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Energy spectra and the magnetic moments of semiconductor core-shell nanocylinders, subjected to a magnetic
field, are theoretically studied for different numbers of electrons in the shell and different height-to-radius ratios
of the cylinder. The electron-electron interaction is taken into account within the Hartree-Fock approximation.
We focus on the perspectives to experimentally detect the Aharonov-Bohm oscillations in the magnetic moment
of multielectron core-shell nanowires. Among the different factors that influence the shape and magnitude of
these oscillations, the destructive effect due to the interaction of electrons with randomly distributed charged
impurities appears most important. Nevertheless, Aharonov-Bohm oscillations of a sufficiently high magnitude
survive when averaged over an assembly of nanowires with different impurity distributions.
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I. INTRODUCTION

Electrons confined to a submicron doubly connected
structure can manifest a topologically determined quantum-
interference phenomenon, known as the Aharonov-Bohm
(AB) effect,1 as a result of the oscillatory behavior of their
energy levels as a function of an applied magnetic field.
This behavior is usually associated with the occurrence of
oscillatory persistent currents.2–4 The existence of persistent
currents on macroscopic scales has been considered a hallmark
of superconductivity in metals ever since its discovery. In
1983, Büttiker et al.4 pointed out that persistent currents should
also exist in nonsuperconducting loops threaded by magnetic
flux. For nonsuperconducting structures, the experimental
evidence of AB oscillations was found in magnetoresistance
measurements on normal-metal mesoscopic (with diameters
∼0.4 to 2 μm) rings5–7 and hollow cylinders8 as well as in
magnetization of metallic9,10 and semiconductor11 rings.

In the past decade, advances in manufacturing self-
organized ringlike semiconductor nanostructures (see, e.g.,
Refs. 12–17) have stimulated theoretical and experimental
studies of the AB oscillations in the persistent currents carried
by single- and few-particle states (see, e.g., Refs. 18–24). Us-
ing an ultrasensitive torsion magnetometer, AB oscillations in
the magnetic moment of InxGa1−xAs self-assembled quantum
rings have been observed18 with a magnitude of oscillation as
large as 60% to 70% of the corresponding magnitude in an
ideal ring. The AB oscillations have also been experimentally
detected in the excitonic magnetophotoluminescence spectra
of single quantum rings,23 although the corresponding effect
is rather weak and it can become unobservable in the spectra
averaged over an ensemble of nonidentical rings.22 Also, the
successful experimental detection of the AB effect in the
magnetic moment of single-electron nanorings18 has appeared
to be a rather challenging task because the magnetization
signal is extremely weak even for a large assembly of
rings. It has been shown that imperfections in the ring
geometry such as local potential fluctuations can severely

affect the magnitude of the anticipated AB effect in the optical,
electronic, and magnetic signals.18,19,21,22,25 In this paper,
astructure, which can be obtained by semiconductor nanowire
growth, is proposed for the observation of the AB effect in the
magnetization. We show that this structure has the potential to
overcome the limitations of previously studied semiconductor
self-assembled quantum rings.26 In the past decade, excellent
control has been obtained over the vertical and radial growth
of semiconductor nanowire structures by using gold catalyst
particles27,28 and many examples of core-shell structures have
been realized. In core-shell nanowire structures, we propose
to form a cylindrical confinement potential (quantum well)
that can be populated by electrons coming from a modulation-
doped region in the core of the nanowire. In contrast with
quantum rings, which can be populated with no more than
a few electrons and which are very sensitive to potential
imperfections, cylindrical nanoshell structures can contain
a much larger number of electrons contributing to the AB
effect. Moreover, at sufficiently high doping and electron
concentrations, the carriers in the cylindrical confinement
potential are expected to experience a smoother potential
allowing a better visibility of the AB effect.

In this paper, we analyze the energy spectrum and the
magnetic moment of multielectron quasi-two-dimensional
(quasi-2D) cylindrical nanoshells with different aspect ratios
and numbers of electrons. In particular, we address the
prospects of detecting the AB effect in the magnetic moment
of nanowires with parameters comparable to those reported in
Ref. 29. We show that despite a destructive influence of the in-
teraction between electrons and randomly distributed charged
impurities, the AB oscillations remain well pronounced both
in the magnetic response of a single nanocylinder and even
after averaging the magnetic moment over an ensemble of
nanocylinders with different impurity distributions.

The remaining part of the paper is organized as follows.
In Sec. II, the AB oscillations in the energy spectrum and
in the magnetic moment are considered in the case of
noninteracting electrons in quasi-2D cylindrical shells with
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FIG. 1. (Color online) Sketch of the semiconductor core-shell
nanocylinder under consideration.

different height-to-radius ratio. We also analyze the experi-
mentally relevant effects of a nonzero shell thickness and of a
moderate misalignment of the magnetic field with respect to
the cylinder axis. In Sec. III, the model is extended to take into
account the electron-electron interaction and the interaction
of electrons with charged impurities. The influence of these
interactions on the shape of the AB oscillations of the magnetic
moment is discussed for individual multielectron core-shell
nanocylinders as well for assemblies of nanocylinders with
different distributions of impurities.

II. AHARONOV-BOHM OSCILLATIONS FOR
NONINTERACTING ELECTRONS

We consider a cylindrical semiconductor core-shell nanos-
tructure, schematically shown in Fig. 1. The height of the cylin-
der is h. The thickness d of the shell is much smaller than its
radius R. In our calculations, the shell radius is taken within the
range from 10 to 15 nm, typical for the structures described in
Ref. 29. It is assumed that the material parameters of the core,
shell, and the surrounding medium (or a capping layer, which
may cover the core-shell structure shown in Fig. 1) provide a
deep potential well for electrons within the cylindrical shell.
The structure is subjected to a homogeneous magnetic field B,
which, in general, can form an angle α with the cylinder axis,
chosen to be parallel to the z axis of the used coordinate frame.

In this section, we analyze the situation in which the
electrons, confined to the cylindrical shell, interact neither
with each other nor with impurities. The single-electron
Hamiltonian has the form

H (1) = h̄2

2me

(
−i∇ + e

h̄
A

)2

+ μBgsB, (1)

where me is the effective mass of conduction electrons, e = |e|
is the elementary charge, A is the vector potential, the electron
g factor is assumed to be g = 2, μB is the Bohr magneton, and s

is the electron spin projection on the z axis. In our calculations
below, we set me/m0 = 0.067 (m0 is the free-electron mass),
suitable for GaAs.

A. 2D cylindrical shell in a parallel magnetic field

In the case where the thickness of the cylindrical shell
is negligibly small as compared to its radius, the prob-
lem becomes effectively two dimensional. Using cylindrical
coordinates ρ, ϕ, z (see Fig. 1) and choosing the gauge
for the vector potential as Aρ = Az = 0, Aϕ = Bρ/2, so
that the magnetic field is parallel to the cylinder axis, the
single-electron Schrödinger equation for the coordinate wave
functions � becomes

h̄2

2me

[(
− i

R

∂

∂ϕ
+ eBR

2h̄

)2

� − ∂2�

∂z2

]
= ε�. (2)

Assuming that the potential barriers for the electrons confined
to the shell are infinitely high, Dirichlet boundary conditions
can be used for the electron coordinate wave functions �.
Then, the single-electron wave functions can be written in the
form

�Ln(ϕ,z) = 1√
2π

eiLϕχn(z), (3)

where

χ2j+1(z) =
√

2

h
cos[(2j + 1)πz/h], j = 0,1,2, . . . (4)

and

χ2j (z) =
√

2

h
sin(2jπz/h), j = 1,2,3, . . . . (5)

The corresponding single-electron eigenenergies are

ELns = h̄2

2meR2

[(
πn

η

)2

+
(

L + πR2B

�0

)2]
+ μBgsB,

(6)

where η = h/R is the aspect ratio of the cylinder, � = πR2B

is the magnetic flux through the cylinder, �0 = 2πh̄/e is the
flux quantum, and the last term describes the Zeeman splitting
of the energy levels.

In Fig. 2, the lowest single-electron energy levels in a
cylindrical shell with radius R = 12 nm and thickness d → 0
are plotted as a function of the applied magnetic field B,
parallel to the z axis, for different values of the aspect ratio η.
These plots illustrate the evolution of the energy spectrum from
that typical for a (quasi-) 1D ring at η = 0.1 [see Fig. 2(a)], to
the formation of energy “subbands” that correspond to a fixed
value of the magnetic quantum number L and different states
of quantization along the z axis, in the case of η � 1 [see
Fig. 2(d)]. In the case of η = 0.1, the Zeeman contribution
to the electron energies is almost negligible as compared to
the contribution due to size quantization (especially for exited
states), so that the energy spectrum manifests nearly perfect
periodicity as a function of B. The axial energy quantization
rapidly weakens with increasing height of the nanocylinder.
As a result, at η � 1, the relative role of the Zeeman splitting
becomes quite pronounced, leading to visible aperiodicity of
the patterns of electron energies versus B.

Let us consider the impact of the aforedescribed behavior
of the single-electron energy spectrum on the Aharonov-Bohm
oscillations in the magnetic moment of N -electron core-shell
nanocylinders with different height-to-radius aspect ratio η.
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FIG. 2. (Color online) Lowest single-electron energy levels in
a cylindrical shell with radius R = 12 nm and thickness d → 0,
as a function of the applied magnetic field B (α = 0) for different
height-to-radius ratio: h/R = 0.1 (a), h/R = 1 (b), h/R = 10 (c),
and h/R = 50 (d).

The magnetic moment of an electron in the state with quantum
numbers L, n, and s,

μLs = −∂ELns

∂B
= −μB

[(
L + πR2B

�0

)
m0

me

+ gs

]
, (7)

does not depend on the quantum number n, related to the
quantization of electron motion along the cylinder axis. The
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FIG. 3. (Color online) Ground-state magnetic moment μ of N

noninteracting electrons [(a) to (d)] and magnetic moment per
electron [(e) to (h)] as a function of the applied magnetic field B

(α = 0) for thin-wall hollow cylinders with radius R = 12 nm and
different height-to-radius ratios: h/R = 0.1 [(a) and (e)], h/R = 1
[(b) and (f)], h/R = 10 [(c) and (g)], and h/R = 50 [(d) and (h)].

total magnetic moment of electrons in the cylindrical shell can
be written as

μ =
∑
L,n,s

fLnsμLs, (8)

where fLns is the occupation probability for the state, char-
acterized by quantum numbers L, n, and s. In Fig. 3, the
magnetic moment μ, calculated from Eq. (8) for cylinders
with different height-to-radius ratio η and different number N

of noninteracting electrons at zero temperature, is plotted as a
function of the magnetic field B, parallel to the z axis.

In the case η � 1 [see Figs. 3(a) and 3(e)], the patterns of
μ(B,N ) almost exactly reproduce the results30 for a 1D ring
with noninteracting electrons (small differences, observable
mainly for relatively small N at relatively high magnetic fields,
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are caused by the Zeeman effect in the present calculations).
At N � 1, the magnetic moment becomes a nearly periodic
function of the number of electrons N with period �N = 4.
For weak fields B, the response of a multielectron ring is
diamagnetic in the case where the number of electrons is even
while the number of “electron pairs” is odd (Nmod4 = 2),
otherwise the current is paramagnetic (the case of a single-
electron ring is an exception). As seen from Fig. 3(e), for a
given value of Nmod4, the amplitude of the AB oscillations
of μ(B) for an N -electron structure increases with N linearly.
Only in the case of an even number of electrons or N = 1,
the magnetic moment μ(B,N ) exhibits, as a function of
B, oscillations with period �0/(πR2), typical for a single-
electron 1D quantum ring with radius R. For a large odd
number N , this period becomes two times smaller, �0/(2πR2).
Also, for an ensemble of 1D rings with a large number of
noninteracting electrons per ring and a significant dispersion
of this number within the ensemble, the period of the AB
oscillations versus magnetic field appears to be �0/(2πR2).30

In the case of Figs. 3(a) and 3(e) (η = 0.1), all the
electrons under consideration are in the lowest state of
the “z quantization” (n = 1). When increasing the height
of the cylinder to h = R, also states with n > 1 become
populated for N > 20. Therefore, the aforedescribed behavior
of μ(B,N ) is manifested only for N � 20, while at larger
values of N the patterns of μ(B,N ) are more complicated
[see Figs. 3(b) and 3(f)]. At η � 1, due to a relative increase
of the Zeeman-interaction contribution to the electron energy,
crossings between energy levels corresponding to magnetic
quantum numbers L and L − 1 occur at different magnetic
fields for different electron spins and this difference is larger
at higher fields B [see Fig. 2(d)]. As a result, the extrema of
μ(B), which correspond to the crossing fields, tend to split
and the AB oscillations of μ(B) are not perfectly periodic.
Both effects are more pronounced at N � 1 [see Figs. 3(d)
and 3(h)]. An additional fine structure of the μ(B) patterns
shown in Figs. 3(c), 3(d), 3(g), and 3(h) arises from the
dependence of the aforementioned crossing fields on the
“z-quantization” number n, which is different for different
electrons [see Figs. 2(c) and 2(d)]. Nevertheless, the shape of
the calculated magnetization oscillations remains much more
regular as compared to the case of multielectron quantum
dots,31–33 where the magnetic field strongly affects the electron
energy quantization in the radial direction.

From Figs. 3(f) to 3(h), one can further deduce that for
sufficiently large N (for N > 20 in the case of h = R), the
AB oscillation amplitude per electron decreases with N . This
trend is somewhat more pronounced for h � R. Nevertheless,
even for η � 1, the amplitude of the AB oscillations of
μ(B,N ) in core-shell nanocylinders with N � 1 remains
sufficiently large, although it is reduced as compared to
a 1D nanoring with the same N [compare Figs. 3(c) and
3(d) to 3(a)]. In this connection, it is worth mentioning that
for realistic nanostructures with finite potential barriers and
repulsive electron-electron interaction, confinement of N � 1
electrons in a quasi-1D quantum ring, similar to that studied in
Refs. 18, 19, and 25 is more difficult to achieve as compared
to the case of a cylindrical shell with the same radius and
h/R � 1, where the number of confined single-electron states
is much larger than in a quasi-1D quantum ring. Remarkably,

for sufficiently large values of the height-to-radius ratio, there
exist wide ranges of N , for which the period and the phase of
the AB oscillations of μ(B,N ) do not depend on N [see, e.g.,
the results for 1 � N � 20 and 40 � N � 80 in Figs. 3(d) and
3(h)]. As implied by Figs. 3(d) and 3(h), for an ensemble of
multielectron core-shell nanocylinders, where N varies within
one of the aforementioned N ranges, the AB oscillations of the
magnetic moment would have the same period �0/(πR2) as
that of single-electron 1D nanorings, but with a significantly
enhanced amplitude.

Since the above results and conclusions correspond to
a greatly oversimplified model, it is worth examining how
sensitive they are to different factors present in realistic core-
shell cylindrical nanostructures. In this section, we address the
effect of two such factors: a nonzero thickness of the shell and
a possible misalignment of the applied magnetic field with
respect to the cylinder axis.

B. Cylindrical shell with nonzero thickness

In the case of a hard-wall cylindrical potential well with
a nonvanishing thickness, the electron wave function can be
written as

�Lnk(ρ,ϕ,z) = 1√
2π

eiLϕχn(z)ψLk(ρ), (9)

where k labels the radial solutions for a given L, the z functions
χn(z) are given by Eqs. (4) and (5), and the radial functions
ψLk satisfy the equation

h̄2

2me

[
∂2ψLk

∂ρ2
+ 1

ρ

∂ψLk

∂ρ
− L2

ρ2
ψLk −

(
eB

2h̄

)2

ρ2ψLk

]
+ εLkψLk = 0. (10)

The eigenvalue εLk is linked to the total single-electron energy
ELnks by the expression

ELnks = h̄2

2meR2

(
πn

η

)2

+ εLk + μB

m0

me

LB + μBgsB.

(11)

Instead of following a cumbersome procedure expressing the
general solution of Eq. (10) in terms of confluent hypergeomet-
ric functions and applying the relevant boundary conditions,
we have numerically solved Eq. (10), expanding the wave
functions ψLk within a finite basis of standing radial waves,
which already satisfy the necessary boundary conditions. The
calculations of single-electron energy levels, corresponding to
the lowest state of radial quantization, have been performed
for a cylindrical shell with mean radius R = 12 nm, height-
to-radius ratio η = 50, and thickness d = 5 nm. The resulting
patterns of μ(B,N ) and μ(B,N )/N (not shown here) appear
almost undistinguishable from those displayed in Figs. 3(d)
and 3(h), indicating that the particular value of the shell
thickness (d � R) has a rather weak effect on the magnetic
moment μ(B,N ) of core-shell nanocylinders with η � 1. For
this reason, we restrict ourselves to the case of d → 0.

C. Cylindrical shell in a tilted magnetic field

Let us now consider the experimentally relevant case of a
nonzero angle α between the field B and the cylinder axis. This
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case can be relevant, e.g., for an ensemble of nanocylinders
with slightly misaligned axes or when measuring the magnetic
moment μ(B) of nanostructures with a torque magnetometer.18

Assuming that the applied field B lies in the xz plane
and choosing the gauge Aρ = 0, Aϕ = Bρ cos(α)/2, Az =
Bρ sin(α) sin(ϕ) for the vector potential, the single-electron
Schrödinger equation takes the form

h̄2

2me

(
− i

R

∂

∂ϕ
+ eBR cos(α)

2h̄

)2

�

+ h̄2

2me

(
−i

∂

∂z
+ eBR sin(α)

h̄
sin(ϕ)

)2

� + μBgsB�

= E�. (12)

For α �= 0, the second term in the left-hand side of Eq. (12)
depends on both z and ϕ, so that a simple scheme with
separation of variables is not applicable. We solve the
Schrödinger equation (12) numerically by diagonalizing the
matrix Hamiltonian in a finite basis, formed by the 300 lowest
single-electron states in a magnetic field parallel to the z axis
and equal to B cos(α). The corresponding matrix elements of
the Hamiltonian are

HLns,L′n′s = ELnsδLL′δnn′ + VLn,L′n′ + WLn,L′n′ , (13)

where the energy ELns of a basis state is

ELns = h̄2

2me

(
πn

h

)2

+
(

L

R
+ eB cos(α)

2h̄

)2

+ μBgsB. (14)
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FIG. 4. (Color online) Lowest single-electron energy levels in a
thin-wall hollow cylinder with radius R = 12 nm and height-to-radius
ratio h/R = 50 as a function of the applied magnetic field B for
different angles between the field and the cylinder axis: α = 5◦ (a)
and α = 15◦ (b).

The terms

VLn,L′n′ = e2R2B2 sin2(α)

4me

δn,n′

×
(

δL,L′ − 1

2
δL,L′+2 − 1

2
δL,L′−2

)
(15)

are responsible for the mixing of basis states with the same
parity of L and L′, while the terms

WLn,L′n′ = 2eh̄RB sin(α)

meh
(δL,L′−1 − δL,L′+1)(−1)(n−n′−1)/2

× (|n − n′|mod2)
nn′

n2 − n′2 (16)

mix the states with different parity of L and L′ and, simulta-
neously, different parity of n and n′.

In Fig. 4, the calculated lowest single-electron energy levels
in a core-shell nanocylinder with R = 12 nm and η = 50
are shown for two different values of the angle α between
the applied magnetic field and the cylinder axis. As seen
from a comparison of Fig. 4 to Fig. 2(d), an increase of
α leads to the appearance of numerous anticrossings in the
energy spectrum (except for states with different electron spin
projections). A misalignment of the field B with respect to the
cylinder axis also tends to smooth out the Aharonov-Bohm
oscillations of the electron energy levels, especially at strong
magnetic fields. In Fig. 5, we plot the ground-state magnetic
moment, calculated for cylindrical shells with different N ,
as a function of the applied magnetic field, tilted by α = 5◦
and 15◦. In line with the aforedescribed results for the
energy spectrum, an increase of α is seen to suppress the
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FIG. 5. (Color online) Parallel (to the applied field) components
of the ground-state magnetic moment of N noninteracting electrons
[(a) and (b)] and of the magnetic moment per electron [(c) and (d)] in a
thin-wall hollow cylinder with radius R = 12 nm and height-to-radius
ratio h/R = 50 as a function of the applied magnetic field B for
different angles between the field and the cylinder axis: α = 5◦ [(a)
and (c)] and α = 15◦ [(b) and (d)].
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Aharonov-Bohm oscillations of the magnetic moment μ(B) at
high magnetic fields. At the same time, the first oscillation
remains almost unaffected even for a rather strong field
misalignment corresponding to α = 15◦. For smaller angles
α, the effect of this misalignment on the AB oscillations
can hardly be considered as dramatic, although it is not fully
negligible.

III. EFFECTS OF THE ELECTRON-ELECTRON AND
ELECTRON-IMPURITY INTERACTIONS ON THE

AHARONOV-BOHM OSCILLATIONS

A. Formalism

Here, the ground-state energy and the corresponding mag-
netic moment of an N -electron core-shell nanocylinder are
analyzed taking into account the interaction of the electrons
in the shell with each other as well as with positively charged
impurities located in the core. The number of these impurities
is assumed to coincide with the number of conduction
electrons, so that the nanocylinder as a whole is electrically
neutral.

We consider an N -electron system, described by the
Schrödinger equation[

N∑
i=1,N

H
(1)
i +

N∑
i=1,N

N∑
j=i+1

Vee(ri − rj )

]
�(N) = E(N)�(N),

(17)

where the first term in square brackets is a sum of “single-
particle” Hamiltonians of noninteracting electrons and the
second term describes the electron-electron Coulomb inter-
action. For simplicity, in the present calculations we assume
a uniform dielectric constant εr = 10 for the cylindrical
core-shell structure and the surrounding medium (the capping
layer) and take Vee(ri − rj ) in the form

Vee(ri − rj ) = e2

4πε0εr |ri − rj | . (18)

Here, ε0 is the vacuum permittivity. The single-electron
Hamiltonian H

(1)
i is written as

H
(1)
i = h

(1)
i + μBgsiB (19)

with

h
(1)
i = h̄2

2me

(
−i∇i + e

h̄
A

)2

+ Vei(ri). (20)

The last term in Eq. (20) describes the electron-impurity
interaction

Vei(ri) = − e2

4πε0εr

N∑
k=1

1

|ri − Rk| , (21)

where Rk = (ρk,ϕk,zk) is the position of the kth impurity.
The N -electron wave function �(N) is modeled by a

single Slater determinant and calculated within the Hartree-
Fock approximation (see, e.g., Ref. 34). The corresponding
Schrödinger equation for the single-particle Hartree-Fock
coordinate wave functions of spin-up s = 1

2 and spin-down

s = − 1
2 electrons can be written in the form

[h(1)(r) + C(r)]�s,k(r) −
∫

d3r Ks,k(r,r′)�s,k(r′)

= εs,k�s,k(r), s = 1

2
,−1

2
(22)

where

C(r) =
∑

s=±1/2

Ns∑
k=1

∫
d3r ′Vee(r − r′)|�s,k(r′)|2 (23)

and

Ks(r,r′) =
Ns∑
k=1

Vee(r − r′)�∗
s,k(r′)�s,k(r). (24)

Ns is the number of electrons with spin projection s (N−1/2 +
N1/2 = N ). The expectation value for the Hamiltonian (17) is
expressed through the eigenvalues εs,k of Eqs. (22) as

E(N) =
∑

s=±1/2

Ns∑
k=1

[
εs,k − 1

2
(Cs,k − Es,k)

]

+ 1

2
(N1/2 − N−1/2)μBgB, (25)

where the direct and exchange energy contributions are
determined by

Cs,k =
∫

d3r C(r)|�s,k(r)|2 (26)

and

Es,k =
∫

d3r

∫
d3r ′Ks(r,r′)�∗

s,k(r)�s,k(r′), (27)

respectively.
Equations (22) are solved numerically, expanding the

functions �s,k(r) over the lowest-state eigenfunctions of the
corresponding single-electron problem without the electron-
impurity interaction

�j (r) ≡ �Lj nj
(ρ,ϕ,z) = 1√

2π
eiLj ϕχnj

(z)δ(R − ρ), (28)

where χnj
(z) are given by Eqs. (4) and (5). Note that a

particular set of basis functions depends on the applied
magnetic field B. Using the electron-impurity interaction

�s,k(r) =
nbas∑
i=1

as,k,j�j (r), (29)

the iterative equations for the expansion coefficients as,k,j at a
given number N−1/2 of spin-down electrons take the form

nbas∑
i=1

[〈�j |h(1)|�i〉 + Aji − Bsji]a
(new)
s,k,i = εs,k(N−1/2)a(new)

s,k,j ,

j = 1,nbas (30)

where nbas, taken to be nbas = 250 in the present calculations,
is the length of the used basis. The “interaction matrices”

165424-6



AHARONOV-BOHM OSCILLATIONS IN THE MAGNETIC . . . PHYSICAL REVIEW B 87, 165424 (2013)

given by

Aji =
∑

s ′=±1/2

Ns′∑
k′=1

nbas∑
i ′,j ′=1

a
(old)∗
s ′,k′,j ′a

(old)
s ′,k,i ′

× 〈�j (r),�j ′ (r′)|Vee(r − r′)| �i(r),�i ′(r′)〉 (31)

(j,i = 1,nbas) and

Bsji =
Ns∑

k′=1

nbas∑
i ′,j ′=1

a
(old)∗
s,k′,j ′a

(old)
s,k′,i ′

× 〈�j (r),�j ′ (r′)|Vee(r − r′)| �i ′(r),�i(r′)〉 (32)

correspond to the direct and exchange terms, respectively.
The matrix elements of the single-electron Hamiltonian h(1)

are

〈�j |h(1)|�i〉 = δji

h̄2

2meR2

[(
πnj

η

)2

+
(

Lj + eBR2

2h̄

)2]
+〈�j |Vei |�i〉. (33)

The matrix elements of the electron-impurity interaction can
be expressed as

〈�j |Vei |�i〉 = − e2

4π2ε0εrh

N∑
k=1

wk(nj ,ni,Li − Lj ) (34)

with

wk(n,n′,L) =
∫ h/2

−h/2
dz

χn(z)χ ′
n(z)√

R2 + ρ2
k + (z − zk)2

×pkL

(
2Rρk

R2 + ρ2
k + (z − zk)2

)
, (35)

where the angular integral is

pkL(x) =
∫ 2π

0
dϕ

eiLϕ

√
1 − x cos(ϕ − ϕk)

. (36)

The electron-electron interaction matrix can be written as

〈�j (r),�j ′(r′)|Vee(r − r′)| �i(r),�i ′(r′)〉
= δLj +Lj ′ ,Li+Li′ W (nj ,nj ′ ,ni,ni ′ ,|Li − Lj |) (37)

with

W (n,n′,p,p′,L)

= vc(n − p,n′ − p′,L) − s(++)vc(n + p,n′ + p′,L)

+ s(−+)vc(n − p,n′ + p′,L) + s(+−)vc(n + p,n′ − p′,L)

for β(++)mod2 = 0 and (βn + βp)mod2 = 0, (38)

W (n,n′,p,p′,L)

= vs(n + p,n′ + p′,L) − s(−−)vs(n − p,n′ − p′,L)

− s(−+)vs(n − p,n′ + p′,L) − s(+−)vs(n + p,n′ − p′,L)

for β(++)mod2 = 0 and (βn + βp)mod2 = 1, (39)

and

W (n,n′,p,p′,L) = 0 for β(++)mod 2 �= 0. (40)

The integrals, entering the above equations, are given by the
following formulas:

vc(n,n′,L) = e2

16π3ε0εrR

∫ 1/2

−1/2
dz

×
∫ 1/2

−1/2
dz′ cos(πnz) cos(πn′z′)QL[η(z − z′)]

(41)

and

vs(n,n′,L) = e2

16π3ε0εrR

∫ 1/2

−1/2
dz

×
∫ 1/2

−1/2
dz′ sin(πnz) sin(πn′z′)QL[η(z − z′)],

(42)

where the angular integral is

QL(x) = 2π

∫ 2π

0
dϕ

cos Lϕ√
2(1 − cos ϕ) + x2

. (43)

The parity-related coefficients βn, β(±±), and s(±±) are deter-
mined as

βn = 1 + nmod2, (44)

β(±±) = |(βn ± βp) + (βn′ ± βp′ )|, (45)

s(±±) =
{

1 for β(±±) mod 4 �= 0,

−1 for β(±±) mod 4 = 0.
(46)

Importantly for practical computation, the coefficients
vc(n,n′,L) and vs(n,n′,L) do not depend on the number of
electrons N and they are trivially scaled with R at a fixed
aspect ratio η.

A well-known weak point of the Hartree-Fock approach
is that it does not take into account the electron corre-
lation effects.34 However, our calculations (not presented
here) of the magnetic moment μ(B) of two-electron hol-
low nanocylinders with η ∼ 1 (i.e., for ringlike structures)
show that the difference between the Hartree-Fock–based
results and the results based on the exact numerical diago-
nalization of the two-electron Hamiltonian21 is less important
than the effects due to the direct Coulomb and exchange
term. For longer nanocylinders, this difference becomes even
less significant and definitely negligible as compared to the
dramatic (see below) effect of randomly distributed positively
charged impurities on the shape of μ(B).

B. Magnetic moment of the lowest fully spin-polarized state

In Fig. 6, the calculated energy E(N) and the corresponding
magnetic moment μ = −∂E(N)/∂B are shown as a function
of B for the lowest fully spin-polarized (N−1/2 = N ) state of
six electrons in a cylindrical layer with radius R = 12 nm
and height-to-radius ratio h/R = 50. The results are shown
for the cases without interactions, with the electron-electron
(ee) interaction only, and with the ee and electron-impurity
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FIG. 6. (Color online) Lowest energy level (a) and the cor-
responding magnetic moment (b) for N = 6 fully spin-polarized
electrons in a cylindrical layer with radius R = 12 nm and height-to-
radius ratio h/R = 50 as a function of the applied magnetic field B

(α = 0). The results are shown for the cases without interactions,
with the electron-electron (ee) interaction only, and with the ee

and electron-impurity (ei) interactions, for three different spatial
distributions of the impurities (see Table I in the Appendix).

(ei) interactions for three different spatial distributions of
the impurities. The impurity coordinates for the chosen
distributions are given in the Appendix. As seen from Fig. 6(a),
the main effect of the ee interaction, taken into account alone, is
an overall upwards shift of the curve E(N)(B). In addition, the
ee interactions tend to make the motion of the electrons “more
coherent.” As a result, the difference between the magnetic-
field values, corresponding to crossings of different single-
electron levels with magnetic quantum numbers L and L − 1
(see the previous section), significantly decreases as compared
to the case of noninteracting electrons. Consequently, the
“multiple splitting” of minima and maxima of the curves μ(B),
which is typical for noninteracting electrons at N � 1 and
η � 1, can be considerably reduced when taking into account
the ee interaction [see Fig. 6(b)].

Figure 6(b) further demonstrates that the incorporation of
the electron interaction with positively charged impurities,
uniformly distributed along the cylinder axis (distribution 1;
see Table I in the Appendix), results only in an overall down-
wards shift of E(N)(B) without any effect on the shape of the

AB oscillations of the magnetic moment μ(B). However, the
situation changes dramatically in the case of uncorrelated ran-
dom impurity distributions, which are much more plausible for
realistic nanostructures.35 For those distributions (distributions
2 and 3; see Table I in the Appendix), as seen from Fig. 6, the
ei interaction significantly modifies the behavior of E(N)(B).
This results in an appreciable reduction of the amplitude
of the Aharonov-Bohm oscillations for μ(B). Moreover, the
interaction of electrons with randomly distributed impurities
strongly affects the shape and the phase of the AB oscillations.
It is obvious that the aforementioned effects can be related, at
least to some extent, to the cylindrical-symmetry breaking
caused by the presence of randomly distributed impurities. As
seen from Table I in the Appendix, some of these impurities
are very close to the shell where the electrons are confined, so
that the corresponding ei interactions are strong.

At first sight, the aforedescribed undesirable effects of the
ei interaction on the AB oscillations could be significantly
reduced by concentrating the impurities in a narrow spatial
region close to the cylinder axis, so that the cylindrical
symmetry of the system is not strongly affected. Direct mea-
surements of dopant concentrations in nanowires using atom
probe tomography36 demonstrate that the impurity distribution
in the radial direction can be highly inhomogeneous depending
on the growth conditions. It may be possible to grow core-shell
cylindrical structures similar to those described in Refs. 27–29,
with dopants located in a narrow region near the axis. However,
as shown below, the effects of the ei interaction on the AB
oscillations can remain quite pronounced even for such near-
axis dopant distributions. In order to illustrate the origin of
these effects, we show in Fig. 7 a few examples of the electron
probability density distributions along the cylinder axis Pe(z).
The probability density Pe(z) is normalized by the condition∫ h/2
−h/2 Pe(z)dz = 1. The calculations are performed for the

lowest fully spin-polarized state of N = 4, 16, and 32 electrons
in a core-shell nanocylinder with radius R = 15 nm and height-
to-radius ratio η = 50. The impurities are randomly distributed
in a region of radius 2.5 nm near the cylinder axis. The z coor-
dinates of impurities for the chosen distributions are indicated
in Fig. 7 with circles. The results are shown for the cases
without interactions, with the electron-impurity interaction
only, and with both the electron-impurity and electron-electron
interactions. Figure 7 clearly shows the electron localization
by positively charged impurities. This effect is especially pro-
nounced for impurity (quasi)clusters. Importantly, formation
of impurity (quasi)clusters appears rather probable for uncor-
related random impurity distributions. The electron-electron
repulsive interaction tends to weaken the localization effect,
making the electron probability density distributions along
the cylinder axis more uniform. Nevertheless, this distribution
remains rather inhomogeneous even in the case when both the
electron-impurity and electron-electron interactions are taken
into account. As follows from Fig. 7, due to the additional
impurity-induced localization, the electron probability density
distribution in a core-shell multielectron cylindrical structure
can appear similar to that in a stack of few-electron quantum
rings or cylinders with a height significantly smaller than h.

As illustrated in Figs. 8 to 10, the impurity-induced
redistribution of the electron density along the cylinder axis
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FIG. 7. (Color online) Probability density distribution along the z

axis for N = 4 (a), N = 16 (b), and N = 32 (c) fully spin-polarized
electrons in a cylindrical layer with radius R = 15 nm and height-to-
radius ratio h/R = 50 at zero applied magnetic field. The results are
shown for the cases without interactions, with the electron-impurity
(ei) interaction only, and with both the electron-impurity and electron-
electron (ee) interactions. The z coordinates of impurities are shown
with circles.

has a strong impact on the shape of the AB oscillations of the
magnetic moment μ versus magnetic field B or the magnetic
flux �. The shown results correspond to multielectron core-
shell nanocylinders with radius R = 15 nm and height-to-
radius ratio η = 50. The positively charged impurities are
again randomly distributed in a region of radius 2.5 nm near
the cylinder axis. Figure 8(a) illustrates the situation where the
amplitude of the AB oscillations for the fully spin-polarized
state of N = 16 electrons is relatively small in the absence
of interactions. The fine oscillations superimposed over the
AB oscillations arise from the fact that, as discussed in
Sec. II A, crossings between energy levels corresponding
to magnetic quantum numbers L and L − 1 take place at
different magnetic fields for different single-electron energy
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FIG. 8. (Color online) (a) Magnetic moment corresponding to the
lowest fully spin-polarized state of N = 16 electrons in a cylindrical
layer with radius R = 15 nm and height-to-radius ratio h/R = 50
as a function of the applied homogeneous magnetic field B (α = 0).
The results are shown for the cases without interactions, with the
electron-impurity (ei) interaction only, and with both the electron-
impurity and electron-electron (ee) interactions. (b) z coordinates of
impurities for the chosen random impurity distribution.

levels. For the impurity distribution shown in Fig. 8(b), the ei

interaction, taken alone (without the ee interaction), leads to
the appearance of multiple maxima and minima of μ(�), some
of them having a relatively large magnitude. The ee interaction
smoothes μ(�). At the same time, the curve μ(�), calculated
with both the ei and ee interactions taken into account, reveals
the appearance of an oscillation component with the period
�0/2, expected for a collection of quantum rings, as discussed
in the previous section.

C. Spin polarization and magnetic moment in the ground state

Another important aspect of the influence of the electron-
impurity and electron-electron interactions on the shape of
the AB oscillations relates to the electron spin polarization in
the ground state. As seen from Figs. 9(a) and 10(a), in the
absence of the ei and ee interactions, the fully spin-polarized
ground state for a core-shell nanocylinder with R = 15 nm and
η = 50, containing 12 or 15 electrons, is ultimately established
for magnetic fields B > 12.4 T or B > 18 T, respectively.
When taking into account the ei interaction only, the ground-
state number of spin-down electrons N−1/2 fluctuates around
values smaller than N within the whole field range under
consideration. For this reason, the calculated magnetic moment
does not manifest a clear periodicity as a function of the applied
magnetic field [see Figs. 9(b) and 10(b)]. In contrast to this, the
fully spin-polarized configuration of electrons, interacting both
with impurities and with each other, becomes a stable ground
state at magnetic fields significantly lower than those in the
case of no interactions. This effect is caused by a relatively
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FIG. 9. (Color online) Number of spin-down electrons (a) and
magnetic moment (b) in the ground state of N = 12 electrons in a
cylindrical layer with radius R = 15 nm and height-to-radius ratio
h/R = 50 as a function of the applied magnetic field B (α = 0).
The results are shown for the cases without interactions, with the
electron-impurity (ei) interaction only, and with both the electron-
impurity and electron-electron (ee) interactions. The z coordinates of
impurities for the selected random impurity distribution are shown in
panel (c).

large (negative) exchange energy in the fully spin-polarized
state. As a result, the ground-state magnetic moment becomes
a periodic function of B already at moderate magnetic fields
[see Figs. 9(b) and 10(b)].

As seen from Figs. 8 to 10, although the electron-impurity
interaction tends to decrease the amplitude of the AB oscilla-
tions for multielectron core-shell nanocylinders, this amplitude
remains comparable to that in the case of noninteracting
electrons and no impurities. At the same time, the shape and
phase of the AB oscillations for an individual nanocylinder
are rather sensitive to a particular impurity distribution [for
instance, the curves μ(�) in Figs. 8 and 9 show the presence
of an oscillating component with period �0/2, while in Fig. 10
only oscillations with period �0 are present at high magnetic
fields]. In connection to this, the question arises as to what
happens with the AB oscillations when the magnetic moment
is averaged over an ensemble of core-shell nanocylinders
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FIG. 10. (Color online) Number of spin-down electrons (a) and
magnetic moment (b) in the ground state of N = 15 electrons in a
cylindrical layer with radius R = 15 nm and height-to-radius ratio
h/R = 50 as a function of the applied magnetic field B (α = 0).
The results are shown for the cases without interactions, with the
electron-impurity (ei) interaction only, and with both the electron-
impurity and electron-electron (ee) interactions. The z coordinates of
impurities for the selected random impurity distribution are shown in
panel (c).

with different impurity distributions. Based on the analysis
performed above, one can suggest that the behavior of μ(B)
for such an ensemble should be qualitatively similar to that
described in Sec. II for an ensemble of multielectron quantum
rings. In general, when both the ei and ee interactions
are present, the corresponding numerical simulations for a
large assembly of nanocylinders would be extremely time
consuming. However, in order to examine qualitatively the
above guess, we can limit ourselves to a simpler case where
only the ei interaction is taken into account. Indeed, from
our previous calculations, we have concluded that the ee

interaction has no detrimental effect on the AB oscillations of
the magnetic moment. Moreover, the obtained results confirm
that, similarly to the cases of multielectron quantum dots37

and 1D systems (see, e.g., Ref. 38), the ee interaction in
core-shell nanocylinders significantly weakens the effect of a
rough and noisy impurity potential. This means that omitting
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FIG. 11. (Color online) (a) Magnetic moment in the ground state
of N noninteracting electrons in a cylindrical layer with radius R =
15 nm and height-to-radius ratio h/R = 50 as a function of the applied
magnetic field B (α = 0) for three different N . (b) Averaged magnetic
moment in the ground state of N electrons interacting with charged
impurities in cylindrical layers with radius R = 15 nm and height-
to-radius ratio h/R = 50 as a function of the applied magnetic field
B (α = 0). Each curve corresponds to averaging over 5000 different
random distributions of impurities. In the chosen distributions, the
impurities are located either near the cylinder axis at distances ρi <

2.5 nm from the axis or exactly on the axis (ρi = 0).

the ee interaction and taking into account only the electron
interaction with randomly distributed impurities, one obtains
the “most pessimistic prognosis” for the AB oscillations.

D. Magnetic moment of an assembly of core-shell nanocylinders

In Fig. 11, we compare the magnetic moment in the ground-
state core-shell nanocylinders with N noninteracting electrons
to the magnetic moment 〈μ〉 averaged over an assembly of
nanocylinders including the ei interaction and 5000 different
random impurity distributions. The results of our simulations
show that averaging over ∼1000 to 2000 impurity distributions
already provides a reasonably good approximation for the
amplitude of the AB oscillations and for the general behavior
of 〈μ(B)〉 for larger ensembles. As seen from Fig. 11(b), the
overall shape of 〈μ〉 is qualitatively similar for different N ,
demonstrating AB oscillations with a twice smaller period
than those seen in Fig. 11(a), just in line with our guess, i.e.,
with what is expected for a collection of rings with different
numbers of electrons <N . As compared to the case without

interactions, the amplitude of the oscillations of 〈μ(B)〉 is
considerably lower and its dependence on N is rather weak.

For N = 50, the behavior of 〈μ(B)〉 is shown in Fig. 11(b)
for the two cases where the impurities are located either near
the cylinder axis at distances ρi < 2.5 nm from the axis or
exactly on the axis (ρi = 0). As seen Fig. 11(b), random devi-
ations of impurity positions from the cylinder axis, which de-
stroy the cylindrical symmetry of the system, lead to a decrease
of the AB oscillation amplitude. At the same time, for the
relatively small deviations under consideration (ρi < 2.5 nm),
this effect is not really dramatic, so that the AB oscillations
survive. As argued above, the electron-electron interaction is
expected to make these oscillations even more pronounced.

IV. CONCLUSIONS

We have analyzed the energy spectrum and the magnetic
moment of multielectron semiconductor core-shell nanocylin-
ders, subjected to a magnetic field, for different height-to-
radius ratios η and numbers of electrons. It is shown that
for noninteracting electrons, the period and phase of the
Aharonov-Bohm oscillations of the magnetic moment μ(B)
at η � 1 appear independent of N within rather wide N

ranges, in contrast to ideal 1D rings, where the shape of μ(B)
dramatically depends on Nmod4. Importantly, the amplitude
of the AB oscillations in core-shell nanocylinders with N � 1
can be much larger than that in single-electron ringlike
nanostructures. The AB oscillation amplitude is robust against
the experimentally relevant effects of a nonzero shell thickness
as well as of a moderate misalignment of the magnetic field
with respect to the cylinder axis.

The behavior of μ(B) is strongly influenced by the
interaction of electrons with randomly distributed charged
impurities, even in the case when these impurities are located
closely to the cylinder axis, so that the cylindrical symmetry
is not strongly violated. Due to the formation of impurity

TABLE I. Cylindrical coordinates of impurities for distributions
1 to 3.

Distrib. No. k ρ/R ϕ (rad) z/h

1 1 0 0 −0.4167
2 0 0 −0.25
3 0 0 −0.0833
4 0 0 0.0833
5 0 0 0.25
6 0 0 0.4167

2 1 0.6718 5.7684 0.2026
2 0.4265 5.6303 0.4852
3 0.2727 2.2601 0.4085
4 0.5179 2.3789 0.1255
5 0.6503 5.4317 0.0521
6 0.0514 3.25 −0.1404

3 1 0.7169 0.8072 −0.4817
2 0.8992 0.3931 −0.2054
3 0.4379 2.8732 −0.4347
4 0.2009 5.3151 −0.0934
5 0.9214 0.9381 −0.0501
6 0.0451 1.3115 −0.1845
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(quasi)clusters, the electron distribution in a cylindrical shell
with η � 1 becomes similar to that in a stack of few-electron
quantum rings. Such an “additional confinement” for electrons
strongly affects both the orbital magnetic moment and the spin
configuration in the ground state of the multielectron system.
The electron-electron interaction weakens these effects and
tends to bring the overall shape of μ(B) closer to that calculated
in the absence of interactions. Although the shape and phase
of the AB oscillations in an individual core-shell nanocylinder
are sensitive to a particular distribution of charged impurities,
AB oscillations with a sufficiently high amplitude are shown
to survive in the magnetic moment averaged over an assembly
of nanocylinders with different impurity distributions.
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APPENDIX

In Table I, we indicate the impurity coordinates for the
distributions 1 to 3, which correspond to the results shown in
Fig. 6.
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J. M. Garcı́a, W. Schoenfeld, and P. M. Petroff, Phys. Rev. B 65,
113303 (2002).

15J. A. Barker, R. J. Warburton, and E. P. O’Reilly, Phys. Rev. B 69,
035327 (2004).

16R. Timm, H. Eisele, A. Lenz, L. Ivanova, G. Balakrishnan, D. L.
Huffaker, and M. Dahne, Phys. Rev. Lett. 101, 256101 (2008).

17C. Heyn, A. Stemmann, C. Strelow, T. Koppen, D. Sonnenberg,
A. Graf, S. Mendach, and W. Hansen, J. Nanoelectron. Optoelec-
tron. 6, 62 (2011).

18N. A. J. M. Kleemans, I. M. A. Bominaar-Silkens, V. M. Fomin,
V. N. Gladilin, D. Granados, A. G. Taboada, J. M. Garcı́a,
P. Offermans, U. Zeitler, P. C. M. Christianen, J. C. Maan, J. T.
Devreese, and P. M. Koenraad, Phys. Rev. Lett. 99, 146808 (2007).

19V. M. Fomin, V. N. Gladilin, S. N. Klimin, J. T. Devreese, N. A. J.
M. Kleemans, and P. M. Koenraad, Phys. Rev. B 76, 235320 (2007).

20A. Bruno-Alfonso and A. Latge, Phys. Rev. B 77, 205303 (2008).

21V. M. Fomin, V. N. Gladilin, J. T. Devreese, N. A. J. M. Kleemans,
and P. M. Koenraad, Phys. Rev. B 77, 205326 (2008).

22N. A. J. M. Kleemans, J. H. Blokland, A. G. Taboada, H. C. M. van
Genuchten, M. Bozkurt, V. M. Fomin, V. N. Gladilin, D. Granados,
J. M. Garcı́a, P. C. M. Christianen, J. C. Maan, J. T. Devreese, and
P. M. Koenraad, Phys. Rev. B 80, 155318 (2009).

23F. Ding, N. Akopian, B. Li, U. Perinetti, A. Govorov, F. M. Peeters,
C. C. Bof Bufon, C. Deneke, Y. H. Chen, A. Rastelli, O. G. Schmidt,
and V. Zwiller, Phys. Rev. B 82, 075309 (2010).

24M. Tadic, N. Cukaric, V. Arsoski, and F. M. Peeters, Phys. Rev. B
84, 125307 (2011).

25P. Offermans, P. M. Koenraad, J. H. Wolter, D. Granados, J. M.
Garcı́a, V. M. Fomin, V. N. Gladilin, and J. T. Devreese, Appl.
Phys. Lett. 87, 131902 (2005).

26D. Granados and J. M. Garcı́a, Appl. Phys. Lett. 82, 2401 (2003).
27J. W. W. van Tilburg, R. E. Algra, W. G. G. Immink, M. Verheijen,

E. P. A. M. Bakkers, and L. P. Kouwenhoven, Semicond. Sci.
Technol. 25, 024011 (2010).
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