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We introduce and study a class of anyon models that are a natural generalization of Ising anyons and Majorana
fermion zero modes. These models combine an Ising anyon sector with a sector associated with SO(m), Chern-
Simons theory. We show how they can arise in a simple scenario for electron fractionalization and give a
complete account of their quasiparticle types, fusion rules, and braiding. We show that the image of the braid
group is finite for a collection of 2n fundamental quasiparticles and is a proper subgroup of the metaplectic
representation of Sp(2n — 2,IF,,) x H(2n — 2,F,,), where Sp(2n — 2,IF,,) is the symplectic group over the finite
field F,, and H(2n — 2,IF,,) is the extra special group (also called the (2n — 1)-dimensional Heisenberg group)
over IF,,. Moreover, the braiding of fundamental quasiparticles combined with a restricted set of measurements
can be efficiently simulated classically. However, computing the result of braiding a certain type of composite
quasiparticle followed by fusion into the identity is #P-hard. It is not universal for quantum computation
because it has a finite braid group image. This is a rare example of a topological phase that is not universal for
quantum computation through braiding but nevertheless has #P-hard link invariants. We argue that our models
are closely related to recent analyses finding non-Abelian anyonic properties for defects in quantum Hall systems,

generalizing Majorana zero modes in quasi-1D systems.
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I. INTRODUCTION

Majorana zero modes can occur in a wide variety of
physical systems linked by the common thread of chiral
p-wave superconductivity and its analogs.'~!® They exhibit
many (and, in some cases, nearly all) of the properties of
Ising anyons and, therefore, may prove useful for fault-tolerant
topological quantum information processing.''>* However,
it is possible to classically simulate the braiding of Ising
anyons efficiently.?!?> Therefore they are useful for quantum
computation only if braiding is supplemented by measurement
at intermediate stages of computations and by a /8 phase
gate, in which case they are capable of universal quantum
computation.”> While it is likely that the former can be
performed accurately, the latter appears difficult, although
there are various interesting concrete proposals.>=> More-
over, a nontopological implementation of the 7 /8 phase gate
requires error correction, which entails significant overhead.?®
Therefore physical systems supporting anyons that are capable
of universal quantum computation with braiding alone?'-??
(best-case scenario) or braiding and measurement?”? (next-
best scenario) would be a very attractive platform for quantum
computation.

In this paper, we introduce a sequence of topological phases
of electrons that are generalized physical models of Ising
anyons. Suppose that an electron fractionalizes into a spinless
neutral fermion v and a charged spinful boson Z. Further,
suppose that the spinless neutral fermion forms a p + ip paired
superfluid state. If the bosons form a trivial gapped state, then
the system is in the Ising anyon state, as in Kitaev’s honeycomb
lattice model.” (If the bosons condense, then the system is in a
superconducting state, which is a quasitopological phase with
some of the properties of Ising anyons.*?”) If the bosons form a
spin-polarized fractional quantum Hall state, then the system
is in the Moore-Read,' the anti-Pfaffian,®° or a Bonderson-
Slingerland'? state descended from one of these, but suppose,
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instead, that the bosons form a more complex topological phase
of their own, 7. Then the system will support quasiparticles
that are combinations of those of the Ising topological quantum
field theory (TQFT) and those of 7, subject to the condition
that they braid trivially with electrons. In the phases analyzed
in this paper, 7 is associated with SO(m), Chern-Simons
theory, where m = 3,5,7 with, we believe, a generalization
to any odd prime m. The SO(m), TQFTs have several very
interesting properties. All of these theories have a quasiparticle
that is a boson. We identify this boson with Z through a
non-Abelian analog of flux-attachment.?** In addition, these
theories have a “fundamental” quasiparticle, which we call
X, that acts as a vortex for the Z boson. X quasiparticles
are non-Abelian anyons with quantum dimension /m. We
will call them metaplectic anyons, for reasons that we will
explain. When two X particles are fused, the result can either
be the vacuum or one of a set of quasiparticles which we call
Y;, withi =1,2,...,r, and r = (m — 1)/2. The Y; particles
have quantum dimension 2, but this does not mean that they
are trivial; they are also non-Abelian anyons. Finally, there is
a particle X’, which results when X and Z are fused. Only
a subset of the tensor product of the quasiparticles of the
SO(m), TQFT and the quasiparticles ,o,v of the Ising TQFT
satisfy the constraint that they braid trivially with the electron
W, = ¢ - Z, as we will describe in detail. We call the resulting
topological phases metaplectic-Majorana TQFTs.

A collection of N quasiparticles of type X at fixed
positions has an ny-dimensional degenerate state space in the
SO(m), TQFT with ny ~ m"/2. Braiding these quasiparticles
generates unitary transformations in U(ny). These unitary
transformations form a finite group, as in the case of Ising
anyons, but unlike Fibonacci anyons. Therefore it is not
possible to make a universal quantum computer purely by
braiding X particles. We show that braiding can be efficiently
simulated by a classical computer by showing that braiding
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operations satisfy a generalization of the Gottesman-Knill
theorem.>>3® Indeed, the link invariants computed by these
particles in a braiding process is known to be classically
computable in polynomial time. However, the Y; particles—
which one might naively expect to be trivial since they have
integer quantum dimensions—compute a link invariant (the
Kauffman polynomial®’ at special points), that is, # P-hard.?
Therefore braiding Y; particles cannot be efficiently simulated
classically. This does not mean that we can solve #P-hard
problems since that would entail measuring the amplitude for
a process with arbitrary accuracy. Indeed, as we show, the most
straightforward approach to encoding quantum information
in Y; particles leads to a computational model that can be
efficiently simulated classically, and the image of the braid
group of Y; particles is finite. Nevertheless, the #P hardness
of braiding Y; particles hints that metaplectic anyons and
metaplectic-Majorana anyons may have computational power
beyond a classical computer, in spite of the fact that they
cannot serve as a universal quantum compute. In this respect,
they may be similar to the linear optics model of Ref. 39.

We will argue that our topological phase of metaplectic
anyons is closely related to a set of recently proposed
two-dimensional*’ and quasi-one-dimensional systems.*'~#*
In these systems, there are defects with interesting topological
properties. In Ref. 40, they are dislocations in a fractional
quantum Hall state in a Chern number 2 band. In Refs. 4143,
the defects live at the edge of a fractional topological insulator
or the edge between two v = 1/m quantum Hall states that
are oppositely spin polarized. There are two types of gapped
edges, and a defect lives at the pointlike boundary between
the two types of gapped edges, generalizing the m = 1 case,
in which they are Majorana zero modes. A form of braiding
can be defined for the defects in these models. We show that
this braiding operation is projectively equal to that of o - X
quasiparticles in the metaplectic-Majorana TQFT. However,
there are important differences between metaplectic-Majorana
anyons and the defects in these models, as we will discuss.

We also note that related topological phases have been
constructed in Refs. 45-47. These topological phases have
similar anyons with similar quantum dimensions and topolog-
ical spins, but it is not clear what the precise relation is to our
phases.

II. SLAVE PARTICLE FORMULATIONS

In this section, we give two slave particle descriptions of
electronic systems in the topological phases that we discuss in
the remainder of this paper. The first is a “parton” model*® in
which the electron operator is rewritten in terms of partons,
each of which condenses in a simpler topological phase. The
second is a non-Abelian analog of the flux attachment opera-
tion that transforms electrons into “composite bosons™3%3! or
“composite fermions.”3>34

For later convenience, we fix the notation for the SO(m) rep-
resentations. We will often write m in the formm = 2r + 1. We
use the standard notation that A;,A,, ...,A, are the fundamen-
tal weights of SO(m). The representations with highest weight
AlsA2,A3, ..., Ar—1,2A, correspond to the representations of
SO(m) on, respectively, vectors; two-index antisymmetric
tensors; three-index antisymmetric tensors; . . .; (r — 1)-index
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antisymmetric tensors; and r-index antisymmetric tensors
(with all indices running from 1 to m). The representation with
highest weight 2, is the representation of SO(m) on two-index
symmetric traceless tensors. The representation with highest
weight A, is the spinor representation of SO(m).

We first consider the following representation of the
electron annihilation operator:

We(x) = f(x) Capxa®)X5(x). (1)

Here, f, Xolz’ and x§ are fermionsand o, B = 1,2,...,2". Cypis
the intertwiner between two copies of the spinor representation
of SO(m) and the trivial representation. This expression for the
electron is highly redundant, as is reflected in its U (1) x O(m)
gauge symmetry. The U(1) gauge transformation is

fO) = ), xit(x) = € xi2 ), )
while the O(m) gauge transformation is
X (X)) = Ou(x) x5 (x). 3)

We now suppose that the fermions f condense in a p +ip
superconducting state, while the fermions x_* are in gapped
insulating states in which they fill a band with Chern number
equal to 1. Integrating out the fermions x>, we generate
a Chern-Simons term at level 2 for the SO(m) gauge field.
(Note that we could, alternatively, consider a representation of
the electron operator in which X; = th but these fermions
are in a gapped insulating state in which they fill a band
with Chern number equal to 2.) Meanwhile, the excitations
of a p + ip superconductor (coupled to a2 4+ 1D U(1) gauge
field, which eliminates the Goldstone boson by the Anderson-
Higgs mechanism) are those of the Ising TQFT. Naively, the
excitations of this phase are simply those of SO(m), (which
we will discuss in detail in the next section) tensored with
those of the Ising TQFT. However, a vortex in the p +ip
superconductor of f pairs will be accompanied with one-half
of a flux quantum in the Chern insulating states of x.-2. This
flux will produce a Xal*z quasiparticle, carrying the spinor
representation of SO(m). Thus a ¢ quasiparticle in the Ising
sector of the theory is accompanied by a quasiparticle in the
spinor representation of SO(m).

We now consider a (related and, possibly, dual) slave
fermion description of an electron system in which we write
the electron annihilation operator as

W (x) = f(x) za(x), )

where f is a neutral, spinless fermion, z,, is a charge-e, spin-
1/2 boson, and @ = 1, .

We now rewrite the fields z, in terms of auxiliary fields
in a non-Abelian analog of the flux attachment operation that
transforms electrons into composite bosons*>*! or composite
fermions.*>~** This is simply a rewriting of the model, and the
original and rewritten models would have the same solution if
we could solve them exactly. However, this rewriting suggests
an approximation that we might not otherwise consider.

We replace the fields z, by auxiliary bosons Z, coupled
to two SO(m), Chern-Simons gauge fields, a', a®. The fields
Z, are m x m matrices that transform under (m) x SO(m) as
Zy — 0,Z40) and Z, — 0] Z, 0y, i.e., they transform in
the fundamental representation of both SO(m)s. An SO(m),

165421-2



METAPLECTIC ANYONS, MAJORANA ZERO MODES, AND ...

Chern-Simons gauge field would make Z, into a fermion.
Therefore two such gauge fields leave Z, a boson. In terms of
these fields, the Lagrangian then takes the form

1
L=2Z(id—a}—ad)Zy + Emao —al —a?)z,|
1
+ 2] (id0 — a) +a3)Z, + E’(iao —a} +a))z,|
1
+ £ 8 —ao) f + 5= 1@+ o) [
mf

+ V(Zar [ f ) + Les(ar) + Les(ar). Q)

The relations between the original fields z, and the new fields
Z, are

24 (x) = Pe 2 Z, (x)yPel Jx ©
2,(x) = Pel v 7, (x)Pel 5,

where P denotes path ordering. We now assume that Z;
condenses, thereby breaking SO(m) x SO(m) to the diagonal
SO(m). The Meissner effect due to Z forces a}i = ai, which
we now write simply as a,,. The two Chern-Simons terms then
add, and a,, has level 2.

We are now left with Z;, coupled to an SO(m), Chern-
Simons gauge field. Decomposing Z; into irreducible rep-
resentations of SO(m), we have fields carrying the trivial
representation, and the representations with highest weights
Ay and 2X;. Since my [SO(m) x SO(m)/SO(m)] = Z,, there
are also topological defects in the Z| condensate. By forming
combinations of the irreps in Z; and the topological defects in
Z,, we have particles carrying all of the allowed representa-
tions of SO(m),, namely, representations with highest weights
0,A1, 2, - o, 0, 200,00 + A, 241 We will call the SO(m),
TQFT the metaplectic TOFT for a reason to be explained
when we discuss quasiparticle braiding.

The fermions f are assumed to condense ina p + ip paired
state. Therefore there are, in addition to the particles listed
above, vortices o and fermions 1. This breaks the U(1) gauge
symmetry f — €'’ f,z — e~z down to a Z, symmetry.
Consequently, o particles, which are vortices in the (ff)
condensate are accompanied by Z, flux, which also inserts
a topological defect in the Z| condensate. As we will discuss
in the next section, this means that only certain combinations
of the particles in the Ising TQFT and the particles in the
metaplectic TQFT are allowed. We dub this combination the
metaplectic-Majorana TQFT.

We do not have a microscopic physical model for
metaplectic-Majorana anyons. They are related to the models
of Refs. 40—44 but are not precisely the same, as we explain
in Sec. IX. In addition, metaplectic anyons may be realized in
the v = 8/3 fractional quantum Hall state® if it is related to
SU(2)4 = SO(3),.

III. PARTICLE TYPES, TOPOLOGICAL SPINS, AND
FUSION RULES

We introduce the following notation for these quasipar-
ticles. The particles carrying SO(m) representations A, and
A1+ A, will be called X and X’. The particles car-
rying representations Aj,A;,...,A._1,2X, will be called
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Y1.Y2,...,Y,_1,Y,. Finally, the particle carrying 2A; will be
called Z. The particle carrying the trivial representation of
SO(m) is equivalent to the vacuum from a topological point
of view. We note that the special case m = 3 is equivalent
t10 Sl3] (2)4, and the X,Y;,X’,Z particles correspond to spins
5,1,5,2.

? lele topological properties of the metaplectic TQFT are as
follows.”*! The topological spins 6, = e>™"« of these par-
ticles are given by h; = 0,h; = 1,hx = §,hy = "4 hy, =
% Their fusion rules are

X-X=1+) Y., X-X'=Z+) 1,
; i

X-z=X, Z-Yi=Y;,
X-Yi=X+X, Z-2=1, ™
Yi - Y; = Yioji + YminG+jm—i—jy for i#j,

Yi - Y =1+ Z + Yiin@i,m—2i)-

For the m = 3 case, there is a single ¥;, which we will simply
call Y =Y, and the last of these fusion rules is modified to
Y -Y =1+ Z + Y. We obtain the dimensions of multiparticle
Hilbert spaces from these fusion rules. If we denote the Hilbert
space of n particles of type X with total charge Q by H,? x> then

dim(Hy,y) = 300" £ 1), dim(H,, ) =m""",

oy 1 ®
dim (75,1 x) = 30m" £ 1).

Combining the Ising (see, e.g., Refs. 7 and 11) and
metaplectic TQFTs, we naively have the particle types
{I,0,¥} x {I,X,X',Y;,Z}. However, some of these are not
local with respect to the electron operator Wy = ¥ - Z. The
topologically distinct ones that are local with respect to
the electron are 1,0 X,y,Y;,Z.°® These 4 + r particle types
determine, for instance, the ground state degeneracy of the
metaplectic-Majorana TQFT on the torus. However, it is worth
noting that this is actually a Z,-graded TQFT, and one should
also consider as distinct the particle types that differ from these
4 + r particle types by a single electron: v Z,0 X', Z,¢Y;.

Turning now to the particles allowed in the full metaplectic-
Majorana TQFT, we have

n—1
dim(P5,7)y) = 2" (—’" = 1) ,
dim(Hy, ) = @m)""", )
dim(H3,57%) = 2" 2(m" £ 1),

IV. F AND R MATRICES

We can determine the braiding properties of these particles
using their F and R matrices. There are many nontrivial F
matrices for SO(m),, which can be obtained by solving the
pentagon identity. Some, which we will use below, are’>

(1 4)

-50 1)

XYY X'YY
FXIIZFX’II_

_g|_
[\]

XY, _ pX'ny
Fiin = FX
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(L V2
Fyyl,YlY, =3 J2 0 -2 1. (10)
1 V2 1

The Ff** matrixisan (r 4+ 1) x (r 4+ 1) matrix. Form = 3,5,
it is given by, respectively,®

FXXX _ 1 V3o Ve
X ~ 3 V6 -3/’
| V5 V10 V10
X =—— V10 —16+v5) 5-v5 |. an

VIO 365 -V5)

Similarly, the R matrices can be obtained by solving the
hexagon identity. Some of the nontrivial ones, which we will
use below, are

—35+5)

) . . LR
RXX = j0=ir=j+D=j g=miCi+ gfz),
J

V1Y j
Rll 1 em(m+1)/m ,

Rlel :eJTi/m’ (12)

Yy i(m— . 4 .
R = im0 RXZ i RX7 = i,

Y

With these F' and R matrices, we can compute how the states
in the multi-quasi-particle Hilbert spaces of dimensions (8)
transform under braiding.

V. N-PARTICLE BRAID GROUP REPRESENTATIONS

We now consider a situation in which we have n particles
of type X in the SO(m), TQFT. Braiding these particles leads
to a representation py of the n-particle braid group B,. We
now describe this representation and its image. Let px(o;) be
the representative of the braid group generator o; (a counter-
clockwise exchange of particles i and i 4+ 1) acting on the
n-particle Hilbert space. From the R matrices, we see that the
eigenvalue equation for px(o;) is

r
1—[ [px(o;) — i=D=i+D=] e—m‘(g+$>] —0 (13
j=0
or, equivalently,
,
[][i"px(e) —i™ o] =0, (14)
j=0
where @ = e?*i/™,

Consequently, we can represent the braid group in the
following way. We define the extra special group Hn,F,)
(sometimes called the Heisenberg group) generated by

Z,U1,U, ..., Uy, satisfying the relations
u' =1, 2" =1, wui = zuip1u;,
(15)
win; =uju;, li—jl>1,

u;z = 7U;.

This is a group of order m"*!, which is discussed further
in Appendix. We introduce this group because, given a
representation of H(n,F,,) by operators #; acting on a vector
space, we can define a representation px of the braid group
B,,, as we we will see below and will discuss in further detail
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in Appendix. We construct a representation of H(n,FF,,) of
the requisite dimension as follows. Suppose, for the sake of
concreteness, that n is even and that we are interested in
H!. Then, we can define ‘H! = span(|k; k2, ...,k /2)) with
k; € FF,,, and define the action of H(n,F,,) on H, by

foi1lki, .. kap) = 0™ ki, . k),
iolki, .. .kn/2> =lki,....ki — Lkis +1.. .,k,,/z),
2lki, ki k) = @Rl k). (16)

We could have represented Z by any mth root of unity, but we
have chosen w2 for later convenience.

With this representation of H(n,F,,) in hand, we define a
representation py of the braid group B, according to

m—1
1 s —(retr N
px(0;) = ok DN Wl a (17)
=0

Direct computation shows that px(o;) obeys the Yang-Baxter
equation. Moreover, the states ) wkluf ) are eigenvectors of
the braid generator (17) with the same eigenvalues as Eq. (14)
by virtue of the quadratic Gauss sum, ¢+7 Yol wit = ok,
The eigenvalues and dimensions determine the characters of
the representation which, in turn, determine the representation.
Therefore, we conclude that (17) is the representation (14) for
n X particles. This representation of the braid group is called
the Gaussian representation.>

We note in passing that there is another possible braid group
representation on this Hilbert space, the Potts representation,>
in which p(o;) = (t+ DL Y Ju/ —1and 2+t +17' =
m. The Potts and Gaussian representations coincide for m =
3, but differ for m > 5, where the Potts representation is
not relevant to SO(m), since the eigenvalues of the braid
group generators are different. Note that the m = 3 Potts
representation is not related to the critical point of the
ferromagnetic 3-state Potts model, which is the theory of Z3
parafermions; it is, instead, related to the critical point of the
antiferromagnetic 3-state Potts model.”*

The image of the braid group in the Gaussian representation
can be understood as follows (see Appendix and Refs. 50
and 53 for further details). From Eqgs. (15) and (17), we see
that

[px (@i i px(0i1) = @ uipu;,

[ox(oi—D]" u; px(oi—1) = wu; " u;,
[ox (o) u; px (o) = u;,
[ox (o) u; px(o;) = u;,

(18)
li—jl> 1.

Therefore braiding transforms any u; into a product of us,
up to factors of w. If we mod out by the factors of w, then
we have H(n — 1,m)/Z[H(n — 1,m)], the extra special group
modulo its center. Braiding transformations are, therefore,
automorphisms of H(n — 1,m)/Z[H(n — 1,m)]. Hence the
image of the braid group is a subgroup of the group of auto-
morphisms of H(n — 1,IF,,,)/Z[H(n — 1,m)]. As we discuss
in Appendix, this is equal to the metaplectic representation™
of Sp(n — 1,F,,) for n odd and Sp(n — 2,F,,) x H(n — 2,m)
for n even. For this reason, we call X particles metaplectic
anyons and we call SO(m), the metaplectic TQFT.
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The group Sp(n — 2,F,,) x H(n — 2,m) is a natural gener-
alization of the Clifford group. Recall that the Pauli group is
composed of products of £ Pauli matrices for n/2 spins; in our
notation, it is equal to H (n,2). The group of automorphisms of
the Pauli group that are trivial on its center is the Clifford group,
and it is equal to Sp(n,IF;) x P,>. In other words, braiding
metaplectic anyons generates a subgroup of the analog of the
Clifford group for qudits, with Fy, — [F,,,.

Turning now to the full metaplectic-Majorana TQFT, we
combine Eq. (17) with the braid group representation for Ising

anyons: 2

1
i 2 1 P2 1 2

—T (242 Kk j

Pox(oi) =€ 5 i T E e E o’ ul,

where v} = 1, v;v;41 = =410, v;v; = vjv; for |i — j| > 1.

VI. QUANTUM INFORMATION PROCESSING WITH THE
METAPLECTIC-MAJORANA TQFT

We will consider three different encodings of quantum
information into the many-particle states of the metaplectic-
Majorana TQFT. For reasons that will become clear, we call
them the “qudit,” “qubit,” and “qutrit” encodings.

Consider the state space of 4 o X particles with total
topological charge Y;. It can be depicted graphically as
follows:

cX oX oX oX

P I I N Y
ay  ag

The first two particles fuse to a;, which can be
LY, ...Y. Y, ¢Y,...,vY,. In all of these cases, a = o X
is possible. However, if a; =Y, ...Y,.,¥Y;, ..., ¥Y,, then
a, = o X'isalso possible. Therefore there are 2(r + 1) 4+ 2r =
2m such states. We will take a basis |j,ny) with 0 < j <m
and ny = 0,1 for this 2m-state qudit. |j,0) corresponds,
for 0 < j <r, to the state with a; =Y;, ap =0X (with
the notation Yy = 1) and, for r < j < m — 1, to the state
with a; =Y,_j, ar = o X'. Meanwhile, |j,1) corresponds,
for 0 < j < r, to the state with a; = ¢Y;, a, =0 X (with
the notation Yy = I) and, forr < j < m — 1, to the state with
a) = IﬂYm_j, a) = oX'.

For such a qudit, there are two generators of the unitary
transformations that can be performed by braiding. The first is
a counterclockwise exchange of the two o X particles on the
left. This implements the following gate which is diagonal in
the basis

ploD)ljny) =e 5+

el | jiny). (20)
The second is a counter-clockwise exchange of the middle two
o X particles. This can be obtained by using the F matrix to
transform into a basis in which these two particles have a fixed
fusion channel, applying the R matrix, and transforming back,

i.e., from F~' RF. For the sake of concreteness, let us consider
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the case m = 3. Then p(02)|j,ny) = Mk Ly, |k,n},), where

420 L0-w) 0
*(Ti(l—w) %(2+a)) 01
0 0 w

Le%l—i
L2 \=i 1)

In a similar manner, we obtain the gate associated with a coun-
terclockwise exchange of the last two o X particles for m =

2

3, which takes the form p(o3) \j,nw) = Mjke_%e%i"ﬁf [k,ny)
with

w 0 0

0 (I4+w)/2 (—-w)/2
0 1I-w/2 (+w)/2

M= (22)

For multiple qudits, we can employ either a dense or sparse
encoding. A dense encoding using 2k o X particles can be
represented by

cX X oX oX cX oX

o N N N VR B B

Such an encoding uses 2k o X particles for k — 1 qudits. How-
ever, an exchange of neighboring particles will necessarily
involve neighboring qudits. Consequently, simple single-qudit
gates are complicated in terms of braids and errors in one
qudit tend to infect others. We can, alternatively, use a sparse
encoding, such as

oX oX oX 0X oX 0X oX oX

gL T

Y, I v

X oX oX oX

L]

In such an encoding, 4k o X particles are used for k qudits.
There are k sets of 4 o X particles. Each set of four has total
topological charge Y;. These sets of four are paired so that
each pair of sets (i.e., a group of eight o X particles) has total
topological charge 1.

An alternative encoding scheme, which we call the qubit
encoding, uses a o X particle and (n + 1) Y; particles (or any
other Y;) to encode n qubits. It is depicted as follows:

Y1 Y1 Yl Yl Yl Yl

ox— L 1 1 | ,x

ai a2 as a4 Gn—-1 0An

where a; = 0 X or o X’. In order to express the gate that results
when particles i and i 4 1 are exchanged, it is useful to define
Hi=X;ifm=3and H; = Z;_1X;Z;+1 if m > 5 (note that
X, Z; are the usual Pauli matrices here because we have qubits
rather than qudits). We label the qubits by i = 1, ... ,n, and we
define Zy = Z,4+1 = +1. In addition, we define NOT; © = |
if Zi_1Zl~+1 =1 and N()TTJr = Xi if Zi_1Zl~+1 =—1. Then,
a counterclockwise exchange of particles i and i + 1 results in
a gate that can be written in the following form:

py,(07) = e NOT; (23)
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Finally, we introduce one more encoding: the qutrit
representation. (Qutrits are obtained for any m. Note
that the qudit representation introduced earlier is never a
qutrit representation since the dimension 2m is always even.)
A qutrit is encoded in four Y| particles with total charge I:

i ¥ " N

P N N B
a

From the fusion rules (7), we see that the charge a = 1,Y,,Z
(except in the case m = 3, where a = 1,Y,Z). Braiding the
first two particles enacts the transformation

1 0 O
py (o)) =—"""10 @ 0 [, (24)
0 0 -1
while braiding the second two enacts
2o 22 2w
=22 0 242 (25)
-2 2V2 2w

VII. CLASSICAL SIMULATION OF BRAIDING IN THE
METAPLECTIC-MAJORANA TQFT

Regardless of the encoding, universal quantum computation
is not possible purely through braiding because the braid
group representation (17) for n X particles is contained within
Sp(n — 1,F,,) for n odd and Sp(n — 2,F,) x H(n —2,F,,)
for n even. As we discuss in greater detail in Appendix,

1Sp@n.F,)| = m" [ Jm* — 1), (26)

i=1

while |H(n,m)| = m"*!, so the braid group has a finite
image under the Gaussian representation. Therefore it is not
possible to approximate an arbitrary unitary transformation to
any desired accuracy. In fact, braiding o X particles can be
efficiently simulated by a classical computer.

Since it is known that braiding in the Ising TQFT can be
efficiently simulated classically, we focus on the braiding of
metaplectic anyons. Recall that braiding metaplectic anyons
transforms products of u;s into products of u;s, as we
noted in Sec. V. As a result, the evolution of eigenstates
of such products can be efficiently simulated classically by
following the evolution of these operators. In order to see
this in greater detail, it is convenient to embed H(n — 2,F,,)
inside H(2n,F,,) as follows. Let X1, ...,X,,Z1,...,Z,,® be
a set of generators of H(2n,IF,,), as described in Appendix
[see, especially, Eq. (A3)]. Then U; = X;X;11Z; ZLI faith-
fully represents the extra special group (15). Consequently,
ox(07) = ﬁ ZT:_()] @/’ U/ represents the braid group. We

1
can prepare states that are eigenstates of U; by creating pairs
out of the vacuum. Such states are stabilized by products of
X; and Z; operators since U; can be expressed as such a
product. To see how any state stabilized by products of X;

and Z; operators transforms under braiding, we can follow
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the evolution of the operators X;, Z;. It is sufficient to
consider the case of two qudits. We would like to see how
X1,X5,2,Z, (and, therefore, the group that they generate)
evolve under the action of R. First, note that we can replace
the set X1,X,,Z,,Z, by the set Z;,X,X,,Z,Z}, X, Z,, which
generates the same group. The latter three commute with
U and, therefore, with R. Therefore we need only study
how Z; evolves. Using U/ Z; = v/ Z U/, we see by direct
computation that pX(cn)le;(al) = w ¥ Z,U*, where k =
(m + 1)/2. Therefore the evolution of Z; can be efficiently
simulated classically and, as a consequence, so can the
evolution of any state stabilized by products of X; and Z;
operators. Thus we conclude that we can efficiently simulate
classically any operation that consists of creating pairs of X
particles out of the vacuum, braiding them, and then measuring
them a basis of products of X; and Z; operators (e.g., the Us;
basis).

Of course, as noted above, H(2n,[F,) is much too
large. It associates an m-state qudit to each X particle
while, in the dense encoding, there should be a qudit
associated to each pair of X particles. Therefore, braiding
should commute trivially with roughly half of the gen-
erators of H(2n,FF,). This is, indeed, the case, as may
be seen by considering the following set of generators of
HCn,F,): Uy, ...Uy1,04, ... U1, X1Z1,Xu Z},0, where
U; = X;X;41Z;1 Zi11. The generators U;s, X,Z;, and X, Z}
all commute with the U;s and, therefore, with braiding.

Braiding is not universal in the qubit representations, either.
We now show that the group generated by the py, (o;) operators
acting on the qubit representation is finite, and we give an
efficient classical way to store an arbitrary element of this
group and to efficiently compute products of elements of this
group with braid generators (the method we describe will only
store an element up to an overall phase). For all m (including
both m = 3 and m > 3), a direct computation gives

(NOT;" "' H;,NOT;"* = H,,
(NOT; ") H;{ \NOT; " = H;Hy,,, 27
(NOT; )'H, \NOT;"* = H, | H,,

so conjugating a product of the H; by a unitary NOT;’Jr
gives some, possibly different, product of the H;. The group

generated by the operators e ™ is an Abelian group, which
we call G. Since e?™H = 1, we can write an arbitrary element
of the group as ¢! X% where the k; are integers ranging
from 0,...,2m — 1, so the group is a subgroup of Zj, .
However, since e i = —1, there are only 2 - m" distinct group
elements which can be written as (&1) - e’ YikiiHi  where
the k; are integers ranging from O, ...,m — 1. This group
is in fact Z), x Z,, and the generators of the group can be
taken to be —e'n and —1. The group generated by the
operators NOTf’+ is a subgroup of the Clifford group; call
this group H. Then, because conjugation by NOT; "+ defines
an automorphism of G, the group generated by ¢’ » i NOT; *
is the semidirect product G x H. This gives us an efficient way
to store elements of the group by storing a list of integers k;
and also storing an element of the Clifford group. We specify
an element U of the Clifford group by specifying UX; U
and UZ;U" for all i. These products UX;U' and UZ;U' are
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products of Pauli matrices and so can be stored efficiently
(we are essentially using the Gottesman-Knill theorem here).
Storing these products fully specifies UOU' for any operator
O and so specifies U up to a phase. To take a product of two
elements of the group, say the first being represented by a
product AU and the second by a product A’U’ where A, A’
are in the Abelian group and U,U’ are in the Clifford group,
we write AUA'U’ = A(UA'UNUU’. We then compute UA'U
using our known values of UX;U tand UZ;UT and the result
will be some other element of the Abelian group, all it A”.
Then the desired product is AA”UU’, and the product of the
first two is in the Abelian group and the product of the second
two is in the Clifford group.

It should not be surprising that the group image is finite.
The Y; particles can be obtained by fusing a pair of X
particles. Thus the fusion tree in Sec. VI that defined the qubit
representation can be written as a tree with 2(n +1)+2 X
particles, with 2(n 4 1) of the X particles fusing in pairs to
make (n + 1) Y; particles. Braiding two Y; particles can be
done by braiding two pairs of X particles. Since the image
for braiding X particles is finite, it is no surprise that the
image for braiding Y particles is also finite. However, it is still
important to check, as we have done, that we can efficiently
store elements of this group; after all, the tree that we have
written here with 2(n 4+ 1) 4+ 2 X particles is related by some
sequence of F' moves to the previous tree in terms of X particles
and it is not immediately obvious that all these F' moves can
be computed efficiently.

Note that braiding with Y; particles is not fully subsumed
by braiding with X particles even though a Y| particle can
result from fusing two X particles. The reason is that the state
in which two pairs of X particles fuse to Y;, and the two
resulting Y; particles fuse to the identity is a state that cannot
be represented in terms of available stabilizers X;, Z;.

VIII. COMPUTATIONAL COMPLEXITY OF LINK
INVARIANTS

In the previous section, we have seen that braiding is
not universal for quantum computation in any representation.
Moreover, braiding in the qudit and qubit representations
can be efficiently simulated classically. However, this theory
displays a surprise when we turn to the computation of link
invariants. Thus far, the most-studied examples of TQFTs, for
which braiding is universal for quantum computing, have been
precisely those for which an evaluation of the link invariants is
#P-hard. However, there seems to be no deep reason why this
should be true generally, and indeed, the present theory is not
universal for quantum computing (through braiding alone), but
it does have a link invariant that is #P-hard to compute. Said
differently, there are experiments whose results are #P-hard
to predict, i.e., cannot be predicted with a classical computer
(unless the hierarchy of complexity classes collapses), even
though braiding alone is not sufficient for universal quantum
computation.

We give a more precise definition of this link invariant
elsewhere.®® Here we will give its physical motivation. We
imagine creating a collection of pairs of Y; particles out
of the vacuum. We braid them with each other and then
fuse them again in pairs. There will be some amplitude
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E(L) for all of these fusion processes to give the vacuum,
i.e., to be annihilation processes. (When two Y| particles
are fused, the result could be the vacuum I, but it could,
instead, be Z or Y, except in the m = 3 case, in which
there is no Y, particle and it could, instead, be Y;.) Here,
L is the link formed by the spacetime trajectories of the Y
particles. The amplitude E(L) is our “link invariant.” We use
quotation marks because this amplitude is not necessarily a
topological invariant unless further conditions are satisfied.
However, if the interaction between the Y| particles decays
exponentially (or faster), then, in the limit that the particles
stay far apart while braiding, this amplitude will depend only
on the topological class of the Y; trajectories. When the
particles are being pair-created and annihilated, the amplitude
will acquire a nontopological, nonuniversal phase. However,
this can be made to cancel between creation and annihilation.
Alternatively, if two different braiding processes are interfered,
then this nontopological phase will cancel. See, for instance,
Refs. 11 and 57 for a discussion of interference measurements
for link invariants.

The starting point for the #P hardness of E(L) is a result
of Lickorish and Millett.”® They show that the link invariant
E(L) can be written as

E(L)=) a*$t 9, (28)
ScL
where
a = —iexp(—im/m). 29)

Here, the sum is over links S which are a sublink of link L. A
link may be made of more than one disconnected component,
where each component of the link is some knot; we use c¢(L)
to write the number of components of L. A sublink § contains
some subset of the components, so there is a total of 2
terms in the sum, with each factor of 2 coming from the
choice of whether a given component is in a sublink or not.
We can specify a sublink S by a vector s with entries s; for
i=1,...,c(L), such that s; = +1 if the ith component is in
S and s; = —1 otherwise. The invariant (S,L — §) is defined
to be the sum of (i, j) over pairs i € S and j € L — S, where
(i, j) is the linking number between the ith sublink and the jth
sublink.”®

Equation (28) looks very much like the partition function
of an Ising model at an imaginary temperature. The sum over
sublinks corresponds to a sum over the “Ising spin” degrees
of freedom s;, while the term a~*5:L=5) 1ooks like a complex
Boltzmann weight. To see this, write

—4(S,L = 8) ==Y (1 +s)1 —s)(i.))
i#]
= =2 (I —sis;)(i.j)- (30)
i<j
Consequently Eq. (28) is equal to
E(L) = a 2Xi<;(]) Z a2 i< sisitiJ) 3D

se{—1,1}0)

So, up to the prefactor in front, the resulting link invariant is
the partition function of an Ising spin system with Boltzmann
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weights

exp | BY (i.)sis; | (32)

i<j

where B = —2mi/m + mi.

Note that the temperature is purely imaginary. The quantity
(i, j) plays the role of a matrix of coupling constants; note that
these linking numbers (i, j) can be taken to have any integer
values. In particular, the Ising model need not be planar, and
any choice of (7, j) can be realized by some link L in which
the number of crossings is at most polynomial in ) ; [{(i, j)|.

We will now show that there is a class of links for which
we can relate this Ising model with complex Boltzmann
weights to more familiar models with real or even real and
positive Boltzmann weights. We then argue that computing
the resulting partition function is #P-hard. (While we cannot
relate E(L) for an arbitrary link to an Ising model with real
Boltzmann weights, it is sufficient to do so for the class of links
discussed below. We can then conclude that if we can compute
E(L) for an arbitrary link, then we can solve any problem in
#P.)

To obtain an Ising model with real or even real and
positive Boltzmann weights, we use the following trick. We
consider links L constructed as follows. We begin with a
link L’ with ¢(L’) = N unlinked components, i.e., for any
i,je{l,2,...,N}, (i,j) = 0. We then add components N +
I,N +2,...,c(L) to form the link L. They are chosen so that
ifi,j e {1,2,...,N}, then (i,k) = (j,k) (if k € {1,2,...,N},
then both sides of the equality are zero, but if k € {N +
1,N +2,...,c(L)}, then they might be nonzero). We now
evaluate the link invariant E(L) in two steps. First, we sum
over the choices of s, for k=N +1,...,c(L) to define
an “effective Boltzmann weight” for the first N Ising spin
variables. Summing over component k generates an effective
interaction between i and j if (i,k) = (j,k) # 0. The effective
Boltzmann weight will be real and E(L) is equal to the sum
over the 2" choices of the first N spin variables using the
effective Boltzmann weigh

Consider a pair i,j with 1 <i < j < N. We now add a
componentk € {N + 1,N + 2, ...},suchthat (i,k) = (j,k) =
d for some d and such that (k,l) = O for / different from i or
j. Then, summing over s; = £1 will produce an effective
interaction between s; and s;. Summing over s; = %1 gives a

weight
Z a2s;sk (k) +2s;56(j.k) — Z aZd(s,- +57)8k
scel—1,1) seel—1,1)

= WYV, (33)

where
a—* +a4d
S 34
y > 34
and
7 =2(a"* + a*). (35)

and any ambiguity in the sign of the square root is resolved by
choosing /y/z = a=* +a**.
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Ignoring the overall factor ,/z, the effective weight is
(/)% . By adding additional components k, k" of the link
and summing over sp,s;, and so on, we can replace this
weight with any power, so that the effective weight for the
first N variables can be chosen to be (again up to an overall
factor)

l_[ (Jy)isidii, (36)

I<i<j<N

for any matrix J;; with non-negative integer entries (in fact, itis
also possible to obtain negative entries by a slightly different
trick but we will not need that here). The size of the link
needed to produce this effective weight is at most polynomial
in)_, i il

The quantities y are real. However, depending upon m
and d, they may be positive or negative. In fact, for any
odd m > 1, we can choose —1 < y < 0 by an appropriate
choice of d, and for odd m > 3 we can instead choose
0 < y < 1 by an appropriate choice of d. One way to obtain
positive weights for m = 3 is to pick the entries of J;; to be
even integers. In this way, we succeed in constructing a link
invariant that equals, up to multiplication by a trivial overall
constant, the partition function of an Ising model at real,
positive temperature with antiferromagnetic couplings. By
taking these couplings large, we can ensure that ground states
provide the dominant contribution to the partition function,
that is, the partition function is equal to Nyexp(—BEj) plus
a small correction [small compared to exp(—pBEy)], where
B is now real and positive and where E, is the ground
state energy and N is the number of ground states. Making
the correction small compared to exp(—pEy) requires only
polynomially large coupling constants (we are choosing the
coupling constants large enough that energy outweighs entropy
and so the sum of the weights of all the higher energy states is
small compared to the weight of a single ground state). Then,
an evaluation of the partition function lets one determine both
the ground-state energy and also the number of ground states.
Counting the number of ground states is equivalent to finding
the number of maximum cuts in a graph, which is a #P-hard
problem.”! Indeed, the definition of #P is that it is the problem
of counting the number of solutions to a decision problem
in NP.

This approach shows that evaluation of the link invariant
to exponential accuracy is #P-hard. In fact, it is possible
also to consider the case with negative and real Boltzmann
weights (the case y < 0 but J;; has odd entries). Then, even
the evaluation of the sign of the partition function is #P-hard,
as follows from a result of Goldberg and Jerrum.>® The sign of
the partition function is equal to the phase of the link invariant
multiplied by some overall phase, which can be computed
trivially.

Similar behavior is seen in the theory of Ref. 60, which also
has a finite braid group image but # P-complete link invariants.
It would be interesting to see if our theory follows the pattern
of their theory, where different approximations to the link
invariant are in P, or are SBP-hard, or are # P-hard, depending
upon the accuracy of the approximation. It would be interesting
to see if their theory, like ours, is classically simulable for
certain measurements.
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IX. RELATION TO FRACTIONAL QUANTUM HALL
DEVICES

In Refs. 41-43 (see also Ref. 44), a model was presented in
which the interface between fractional quantum Hall states was
divided into 2N intervals, with the ith interval lying between
points x;_; and x; and xo = x,y. The evenintervals (x3;_1,x2;)
are brought into contact with s-wave superconductors, while
the odd intervals (x2;,x2;41) are brought into contact with
ferromagnets. The points x; are viewed as particles. They
“fuse” to the 2m possible allowed total spins (modulo 1) on the
even intervals or 2m possible allowed charges (modulo 2e) on
the odd intervals. They can be ‘braided’*!*> by a measurement-
only process.®’®? The resulting unitary transformation for
braiding two neighboring defects at x, x is*!**?
irg?/2m

Ukk+1 =€ 37

where g = 0,1, ...,2m — 1 are the possible charges/spins on
the interval between the two defects. If we write ¢ = mq; +
2jm,where gy = 0,1 and j,; =0,1,...,m —1, then*?
inmg; a)j/%f

Urkr1=e (38)

where @ = ¢?*/™_ The first factor is the braiding trans-
formation for Ising anyons if m =1 (mod 4) and for the
opposite-chirality version of Ising anyons if m =3 (mod 4).
The second factor can be rewritten using the Gauss quadratic
sum as

(39)

which is the same, up to a phase, as Eq. (17) [see also Eq. (24)
of Ref. 42].

Thus these physical models give a very natural interpre-
tation to the elements of the extra special group H(2n —
1,F,): these are the operators that rotate the phase of the
superconducting order parameter or the ferromagnetic spin by
4. Their eigenvalues are just the allowed charges/spins on
gapped intervals modulo charge 2e or spin-1.

However, it is also important to note the differences
between the metaplectic-Majorana TQFT and the models of
Refs. 41-44. The latter models are gapless since they have
the Goldstone boson associated with superconductivity (which
is not given a gap by the coupling to a 3D electromagnetic
field). Therefore these models are, at best, in quasitopological
phases®® and are related to the metaplectic TQFT in the same
way that chiral p-wave superconductors are related to Ising
anyons: they have some but not all of the properties of a
true topological phase. Furthermore, we note that the models
of Refs. 41-44 do not appear to have a Z particle. They
have 2n-particle Hilbert spaces of dimension (2m)"~!. This
is the same as the direct sum H3, & H5,, which suggests
that these models do not distinguish between the Z particle
and the vacuum. Moreover, the Y; particles are non-Abelian
in the metaplectic-Majorana TQFT, but the charges/spins
are Abelian anyons in the models of Refs. 41-44. In the
metaplectic-Majorana TQFT, when a Y; particle is taken
around a Y particle, a phase e*™/k/™ results, depending on
whether they fuse to Y|j_g or Ymini+j,m—i—j)- Each of these
possibilities occurs twice (for each pair) if we allow the total
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charge to be I or Z. In the models of Refs. 41-44, however, the
phase ¢/7/*/™ results when a charge j is taken around charge
k or m — j is taken around m — k while e ™/*/™ results when
a charge j is taken around charge m — k or m — j is taken
around k. In our model, we can only determine the phase
resulting from a braid by performing a measurement of the
total topological charge of the two particles. In the models of
Refs. 41-44, however, we can determine the phase resulting
from a braid by simultaneously measuring the charges of the
two intervals.

A possible path to understanding the relation between the
metaplectic-Majorana TQFT and the models of Refs. 41-44
is through Slingerland and Bais®® analysis of SU(2)4, which
is equivalent to SO(3),. They show that the condensation of
the spin-2 particle (the Z particle), causes the confinement of
the spin-1/2 and 3/2 particles (the X and X’ particles). The Y;
particle splits into 2 particles which, together with 7, form a Z3
multiplet. A version of this scenario should occur for general
SO(m),, and may be related to the models of Refs. 41-44: the
charges/spins on intervals are the Abelian quasiparticles of the
theory, which are the only “true” quasiparticles in the theory
since they are not confined, while X particles are confined
but, if the energy required to pull them apart is supplied, then
a projective remnant of their non-Abelian braiding properties
survives. The dislocations of Ref. 40 and 64 may have a similar
relation to the X particles of the metaplectic TQFT.

X. DISCUSSION

It was recently realized that the transformations associated
with Ising anyons could also be realized in three spatial
dimensions.®>%®  Although there is no braiding in three
dimensions, extended objects, which could be viewed as
particles connected to ribbons, would have the topology of
their configuration space governed by an enhancement of the
permutation group, E (Z%”*1 X S»,) [here, the E(---) denotes
the restriction to elements whose combined parity is even].
The Z, factors keep track of the twisting of the ribbons,
modulo a 47 twist, which can be undone. Solitons supporting
Majorana zero modes realize a projective representation of
this group, which has image H(n — 2,IF;) % S,,. Thus the
non-Abelian statistics of Ising anyons can be understood as
simply permutations together with 27 ribbon twists of pairs
of particles. Two such twists anticommute if they share a
particle (but not both). The non-Abelian statistics of X particles
in SO(m), is a generalization of this to fractional twists:
H(n — 2,F,) is replaced by H(n — 2,F,,) so that the (purely
fictitious) ribbons connecting particles can be twisted up to
m — 1 times.

Although the resulting unitary transformations are richer
than those of Ising anyons, this TQFT is still incapable of
performing universal quantum computation through braiding
alone. The braid group has an image which is finite. However,
a certain link invariant associated with the amplitude for
creating pairs of Y, particles, braiding them, and annihilating
them in pairs is # P-hard to compute. This suggests that there
may be greater computational power lurking just beneath
the surface of this theory and, perhaps, that it becomes
apparent when braiding is supplemented by measurement at
intermediate steps of a computation. Specific protocols by
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which universal quantum computation could be achieved with
metaplectic anyons (with or without Majorana zero modes)
are an interesting open problem.
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APPENDIX: Sp(2n,F,,) AND THE BRAID GROUP
OF METAPLECTIC ANYONS

In this Appendix, we will discuss in greater detail the
image of the representation of the braid group associated
with X particles. We begin with a 2n-dimensional vector
space V5, over I, (with m assumed to be prime) equipped
with a nondegenerate symplectic form [,]. We can take as
a basis of this vector space v; = (0,...,0,1,0...,0), which
has zero for every entry except for the ith, which is 1. We
will take the symplectic form to be [v;,v;] = £8;+1, ;. The
group of linear transformations that preserve the symplectic
form [,] is the symplectic group Sp(2n,F,,). This is a finite
group whose order can be determined as follows. We want
all ways of choosing vy, ...,vy, so that [v;,v;] = £8+1 ;.
There are m*" vectors in V,, since it is composed of all
linear combinations of vy, ...,vs, with coefficients in [F,,.
Therefore there are m*" — 1 ways to choose v; # 0. There
is a (2n — 1)-dimensional space of vectors v with [v},v] = 0.
Therefore there are m>* —m?>"~! choices of vector v, with
[v1,v2] # 0. Since the possible nonzero values of [vy,v;] are
1,2,...,m —1, there are (m* —m*~Y/(m —1) = m>~!
choices of v, with [vf,v;] = 1. Continuing in this way, we
find that there are

ﬁ(mZi _ 1)m2"’1 — mnz ﬁ(mZI 1)
i=1 i=1

elements of the group Sp(2n,F,,).

Now consider V,, as an additive group. Consider a
central extension G: 1 - F,, - G — V,, — 1. Since V,,
is Abelian, the commutator map G x G — G given by
(g1,82) — 818281 'g>»~! takes values in the center F,, and
is unaffected by multiplication by the center, so it defines
a map V, x Vo, — F,,. In the case of the specific central
extension that is usually called the “extra special group” or
“Heisenberg group,” which we denote by H(2n,[F,,), this map
is just the symplectic form [,]. The elements of H(2n,I,,) can
be written in the form (v,k), where v € V,, and k € IF,,,. The
multiplication rule is (vi,k;) - (vi,k1) = (v1 + v2,k; + ko +
[vi,v2]). For the basis taken above with [v;,v;] = £6;+ ;,
if write u; = (v;,0) and z = (0,1), then we have the defining
relations introduced in Sec. V:

(AD)

u' =1, 2" =1, wuip1 = zuiqu;, (A2)

u,-ujzujui, |l—J|>1,

u;7 = 2u;.
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If we, instead, take a basis f; of V,, with [fo_1, f2;] = &;;
and [fz,'_1,f2j_|] = [fz,‘,fzj] = 0, then we have a different
generating set for H(2n,F,,): X; = (f2i-1,0), Z; = (f2,0),
z = (0,1) satisfying

XiX; = X, X,
Xiz =2zX;,

Z.Z; =77,
ZiZ:ZZi-

X:Zj =7 Z;X;, (A3)

These two presentations of H(2n,F,,) are related by uy;—; =
X,‘, Ur = Z"ZIT-H for i ;é n and Uny, = Zn.

The symplectic group Sp(2n,F,,) of V,, acts on H(2n,F,,)
in the natural way. These are automorphisms that act triv-
ially on the center Z[H(2n,F,)] of H(2n,IF,). In addi-
tion, the inner automorphisms—conjugation by elements of
H(@2n,F,,)—are also trivial on Z[H(2n,F,,)]. In fact, the
group of automorphisms of H(2n,F,) that are trivial on
Z[H(2n,F,,)] is given by Sp(2n,F,,) X Vy,. (V,,, rather than
H(n,F,), is the second factor in this semidirect product
because Z[H(2n,F,,)] acts trivially on H(2n,F,,) by con-
jugation, so only H(2n,F,,)/Z[H(2n,F,)] = V,, appears).
The group Sp(2n,F,,) x H(2n,F,) is, therefore, an exten-
sion of the group of automorphisms of H(2n,F,) that are
trivial on Z[H(2n,F,,)]; the group has been extended by
Z[H(2n,Fy)].

This is a useful extension to consider because, given an
irreducible representation M of H(2n,F,,), there is a unique
induced representation X of Sp(2n,F,,) x H(2n,F,,) whose
restriction to H(2n,IF,,) is M, as shown in Ref. 55 and as we
discuss in the next paragraph. Moreover, given a representation
Mk) = o of Z[H(2n,F,,)], there is a unique induced repre-
sentation M of H(2n,IF,,) whose restriction to its center is A(k).
Here, w is an mth root of unity. Let M, = M(v,0) for (v,0) €
H(Q2n,F,). Then, the induced representation of H(2n,F,)
must satisty M, M, = A([u,v])M,+,. Consequently, My =1,
My M, = oM, M,, MyM, = M, M, for|i —j| > 1.

This representation of H(2n,IF,,) induces a representa-
tion of Sp(2n,F,) x H(?2n,F,) as follows. Consider the
action of g € Sp(2n,IF,,) on h € H(2n,IF,,) by conjugation
inside Sp(2n,F,,) x H2n,F,,): h — ghg~'. Since H(2n,F,,)
is a normal subgroup of Sp(2n,F,) x H(2n,F,,), ghg‘l €
H(Q2n,F,). Therefore, for each g € Sp(2n,F,,) there is a
representation of H(2n,F,,) given by h — M,,,-1. But since
there is a unique representation, there must be a unitary
transformation X (g) such that Myp,-1 = X(g)MhX(g)’l. This
defines X(g) up to a scalar. In fact, X(g) is not quite a linear
representation of Sp(2n,F,,). It is a projective representation
or, equivalently, it is a linear representation of the double
cover of Sp(2n,F,), namely the metaplectic group. This
representation can be given explicitly in terms of the M,
according to the relation

X@) = > a(g)M,, (A4)

veVi(g)

where Vi(g) =im(l — g). It may further be shown that
ay(g) = M[u,gw)]) ao(g), where v = u — g(u) € Vi(g).

We now consider the following map> from By, | —
Sp(2n,IF,,). To the generator o; of Bj,.1, we associate the
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Sp(2n,IF,,) transformation &; that acts on V,, according to

6i(Vix1) = Vix1 F v;, (A5)

li—jl>1.

6i(vi) = v;,
6i(vj) = v;,
It may be directly checked that this transformation preserves
the symplectic form [,] and that 6; satisfy the defining relations

of the braid group. Then, from Eq. (A4), there is a braid group
representation

X()= Y ayo)M,.
veVi(o;)
From Eq. (AS5), we see that V| (0;) = {kv; |k € F,,}. Hence, for
g = o0;, we have v = kv; € Vi(o;) and u = kv;;1 such that
v =u — g(u). Consequently, a,(6;) = A([u,6;(w)]) ag(6;) =
M[kviy1, — kviDao(o;) = a)kzao(o,-). Therefore

(A6)

m—1 m—1
X)) =N oMy, =NY oM. (A7)
k=0 k=0

where A is a normalization constant. We see that this is
the same as the braid group representation in Eq. (17) that
determines the braiding of 2n 4 1 X particles. Therefore the
image of the braid group representation of 2n + 1 X particles
is equal to the metaplectic representation of Sp(2n,F,,).

The technical reason why the case of 2n + 1 particles is
simple is that the braid group Bj,+; has an even number
of generators oy, ...,09, (since o; exchanges particles i
and i + 1). For an even number of generators, there is a
natural mapping to Sp(2n,F,,) since the latter is defined on
a symplectic vector space, which must be even dimensional.
For an even number 2n of particles, the braid group By,
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has an odd number of generators. In order to construct the
corresponding symplectic group, we begin with the symplectic
vector space V,, over F,, and pick a vector e; € V5,. Then we
consider the group G of linear transformations that preserve
the symplectic structure [,] on V,, and leave e; invariant.
The vector space orthogonal to e; is (2n — 1)-dimensional,
so G is the odd-dimensional analog of a symplectic group
and is sometimes called an odd symplectic group.®’ Clearly,
Sp(2n — 2,IF,,) C G.Therestof G is given by transformations
of the following form. Let ep, be the vector that satisfies
[e1,e2,] = 1. Then, for any v € span(ey, . ..,ez,—1) and k €
F,,, the symplectic form [,] and e; are left invariant by the
transformations e, — €5, + v + ke; and ¢; — ¢; + [v,e;]e;
fori = 2,3,...,2n — 1. These transformations, parametrized
by (v,k) form the group H(2n — 2,m), as discussed above.
They can be written explicitly in matrix form as

€, T T ()
e " 1 a, bnfl ¢ e "
2n—1 2n—1
0 In—l 0 bn—l
—
0 0 Infl ap—1
€2 €2
e 0 0 0 1 e

(A8)

where a,,_1,b,_; are (n — 1)-component column vectors over
F,,c € Fy, I,—1 is the (n — 1) x (n — 1) identity matrix, and
the basis e;,e3, ... e, is chosen so that [¢;,es,11_;] = 1 for
i <nand[e;,e;] =0forj # 2n + 1 —i. Thisis precisely the
group H(2n — 2,m) in its representation as upper triangular
matrices. Then, following the steps given above for an odd
number of particles, we obtain a mapping B, — Sp(2n —
2,F,) x H2n — 2,m).
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