on Fermi energy and gate voltage, allowing the possibility of tuning of the RKKY interaction by gate voltage.
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I. INTRODUCTION

Graphene, a two-dimensional (2D) honeycomb lattice of
carbon atoms, was thrust into the limelight of condensed-
matter research since its emergence in 2004.1,2 Much of this
attraction is due to its 2D structure and contrary to any ordinary
2D material, having two Dirac cones in the Brillouin zone
(BZ), where the conduction and valence bands touch. Charge
carriers with momenta near these two cones (known as K
and K ′) have a unique linear energy dispersion and behave
like massless Dirac fermions. On the other hand, crystalline
bilayer graphene (BLG)3–5 has recently attracted a great deal
of attention because of its unique tunable electronic properties.
It consists of two single-layer graphene (SLG) sheets separated
by a small distance and can be produced by mechanical
exfoliation of thin graphite or by thermal decomposition of
silicon carbide. The low-energy quasiparticles in BLG behave
as massive chiral fermions and are responsible for a plethora
of interesting physics including broken-symmetry states at
very weak magnetic fields when BLG is suspended to reduce
disorder6 and anomalous exciton condensation in the quantum
Hall regime.7 Although the intrinsic BLG is a zero-gap
semimetal, it becomes a tunable band-gap semiconductor8,9

when a gate voltage is applied. The band gap determines
the threshold voltage and the on-off ratio of field-effect
transistors and diodes, thereby making BLG more convenient
for applications in nanoelectronic industry than SLG.10,11

One of the fundamental problems of interest in graphene
research is the indirect exchange interaction between two
localized magnetic moments placed on this otherwise non-
magnetic material. This carrier-mediated exchange interaction
is known as RKKY interaction12–14 and it plays a significant
role in the magnetic ordering of many electronic systems
including spin glasses and alloys. As it was originally
studied for three-dimensional electron gas, it has also been
studied for electron gas in one15 and two16 dimensions. Two

main features of the long-range behavior of the interaction,
measured by the exchange integral J for an electron gas is
that it oscillates (in sign and magnitude) with the distance
R between the moments, which exhibits ferromagnetic (FM)
or antiferromagnetic (AFM) ordering and also decays15,16

with R. Both of these features have different functional
forms depending on the dimension and, generally, on the
energy dispersion of the host material. For SLG, the RKKY
interaction has extensively been studied.17–28 For an undoped
SLG (EF = 0), two main features are agreed upon: first, unlike
an ordinary 2D metal with R−2 decay in the long-distance
limit, J in undoped graphene falls off as R−3 and shows
the 1 + cos[(K − K ′) · R]-type oscillations with additional
phase factors24 depending on the direction of R, and second,
the moments on the same sublattice exhibit an FM interaction
and an AFM coupling if placed on the opposite sublattices,
as required by the particle-hole symmetry.19 The RKKY
interaction for doped graphene shows a long-range behavior
similar to that of ordinary 2D electron gas with another
oscillatory factor emerging from the Dirac cones. It was shown
that two characteristic momenta, kF and K − K ′ can be tuned
to exhibit an unusual beating of the RKKY interaction for
certain magnetic moment arrangements.25

The RKKY interaction in BLG has also been addressed
by several researchers.26,29–31 The local moment formation for
adatoms on BLG using a mean-field theory of the Anderson
impurity model has been studied by Killi et al.30 They showed
that the RKKY interaction between local moments can be
varied by tuning the chemical potential or by tuning the
electric field as it induces changes in the band structure of
BLG. The symmetry of the RKKY interaction on the bipartite
lattice at half-filling has been discussed recently26 and the
distance dependence of the RKKY interaction has been briefly
reported. Furthermore, Jiang et al.31 investigated the RKKY
interaction in multilayer graphene systems, and they showed
that the thickness of the multilayer influences the interaction
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in a complicated manner and that the interaction couplings fall
off as R−2 in long-range regime for BLG.

However, the previous studies have only considered the
RKKY interaction in the half-filled (EF = 0) BLG. Con-
sequently, the significant tunability feature of the RKKY
interaction due to both doping, where the Fermi energy is
no longer zero, and the perpendicular electric field, which
gives rise to the gapped BLG, has not been addressed in the
literature. Both of these cases are of paramount importance
when it comes to possible spintronic applications and will be
the main focus in the present work.

In this paper, we extend the Green’s function (GF) technique
used for the RKKY interaction in SLG24,25 to BLG. All cases of
undoped, doped, unbiased, and biased system are considered.
We use the effective two-band Hamiltonian for the BLG34–36

and report the analytical expressions of the RKKY interaction
for unbiased BLG in terms of the Meijer G functions. We
also present the numerical results of the interaction in the
presence of a perpendicular electric field and show how
the long-range behavior of the interaction can be tuned by the
gate voltage. We explore a beating pattern of oscillations of the
RKKY interaction in the four-band continuum model in which
two conduction bands are partially occupied (highly doped
system). Furthermore, we discuss the discrepancy between the
short-range RKKY interaction calculated from the two-band
and that obtained from the four-band continuum model.

The paper is organized as follows. In Sec. II, we introduce
the general formalism and all the required GFs that will be used
in calculating the RKKY interaction within the GF approach.
In Secs. III and IV, we present the analytical results of the
RKKY coupling within the two-band and four-band models,
respectively. The main numerical results using two-band and
four-band models and a brief account of the difference between
the RKKY interaction within the four-band model and the
effective two-band approximation are presented in Sec. V.
Finally, we summarize the results in Sec. VI and draw some
conclusions. We have used the same GF method in studying
the impurity states induced by a single vacancy in SLG that
includes the behavior of the σ as well as the π electrons both
using the model and density-functional calculations.32,33

II. THE MODEL HAMILTONIAN AND FORMALISM

The BLG in Bernal stacking lattice shown in Fig. 1 consists
of two SLG lattices offset from each other in the xy plane with
four atoms in the unit cell such that the top A sublattice is
directly above the bottom A sublattice and it is between these
pairs of atoms that the inter-layer dimer bonds are formed.
The other two atoms do not have a counterpart on the other
layer. We assume that the sp2-hybridized electrons of carbon
atoms in each sheet are inert and only take into account the
2pz electrons which form the π bands.

We consider two magnetic impurities located at (α,0) and
(β,R) and in contact interaction with the electrons of the biased
BLG in Bernal stacking, where α and β denote the sublattice
indices (= A1,B1,A2,B2). The tight-binding Hamiltonian of
the system is given by

H = H0 + Hint, (1)

4γ
3γt

tA1 B1

A2B2

V

FIG. 1. (Color online) Lattice structure of the BLG. The A (B)
sublattices are indicated by red (green) circles with corresponding
intralayer and interlayer hopping amplitudes. The bias voltage is
denoted by V .

where the Hamiltonian for the biased BLG, H0, is given by

H0 = V

2

∑
l=1,2

(−1)l+1
∑

i,α=A,B

c
†
αl,Ri

cαl ,Ri

− t
∑

i

∑
j=1−3 ,l=1,2

c
†
Al,Ri

cBl ,Ri+δj

− t⊥
∑

i

c
†
A1,Ri

cA2,Ri
− γ3

∑
i,j

c
†
B1,Ri

cB2,Ri+δj

− γ4

∑
i,j

(
c
†
A2,Ri

cB1,Ri+δj
+ c

†
A1,Ri

cB2,Ri+δj

) + H.c., (2)

where l is the layer index, V is an external potential difference
between the layers, t = 2.9 eV is the intralayer nearest-
neighbor hopping energy,37 the hopping energy between
on-top sublattices in different layers is t⊥ = 0.3 eV, and fur-
thermore, γ3 = 0.12 eV denotes the hopping energy between
not on-top sublattices between two layers.9 Another interlayer
second-nearest-neighbor hopping energy is γ4 = 0.04 eV and
hence very small compared to t and can be ignored. The
position vectors of three nearest neighbors of A atom is denoted
by δj and a ∼ 1.4 Å is the carbon-carbon bond length. In the
most general case, the on-site energies on the four atomic sites
are no longer equal. They consist of independent parameters to
describe interlayer asymmetry between the layers, an energy
difference between two atoms in each layer, and finally an
energy difference between dimer and nondimer sites. However,
in this paper, we assume the equal on-site energies. The
wave function can be written as a four-component spinor,
ψA1 ,ψB1 ,ψA2 ,ψB2 . In this basis, the Hamiltonian of the biased
BLG in Eq. (2) is represented as a 4 × 4 matrix given by35

H0 =

⎛
⎜⎜⎜⎝

V/2 f (k) t⊥ v4f
∗(k)

f ∗(k) V/2 v4f
∗(k) v3f (k)

t⊥ v4f (k) −V/2 f ∗(k)

v4f (k) v3f
∗(k) f (k) −V/2

⎞
⎟⎟⎟⎠ , (3)

where f (k) = −t
∑3

i=1 eik·δi , v3 = γ3/t , and v4 = γ4/t . The
interaction between the localized spins S1 and S2 and the
itinerant electron spins s is given by

Hint = −λ(S1 · s1 + S2 · s2). (4)
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Ignoring γ3 and γ4 in the Hamiltonian justifies the use of
the BZ for SLG to describe the electrons momenta for the
BLG. Therefore we similarly describe the physics for those
electrons with momenta in the proximity of the Dirac points
KD = K ,K ′. In order to find the low-energy Hamiltonian near
Dirac points, we expand the function f (k) using k = q +
KD in powers of q and keep only the linear term, which
yields f (k) = f (q + KD) � vF qeisθq , where s = ± indicates
the valley label, vF = 3ta/2(h̄ = 1 from now on) is the Fermi

velocity of the electrons in SLG, q =
√

q2
x + q2

y , and θq =
tan−1(qy/qx) is the polar angle of q with respect to the x

axis chosen to be along the direction of K − K ′. Furthermore,
we consider vF q and V � t⊥, which allows us to eliminate the
high-energy states perturbational and simplify the Hamiltonian
in Eq. (3) to a two-band effective Hamiltonian with states
localized around B1 and B2 sites. Doing so yields four bands,
two degenerate bands in each of the two valleys K and K ′,
described by the effective two-band Hamiltonian34

H0 = −1

2m

(
0 q2e−2isθq

q2e2isθq 0

)
+

(
V/2 0

0 −V/2

)
, (5)

where s = +1 for the K valley and s = −1 for K ′ valley
and m = t⊥/(2v2

F ), and it is about 0.03me corresponding to
a very small effective mass. The spinor is defined as ψ† =
(a†

B1
,a

†
B2

) where a
†
B1

creates an electron mostly at the B1 site
with a small admixture from the other sites. We emphasize that
the unperturbed Hamiltonians for the four-band and two-band
models are denoted by H0 and H0, respectively.

A. The RKKY interaction Jα,β (R)

In the linear-response theory, the strength of the RKKY
interaction J is found by two steps. First, using the Lippmann-
Schwinger equation |�〉 = |�0〉 + G0V |�〉, one calculates
the perturbed state |�〉 of the surrounding electron gas (host
material) at the unperturbed state |�0〉 due to the first moment
S1 localized at the origin, and second, the first-order correction
in the energy of this spin-polarized gas is found in the presence
of the second moment S2 localized at the lattice position R,
viz., E(R) = 〈�|V (R)|�〉. Here, G0 = (E + i0+ − H0)−1 is
the unperturbed retarded GF. Therefore the interaction energy
may be written as

E(R) = J (0,R)S1 · S2, (6)

with the RKKY interaction J (0,R) being proportional to the
static susceptibility χ (0,R), viz.,

J (0,R) = λ2

4
χ (0,R), (7)

where the static susceptibility measures the proportionality
between the perturbation δV and the resulting change in the
density δn, viz., χ (r,r ′) = δn(r)/δV (r ′).

It can be shown that χ (r,r ′) is written as38

χ (r,r ′) = − 2

π

∫ EF

−∞
dE �m[G0(r,r ′,E)G0(r ′,r,E)], (8)

where G0(r,r ′,E) = ∑
μ ψμ(r)ψ∗

μ(r ′)(E + i0+ − Eμ)−1 is
the real-space matrix element of the retarded GF for a single
spin channel with μ labeling the complete set of eigenstates
of H0. The factor 2 behind the integral counts for both spin
channels. Equation (8) is obtained by using the relationship
between the charge density and the perturbed GF, viz., n(r) =∑occ

μ |ψμ(r)|2 = − 2
π

∫ EF

−∞ dE �m G(r,r,E) and obtaining
the charge difference δn(r) = n(r) − n0(r) induced by the
perturbation δVβ(r ′) from the approximated Dyson’s equation
G = G0 + G0V G0.

The expression for the susceptibility in Eq. (8) can easily
be extended to a system with several sublattice degrees of free-
dom, e.g., BLG. In a similar definition for the magnetic suscep-
tibility in the spin-density functional formalism, one can define
the change in the density as39 δnαβ(r) = nαβ(r) − n0

αβ(r) =∑
α′β ′

∫
d r ′χαβ,α′β ′(r,r ′)Vα′β ′ (r ′), where α or β denote the

sublattice indices (e.g., A1, B1, A2, and B2 for BLG) sat-
isfying the closure relationship

∑
ν

∫ |r,α〉〈r,α|d r = 1 with
the collective sublattice index ν = α,β, . . . and the perturbing
potential is defined as Vαβ(r,r ′) = Vαβ(r)δ(r − r ′). Follow-
ing similar steps, we find the generalized susceptibility as
χαβ,α′β ′ (r,r ′) = −2

π

∫ EF

−∞ dE �m[G0
αα′(r,r ′,E)G0

ββ ′ (r ′,r,E)],
and if we restrict the response only to the diagonal external
potential, the susceptibility in terms of the diagonal density
matrix is given by χαβ(r,r ′) ≡ δnα(r)/δVβ(r ′), which finally
yields

χαβ(r,r ′) = − 2

π

∫ EF

−∞
dE �m

[
G0

αβ(r,r ′,E)G0
βα(r ′,r,E)

]
.

(9)

Based on Eq. (9), for two magnetic moments one located
at (α,0) and the other at (β,R), we can rewrite Eq. (7) for
sublattice components of the exchange integral as

Jαβ (R) = λ2

4
χαβ(0,R). (10)

Knowing the real-space GFs, Eqs. (9) and (10) are the central
formulas for calculating different sublattice components of the
RKKY interaction in BLG.

B. Green’s functions for the effective four-band Hamiltonian:
unbiased Case

In the absence of the perpendicular electric field (V = 0),
the unperturbed GF in momentum space corresponding to the
four-band Hamiltonian H0 of Eq. (3) is represented by

G0(k,ε) = 1

�

⎛
⎜⎜⎜⎝

ε(ε2 − f (k)f ∗(k)) f (k)(ε2 − f (k)f ∗(k)) ε2t⊥ f ∗(k)εt⊥
f ∗(k)(ε2 − f (k)f ∗(k)) ε(ε2 − f (k)f ∗(k) − t2

⊥) f ∗(k)εt⊥ f ∗2(k)t⊥
ε2t⊥ f (k)εt⊥ ε(ε2 − f (k)f ∗(k)) f ∗(k)(ε2 − f (k)f ∗(k))

f (k)εt⊥ −f 2(k)t⊥ f (k)(ε2 − f (k)f ∗(k)) ε(ε2 − f (k)f ∗(k) − t2
⊥)

⎞
⎟⎟⎟⎠,

(11)
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where ε = E + i0+ and � = (ε2 − f (k)f ∗(k) − εt⊥)(ε2 −
f (k)f ∗(k) + εt⊥), zeros of which obtain the dispersion rela-
tion E(k) = ±t⊥/2 ±

√
f (k)f ∗(k) + (t⊥/2 )2 leading to the

celebrated Mexican-hat band structure of BLG. For sublattices
A1, B1, A2, and B2, the GF expression in Eq. (11) has only
six independent matrix elements, namely, G0

A1A1
, G0

A1A2
,

G0
B1B1

, G0
A1B1

, G0
A1B2

, and G0
B1B2

. The corresponding matrix
elements of the real-space GF are obtained from the Fourier
transformations of G0

αβ(k,ε) elements, viz., G0
αβ(r,r ′,ε) =

�−1
BZ

∫
eik·(r−r ′)G0

αβ(k,ε) dk, where �BZ = (2π )2/�cell is the
area of the first BZ with the area of the unit cell of SLG to be
�cell = 3

√
3a2/2.

Within the Dirac-cones approximation, the Fourier rela-
tionship simplifies and the general real-space GF element
connecting the points (α,0) and (β,R) is given by

G0
αβ(0,R,ε) = 1

�BZ

∫
dq e−iq·R[

e−i K ·RG0
αβ(q + K ,ε)

+ e−i K ′ ·RG0
αβ(q + K ′,ε)

]
, (12)

from which the replacement R → −R yields the expression
for G0

βα(R,0,ε). The details of integrations for the Fourier
integral in Eq. (12) are very similar to what has been reported
in Ref. 24 and we will not repeat them here. Here, we just
report the final results for the six matrix elements. They are

G0
A1A1

(0,R,ε) = ζε(e−i K ·R + e−i K ′·R)[K0(
√

−α2R) + K0(
√

−β2R)],

G0
A1B1

(0,R,ε) = iζ vF (e−i K ·R+iθR − e−i K ′ ·R−iθR )[
√

−α2K1(
√

−α2R) +
√

−β2K1(
√

−β2R)],

G0
A1A2

(0,R,ε) = ζε(e−i K ·R + e−i K ′·R)[K0(
√

−α2R) − K0(
√

−β2R)],
(13)

G0
A1B2

(0,R,ε) = −iζ vF (e−i K ·R−iθR − e−i K ′ ·R+iθR )[
√

−α2K1(
√

−α2R) −
√

−β2K1(
√

−β2R)],

G0
B1B1

(0,R,ε) = ζ (e−i K ·R + e−i K ′ ·R)[(ε − t⊥)K0(
√

−α2R) + (ε + t⊥)K0(
√

−β2R)],

G0
B1B2

(0,R,ε) = ζv2
F

ε
(e−i K ·R−2iθR + e−i K ′ ·R+2iθR )[α2K2(

√
−α2R) − β2K2(

√
−β2R)],

where θR = tan−1(y/x) is the polar angle of the direction
of R with respect to the x axis chosen to be along the
direction of K − K ′, ζ = −πv−2

F �−1
BZ, α2 = v−2

F (ε2 − εt⊥),
β2 = v−2

F (ε2 + εt⊥), and Kμ(x) is the modified Bessel func-
tion of the second kind and an order of μ = 0,1,2.

C. Green’s functions for the effective two-band Hamiltonian

Using the Hamiltonian in Eq. (5), the momentum-space
matrix representation of the retarded GF defined as G0(ε) =
(ε − H0)−1, is given by

G0(q,ε) = 1

�′

(
ε + V/2 −q2e−2isθq /2m

−q2e2isθq /2m ε − V/2

)
, (14)

where �′ = ε2 − ε2
q with the band energy dispersion εq =

±
√

q4

4m2 + V 2

4 . It should be noticed that the retarded GF

in Eq. (14) has two independent terms, namely G0
B1B1

(q,ε)
and G0

B1B2
(q,ε) since G0

B2B1
(q,ε) = G0∗

B1B2
(q,ε). Furthermore,

G0
B2B2

(q,ε) can be obtained from G0
B1B1

(q,ε) by replacing
V → −V .

(a) Points on the same layer. Similar to the previous section,
we use Eq. (12) to find the corresponding real-space GFs. The
Fourier integral can be evaluated in two ways. As the first
method, we can plug the expression for G0

B1B1
(q,ε) given in

Eq. (14) into Eq. (12) and integrate. After some algebra, we

finally obtain the GF in terms of the Meijer G function as

G0
B1B1

(0,R,ε,V )

= 2π

�BZ
(e−i K ·R + e−i K ′·R)

×
[
− m(2ε + V )

2
√

V 2 − 4ε2
G

3,0
0,4

(
0,

1

2
,
1

2
,0

∣∣∣∣ m2R4

256
(V 2 − 4ε2)

)]
,

(15)

where the function Gm,n
p,q in the bracket is the Meijer G

function.40

As for the second method, we re-write the
corresponding momentum-space GF as G0

B1B1
(q,ε) =

m2(2ε + V )
∑

i=1,2 ξ−1[ξ + (−1)iq2]−1, where ξ =√
4m2ε2 − m2V 2. After the integrations, the GF reads

G0
B1B1

(0,R,ε,V ) = 2π

�BZ
(e−i K ·R + e−i K ′ ·R)

m2(2ε + V )

ξ

× [K0(
√

ξR) − K0(
√

−ξR)]. (16)

We emphasize that ξ is a c number depending on the range of
the energy. Although both expressions in Eqs. (15) and (16)
are equivalent, we will be using the one given in terms of the
modified Bessel function, which will be practical for numerical
analysis.

(b) Points on different layers. In this case, we write
G0

B1B2
(q,ε) as me2isθq

∑
i=1,2(−1)i[ξ + (−1)iq2]−1. Follow-

ing the steps elaborated for the same layer, we obtain two
equivalent expressions for the real-space GF corresponding

165429-4



RUDERMAN-KITTEL-KASUYA-YOSIDA INTERACTION IN . . . PHYSICAL REVIEW B 87, 165429 (2013)

to this case in terms of both Meijer G and modified Bessel
functions as

G0
B1B2

(0,R,ε,V ) = − mπ

�BZ
[e−i(K ·R+2θR ) + e−i(K ′ ·R−2θR )]

×G
3,0
0,4

(
0,

1

2
,1, − 1

2

∣∣∣∣ m2R4

256
(V 2 − 4ε2)

)

= 2mπ

�BZ
[e−i(K ·R+2θR ) + e−i(K ′ ·R−2θR )]

× [K2(
√

ξR) + K2(
√

−ξR)]. (17)

III. RKKY INTERACTION FROM THE
TWO-BAND MODEL

In this section, for the moments on the same layer, we use
the expressions for the real-space GFs, G0

B1B1
(0,R,ε,V ) and

G0
B1B1

(R,0,ε,V ) from Eq. (16) and then obtain the RKKY
interaction JB1B1 (R) using Eqs. (9) and (10).

A. Moments on the same layer: JB1 B1 (R)

(a) General case. Using Eq. (16) and substituting both
G0

B1B1
(0,R,ε,V ) and G0

B1B1
(R,0,ε,V ) in Eq. (9), the corre-

sponding susceptibility reads

χB1B1 (0,R) = −16πm2

�2
BZ

�B1B1I1(V,R,EF ), (18)

where �B1B1 = 1 + cos[(K − K ′) · R] and the integral I1 is
given by

I1(V,R,EF ) = �m

∫ EF

−∞
dE

(
2ε + V√
4ε2 − V 2

)2

× [K0(
√

ξR) − K0(
√

−ξR)]2. (19)

I1 may not be analytically evaluated for arbitrary values of
the gate voltage V and Fermi energy EF . However, for the
special case of unbiased system, V = 0 one can manage to find
the analytical expression for I1 as elaborated in the following
section.

(b) Special case: unbiased BLG. Now, we split the integral
in Eq. (19) into two parts, viz.,

∫ EF

−∞ = ∫ 0
−∞ + ∫ EF

0 , where
the first term accounts for the valance electrons (undoped
case) and the second for the conduction electrons (doped
case). Let us denote the first integral by I0. Special care
must be taken to consider the principal value of the complex
square roots of the complex variables. For instance, ξ =
2m

√
ε2 = ±2mε for E > 0 and E < 0, respectively. Then,

we introduce new variables y = ±2mER2 accordingly for
both integrals such that y > 0 in each and express the
modified Bessel function with complex argument in terms
of the Hankel functions and then Bessel functions of first
and second kind using Kν(z) = 2−1iπeiπν/2H (1)

ν (zeiπ/2) =
−2−1iπe−iπν/2H (2)

ν (ze−iπ/2) with H (1,2)
ν (z) = Jν(z) ± i Yν(z).

In particular, we use K0(
√

y ± i0+) = K0(
√

y) and
K0(

√−y ± i0+) = ( − π/2)(Y0(
√

y) ± iJ0(
√

y)).

After some algebra, I0 simplifies to

I0 = π

2mR2

[ ∫ ∞

0
dyJ0(

√
y)K0(

√
y)

+ π

2

∫ ∞

0
dyJ0(

√
y)Y0(

√
y)

]
. (20)

Both integrals in Eq. (20) are diverging; however, after using
some regulatory cutoff functions,24 they are evaluated to
one and zero, respectively, which yields I0 = π (2mR2)−1.
Plugging this result into Eqs. (18) and (7) immediately gives
the RKKY interaction for the unbiased and undoped BLG as

J 0
B1B1

(R) = −C
1 + cos[(K − K ′) · R]

(R/a)2
, (21)

where C = 3λ2(16π2t2)−2t⊥ is a positive parameter, which
means that J 0

B1B1
(R) represents an FM interaction between the

moments. The power-law R−2 decay of the RKKY interaction
in Eq. (21) clearly shows that the undoped and unbiased BLG
behaves like an ordinary 2D electron gas, the result that have
also been reported in other studies.26,29–31

As for the general doped case, after similar simplifications,
we obtain

I1(V = 0,R,xF ) = π

2mR2

[
1 −

∫ xF

0
dyJ0(

√
y)K0(

√
y)

− π

2

∫ xF

0
dyJ0(

√
y)Y0(

√
y)

]
, (22)

where xF = 2mEF R2 = k2
F R2. Both integrals in Eq. (22)

can be expressed40 in terms of the Meijer G

functions, viz.,
∫ xF

0 dyJ0(
√

y)K0(
√

y) = 8−1π−1/2xF G
3,1
1,5

(
1
2

0,0, 1
2 , − 1

2 ,0
| x2

F /64) and similarly,
∫ xF

0 dyJ0(
√

y)Y0(
√

y) =
−π−1/2G

2,0
1,3 (

3
2

1,1,0
| xF ).

We find the asymptotic expansion of the Meijer G

functions40 in Eq. (22) and eventually obtain the RKKY
interaction for the large distances as

lim
kF R→∞

I1(V = 0,R,kF ) = π

2mR2

[√
2e−kF R cos (kF R)

+ 1

2
sin (2kF R) − cos (2kF R)

8kF R

]
.

(23)

In order to elucidate the nature of the exponential decay
in Eq. (23), we must draw an analogy with the free electron
gas. We recall that in addition to the R−3 decay, the long-
range behavior of the RKKY interaction in three-dimensional
electron gas in the presence of impurities41 acquires a factor
exp(−R/δ) with δ being the mean-free path of the scattered
electrons accompanied by a phase shift in the oscillations
depending on the dimension.42 Interestingly, this effect of
the mean-free path on the interaction was experimentally
measured, for example, in CuMn alloy in the presence of
aluminum impurity.43 On the other hand, similar exponential
decays were reported for undoped44 and doped SLG45 due to
disorder and energy gap in SLG.18,46 The peculiar feature of
the interaction for BLG in this case is that the exponential
factor e−kF R is controlled by the Fermi level and this damping
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exists despite the fact that the system is clean (without
scattering impurities) and gapless (unbiased). This might be an
interesting feature for the experimentalists to probe. The reason
for such an exponential decay can probably be explained based
on the chiral characteristics of the quasiparticles in BLG and
the fact that the forward scattering is forbidden in the system.

B. Moments on different layers: JB1 B2 (R)

(a) General case. In this section, we consider the situation
in which the magnetic moments are located on different layers.
Using Eqs. (17) and (9), the corresponding susceptibility
χB1B2 (0,R) is given by

χB1B2 (0,R) = −16πm2

�2
BZ

�B1B2 I2(V,R,EF ), (24)

where �B1B2 = 1 + cos[(K − K ′) · R + 4θR] and the remain-
ing integral is given by

I2(V,R,EF ) =
∫ EF

−∞
dE �m[K2(

√
ξR) + K2(

√
−ξR)]2.

(25)

Similar to the case of the moments on the same layer, we can
find the analytical expression for the RKKY interaction for the
unbiased BLG.

(b) Special case: unbiased BLG. Here, again, we split
the integral of Eq. (25) into the undoped and doped parts
and perform the same type of calculations as explained
before. In particular, we use K2(

√
y ± i0+) = K2(

√
y) and

K2(
√−y ± i0+) = (π/2)[Y2(

√
y) ± iJ2(

√
y)]. Therefore the

integral corresponding to the undoped part is denoted by I ′
0

and it reads

I ′
0 = π

2mR2

[ ∫ ∞

0
dyJ2(

√
y)K2(

√
y)

+ π

2

∫ ∞

0
dyJ2(

√
y)Y2(

√
y)

]
. (26)

Resorting to the cutoff function scheme, both diverging
integrals in Eq. (26) give one and −4/π , respectively, which
yields I ′

0 = −π (2mR2)−1. Finally, using I ′
0 in Eqs. (24) and

(7), we obtain the RKKY interaction for the unbiased and
undoped BLG for the moments of different layers as

J 0
B1B2

(R) = C
1 + cos[(K − K ′) · R + 4θR]

(R/a)2
. (27)

As C > 0, J 0
B1B1

(R) signifies an AFM interaction between the
moments on different layers.

The comparison between J 0
B1B2

(R) and J 0
B1B1

(R) given in
Eq. (21) reveals a very subtle point. Apart from their different
oscillatory Dirac-cones factors, which are both bound and

positive, JB1B1 and JB1B2 have the same magnitude C and
opposite sign. We recall that for the case of undoped SLG, the
RKKY interaction for the moments on the opposite sublattices
is AFM and its magnitude is three times larger than that of
the same sublattice, namely, JAB = 3JAA,19,20,24 which means
the AFM ordering is more favored for SLG. It was reasoned
by Saremi19 that this commensurate feature of the RKKY
interaction must be the case for any bipartite system with
particle-hole symmetry. By analogy, our results for JB1B1 and
JB1B2 may be interpreted as the signature of the bipartite nature
of the system and the particle-hole symmetry present in the
effective two-band Hamiltonian H0 in Eq. (5). Although it
appears that the unbiased BLG bears the same symmetry, an
attempt to prove the theorem particularly for this system will
be insightful.

Similarly, we can find the analytical expressions of the
interaction for the doped case. Following same steps as
discussed previously, Eq. (25) simplifies to

I2(V = 0,R,xF ) = − π

2mR2

[
1 +

∫ xF

0
dyJ2(

√
y)K2(

√
y)

+ π

2

∫ xF

0
dyJ2(

√
y)Y2(

√
y)

]
, (28)

where the first and second integrals in Eq. (28)
are evaluated as

∫ xF

0 dyJ2(
√

y)K2(
√

y) = 8−1π−1/2xF G
3,1
1,5

(
1
2

0, 1
2 ,1, − 1, − 1

2

| x2
F /64) and

∫ xF

0 dyJ2(
√

y)Y2(
√

y) = −π−1/2

G
2,1
2,4 (

1, 3
2

1,3, − 1,0
| xF ), respectively. The long-distance expression

is given by

lim
kF R→∞

I2(V = 0,R,kF ) = − π

2mR2

[√
2e−kF R cos (kF R)

− 1

2
sin (2kF R) − 15 cos (2kF R)

8kF R

]
.

(29)

Comparing Eq. (23) and (29), we note that the long-range
functional form of the RKKY interaction in unbiased BLG for
the moments on different layers is the same as for those on the
same layer.

IV. RKKY INTERACTION FROM FOUR-BAND
CONTINUUM MODEL: UNBIASED BLG

In this section, we report the expressions for the RKKY
interaction for the unbiased and doped BLG using the four-
band model. For the biased case, the same analysis can be
made, which will not be presented here.

Plugging the GFs from Eq. (13) into Eq. (9), the corre-
sponding susceptibilities are given by

χA1A1(2) (0,R) = ��A1A1(2)

∫ xF

−∞
x2�m

[
K0

(√
−x2 + t⊥R

vF
x

)
± K0

(√
−x2 − t⊥R

vF
x

)]2

dx,

(30)

χA1B1(2) (0,R) = ��A1B1(2)

∫ xF

−∞
�m

[√
−x2 + t⊥R

vF
xK1

(√
−x2 + t⊥R

vF
x

)
±

√
−x2 − t⊥R

vF
xK1

(√
−x2 − t⊥R

vF
x

)]2

dx,
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χB1B1 (0,R) = ��B1B1

∫ xF

−∞
�m

[(
x − t⊥R

vF

)
K0

(√
−x2 + t⊥R

vF
x

)
+

(
x + t⊥R

vF

)
K0

(√
−x2 − t⊥R

vF
x

)]2

dx, (31)

χB1B2 (0,R) = ��B1B2

∫ xF

−∞

1

x2
�m

[(
x2 − t⊥R

vF
x

)
K2

(√
−x2 + t⊥R

vF
x

)
−

(
x2 + t⊥R

vF

)
K2

(√
−x2 − t⊥R

vF
x

)]2

dx, (32)

where x = RE/vF, � = −4π�−2
BZv−1

F R−3, and xF =
REF/vF, �A1A1 = �B1B1 = �A1A2 = 1 + cos[(K − K ′) · R],
�A1B1(2) = 1 − cos[(K − K ′) · R ∓ 2θR], and �B1B2 = 1 +
cos[(K − K ′) · R + 4θR].

To calculate the RKKY interaction in the four-band con-
tinuum model, Eqs. (30)–(32) may be evaluated numerically.
The results of Eqs. (31) and (32) and those obtained from the
two-band model are compared in the following section.

V. NUMERICAL RESULT

In this section, we present our main calculations for
the exchange coupling of the RKKY interaction evaluating
Eqs. (19), (25), and (30)–(32). The general features of the
exchange coupling, basically the dependence of the RKKY
interaction on the distance R have been numerically studied
previously31 for the unbiased and undoped BLG. We present,
on the other hand, our numerical results of I1(V,R,EF)
and I2(V,R,EF) for biased BLG in two different interesting
regimes, namely, doped and undoped graphene where EF = 0
and EF �= 0, respectively. We provide a comparison between
the results obtained within the four-band and the two-band
continuum models in unbiased BLG systems and discuss the
discrepancy between two models.

A. Unbiased and doped BLG

In previous sections, we found the analytical expressions
of the RKKY interaction for the unbiased BLG within the
two-band model. We showed that regardless of the Dirac-cones
oscillatory term represented by �α,β , the main difference
between the interactions for the moments on the same and
different layers is due to their sign, which results in FM
interaction between impurities on the same layer B1B1 and
AFM interaction in B1B2 case. By doping BLG, the strength
of the RKKY interaction decreases and a new oscillatory
behavior starts. Therefore the RKKY interaction changes sign
as a function of distance.

Figure 2(a) shows I1(V = 0,R,EF) integral as a function of
the distance R for different doping values. The period of oscil-
lation and the speed of a decay depends strongly on the Fermi
energy. For nonzero EF, the integral I1 shows a quite different
behavior as it exhibits an oscillatory behavior as a function of
R with decreasing amplitude and a period given by π/kF. We
compare the analytical results of Eq. (23), plotted as solid lines,
with the numerical evaluation of Eq. (22), plotted as symbols,
to show their difference at short distance while reaching each
other quite well at large R regions. A comparison between R

dependence of the integral I1 and that of I2 for EF = 0.05 eV
in Fig. 2(b), shows their difference at short distance while
reaching each other approximately as R increases. Similar to

I1, at finite EF, the integral I2 has an oscillatory behavior as a
function of R, with decreasing amplitude and a period given
by π/kF.

Figure 3 shows a comparison between the RKKY interac-
tion that calculated by the four-band model given by Eqs. (31)
and (32) and those obtained by the two-band model. For an
undoped case, it can be seen from Fig. 3(a) that two results are
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2
)
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Two-band, unbiased

FIG. 2. (Color online) (a) I1(V = 0,R,EF) as a function of the
distance R for different doping values obtained for the two-band
model and unbiased BLG using Eq. (22). The function R2I1(V =
0,R,EF = 0) is a constant in agreement with that result obtained in
Ref. 26. Solid lines refer to the analytical results of the asymptotic
behavior from Eq. (23), which are compared to the numerical
evaluation of Eq. (22), plotted as symbols, show their difference
at short distances while reaching each other as R increases. (b) The
strength of the interaction for both B1B1 [see Eq. (22)] and B1B2

[see Eq. (28)] for undoped and doped systems for EF = 0.05 eV as a
function of the distance.
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FIG. 3. (Color online) (a) Comparison between the results of the
RKKY interaction that obtained by the two-band model [see Eq. (28)]
and that calculated by the four-band model [see Eq. (32)] for I2 at
V = EF = 0. There is a discrepancy between two approaches, which
basically comes from the off-diagonal inter-layer tunneling term t⊥. In
the inset, a comparison of results between two theories for the case of
I1. (b) I1(V = 0,R,EF) for EF = 0.05 eV and (c) I2(V = 0,R,EF) for
EF = 1 eV as a function of the distance R obtained by the two-band
model [see Eqs. (22) and (28)] and that calculated by the four-band
model [see Eqs. (31) and (32)], respectively. The proper results of
the quasiparticle excitation are captured by the four-band model, by
increasing the Fermi energy.

matched for FM interaction I1, while there is a discrepancy
between results at short-range regime, which is controlled by
value of t⊥ for AFM interaction I2. This result is very pertinent
to the conclusion stated in Ref. 47 where the authors show that
based on the charge-charge response function calculations,
the density-sum and density-difference fluctuations in BLG
crossover from those of an unusual massive-chiral single-layer
system to those of a weakly coupled bilayer as carrier density,
wave vector, and energy increase. Figure 3(b) shows the I1

for unbiased and doped BLG when EF = 0.05 eV calculated
by the four- and two-band continuum models. It is clear
that the period of the oscillation in the four-band model is
different from that of the two-band model. This is because
for a certain and small Fermi energy value, the associated
Fermi momentum is larger than the value obtained in the
two-band model. Note that the electronic dispersion relations
in the four-band model [roots of � defined in Eq. (11)] may

be written as E1,2(k) =
√

v2
Fk

2 + t2
⊥/4 ± t⊥/2 and E3,4(k) =√

v2
Fk

2 + t2
⊥/4 ± t⊥/2. Therefore the period of the oscillations

depends on the model.
In the four-band model, depending on the doping level, the

Fermi energy can have either one or two intersections with
the conduction-band Fermi surfaces. By increasing the Fermi
energy, the proper results of the quasiparticle excitation are
captured by the four-band model. This point is demonstrated
in Fig. 3(c) where we show the results of the I2 for EF = 1 eV,
for which the Fermi energy intersects two conduction bands.
It is clear that in this case the results obtained by full band are
completely different from those calculated by the low-energy
excitation method.

The intersection of the Fermi energy with the bands denoted
by E1(3) creates two Fermi surfaces. Because the RKKY
interaction is fundamentally determined by the geometrical
features of the Fermi surface of the host material, a somewhat
more complicated behavior of the RKKY coupling for a highly
doped BLG can occur. As a result, we observe that oscillations
of χB1B1 exhibit a beating pattern with two characteristic
periods associated with the two Fermi momenta defined as
kF1(2) = √

E2
F ∓ EFt⊥/vF. Figure 4 shows this beating pattern

the RKKY interaction as a function of the distance between
impurities.

B. Biased BLG, doped and undoped

By turning on the gate voltage perpendicular to the system, a
new type of dispersion relation of the band is emerged. At zero
Fermi energy, due to a gap opening and consequently removing
the available energy states for the mediating electrons, the
response function between electrons decreases, and as a result,
the RKKY interaction decreases much faster than R−2.

Figure 5(a) shows the integral I1(V,R,EF = 0) as a
function of R [see Eq. (19)] for different gate voltages in the
two-band continuum model. The function I1(V,R,EF = 0)
decreases by increasing the bias voltage and oscillates slightly
around its zero value. Decaying structures and oscillations
depend on the bias voltage. Similarly, Fig. 5(b) shows the
integral I2(V,R,EF = 0) as a function of R [see Eq. (25)] for
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FIG. 4. (Color online) The susceptibility χB1B1 as a function of the
distance between impurities on the same sublattice along armchair
direction obtained from the four-band model [see Eq. (31)]. The
existence of two different periods (beating pattern) in doped BLG for
certain values of EF = 1 eV is clear in this figure.
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FIG. 5. (Color online) (a) The integral I1(V,R,EF = 0) as a
function of R for different gate voltages. The function falls off rapidly
and oscillates slightly for finite V values. (b) The same as (a) but for
the integral I2(V,R,EF = 0).
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FIG. 6. (Color online) (a) I1(V,R,EF) as a function of R for
different gate voltage at EF = 0.1 eV. To emphasis the amplitude
value of I1(V,R,EF), R2I1(V,R,EF) is shown for different gate
voltages. (b) The same as (a) for I2(V,R,EF). In the inset of (b),
solid lines refer to the analytical results of Eq. (33) and are compared
to the numerical evaluation of Eq. (25), plotted as symbols, show their
difference at short distances, while reaching each other quite well as
R increases. Here, α = 0.42, β = 1.6 and α = 0.33, β = 1.45 for
V = 0.1 and 0.14 eV, respectively.

different gate voltages. The function decays as R increases
and remains negative.

One goal of the present work is to understand the RKKY
interaction in a doped BLG system. For this purpose, we
consider a finite gate voltage together with the finite Fermi
energy to calculate the RKKY interaction. Figure 6 shows
the integrals I1(V,R,EF) and I2(V,R,EF) as a function of R

for different gate voltages at given EF = 0.1 eV. Our results
show that I1(V,R,EF) is sensitive to V and by growing it
around 2EF values, the amplitude and also the wavelength of
the oscillation of I1(V,R,EF) increases. However, I2(V,R,EF)
slightly changes with the gate voltage. Similar to the case
of unbiased and doped BLG, the integral I1 for nonzero V

exhibits an oscillatory behavior as a function of R with a
period now controlled by both the Fermi momentum and the
gate voltage. Our numerical results show that the period of
the oscillations can be fitted quite well by π/kV, where kV =
[(2mEF)2 − m2V 2]1/4. One interesting feature in this case is
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that the long-range behavior of the RKKY interaction for the
impurities on the same layer is similar that of a standard 2D
electron gas. Another interesting feature is the enhancement of
the RKKY interaction by increasing the gate voltage illustrated
by (R2I1) results in the inset of Fig. 6(a). Since the RKKY
interaction decays rapidly, it is almost difficult to measure it
experimentally. Based on our results, here we proposes that
the tuning of the gate voltage to a certain value, 2EF, will
noticeably enhances the strength of the RKKY interaction and
thereby makes it accessible for experimental probes.

Finally, we find that our numerical results for large distances
between two impurities located on different layers [see
Eq. (25)] can be faithfully fitted by an analytical expression
very similar to the unbiased case given in Eq. (29) for the Fermi
level is chosen to be outside of the spectral gap as EF > V/2.
This asymptotic fit is given by

lim
R�a

I2(V,R,kF ) = − π

2mR2

[√
2e−kV R cos (kV R)

−α sin(2kV R) − β
cos (2kV R)

kV R

]
. (33)

where kV = [(2mEF)2 − m2V 2]1/4, β and α are parameters
controlled by EF and V . In the inset of Fig. 6(b), solid lines
refer to the analytical results of Eq. (33) compared to the
numerical evaluation of Eq. (25), plotted as symbols, showing
their difference at short distances, while reaching each other
quite well as R increases.

VI. SUMMARY

We have studied the effect of the bias voltage on the
RKKY interaction in doped and gapped BLG. Our approach
is based on the lattice Green’s function technique. Near the
Dirac points, charge carriers in BLG have parabolic energy
spectrum with a finite density of states at zero energy, similar
to the conventional non-relativistic electrons. On the other
hand, these quasiparticles are also chiral and described by
spinor wave functions. Therefore, the dependence of the
RKKY interaction on the position vector R between two local
magnetic moments is not only controlled by the dispersion
relation but also by the chirality, which makes it directional-
dependent as also shown to be the case for SLG24,25 by the
phase factors �αβ .

Similar to SLG, we report the ferromagnetic interaction for
moments on the same layers and antiferromagnetic coupling
for those placed on the opposite layers in unbiased and
undoped BLG. We associate this feature to the particle-hole
symmetry and the bipartite nature of the lattice within the
two-band model as argued in Ref. 19.

For the unbiased and doped case, we managed to find the
analytical expressions of the RKKY interaction in terms of
the Meijer G functions and their long-range behavior was also
reported. The salient feature of the asymptotic behavior is that
the power-law decay R−2 is accompanied by an exponential
factor as JB1B1(2) ∝ ∓R−2 cos(kFR)[e−kFR ± 2−1/2 sin(kFR)].
Contrary to the case of gapped graphene18,46 or doped SLG
with disorder45 where the mediating carriers produce an
exponential factor scaled by the energy gap or the mean-free
path, for a pristine unbiased BLG, which is gapless, the
exponential decay is scaled by the Fermi energy and we
associate this damping to the chiral nature of the carriers in
the system.

We have supplemented the results from the two-band model
for the unbiased case with our calculations using the four-
band model to identify the validity of the two-band model and
the discrepancy between both models. Within the four-band
model, when the system is highly doped, the application of
the two-band model is questionable. In this regime, the main
features of the RKKY interaction are only captured by the
four-band model. In low-energy region, we have shown that
the two models are different at the short-range of the distance
between impurities located on different layers. In addition, we
have observed that the oscillations of χB1B1 exhibit a beating
pattern with two characteristic periods associated to the two
Fermi momenta.

For the biased and doped BLG with EF > V/2, we have
shown that the gate voltage and the Fermi energy can vary
independently to determine the RKKY interaction. One of
the fascinating features in this case is the possibility for the
enhancement of the interaction by tuning the gate voltage
and/or the Fermi energy, which opens an avenue to probe
the interaction experimentally. Finally, we have obtained
the asymptotic behavior of the RKKY interaction for large
distances for each case and the expressions are presented in
Table I, where we also indicate on the discrepancy in the nature
of the tunable exponential decay in BLG and that of existed

TABLE I. A breakdown of the results on the long-range behavior of the RKKY interaction in two-dimensional electron gas(2DEG), SLG
and BLG. The RKKY interactions are proportional to values given in the third and fourth columns. δ is the finite mean-free path of the
electrons in 2DEG scattered by impurity. α and β are parameters controlled by EF and V in biased BLG and the parameter l = kV R, where
kV = [(2mEF)2 − m2V 2]1/4. For SLG, the functions �AA and �AB are given by 1 + cos[(K − K ′) · R] and 1 + cos[(K − K ′) · R + π − 2θR],
respectively, and the functions �B1B1 and �B1B2 have already been defined after Eqs. (18) and (24), respectively.

References System RKKY interaction for same sublattice RKKY interaction for different sublattices

Ref. 16 2DEG R−2 sin(2kFR) Not Applicable
Ref. 42 2DEG+ impurity R−2 sin(2kFR)e−R/δ Not Applicable
Ref. 24 SLG (EF = 0) −R−3�AA 3R−3�AB

Ref. 25 SLG(EF �= 0) −R−2 sin(2kFR)�AA R−2 sin(2kFR)�AB

Refs. 26 and 31 BLG(EF = 0, V = 0) −R−2�B1B1 R−2�B1B2

Present work BLG(EF �= 0, V = 0) −R−2 cos(kFR)[e−kFR + 2−1/2 sin(kFR)]�B1B1 R−2 cos(kFR)[e−kFR − 2−1/2 sin(kFR)]�B1B2

Present work BLG(EF �= 0, V �= 0) −R−2 sin(2l)�B1B1 R−2[e−l cos (l) − α sin(2l) − β cos (2l)
l

]�B1B2
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in 2DEG due to an scattering impurity. We draw attention that
although the exponential decay for the biased BLG is expected,
this type of damping only exist for the moments on different
layers (B1B2) and it is absent for the moments on the same
layer B1B1 as seen in the last row of the table.
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