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We propose a new single-step scheme for the generation of a Greenberger-Horne-Zeilinger (GHZ) entangled
state of three single-electron excitations (flying qubits). We also present a method to get a generalized GHZ
state. Our idea relies upon the most recent progress in the field of on-demand electron sources and mesoscopic
Mach-Zehnder interferometry. We also provide the recipe for the unambiguous detection of this GHZ state via
correlation measurements at the output, which imply the violation of a Bell-type inequality which is generalized
to the case of three particles. We explain how such measurements can be achieved in the context of Mach-Zehnder
interferometry and draw an actual prototype device which could be achieved with point contacts and metallic
gates placed on a GaAs sample, in the integer quantum Hall effect regime.
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I. INTRODUCTION

Quantum entanglement, first noted by Einstein-Podolsky-
Rosen (EPR)1 and Schrödinger,2 is a genuine property of
quantum mechanics. Qualitative embodiment of this prop-
erty was given by Bell,3 who showed that entangled states
have stronger correlations than allowed by local hidden
variable theories (LHVTs). Later Clauser and coworkers4

suggested a more transparent inequality (B-CHSH), the
violation of which was experimentally demonstrated for
photons.5

During the last decade, several works have been achieved
in the context of mesoscopic physics to explore two-particle
entanglement. The initial proposals used superconducting
sources of electrons connected to two normal metal leads,
through which the two constituent electrons originating from
a Cooper pair were split to form a singlet state outside the
superconductor.6,7 Other proposals for two-electron entangle-
ment were subsequently made using ballistic electrons and
point contacts placed in the integer quantum Hall effect (IQHE)
regime.8,9 Bell inequality tests based on stationary current
noise cross correlations revealed that a maximal violation
could be achieved.8–13

In the context of quantum optics, Greenberger, Horne,
and Zeilinger introduced a maximally entangled tripartite
state, commonly called the GHZ state.14 The Bell parameter
in the tripartite case can take values up to 4, while the
corresponding parameter in the bipartite case is no more
than 2

√
2.15 For both cases the LHVT limit remains 2. In

this sense the entanglement is considered to be “stronger”
than for the two-particle state, and it is thus potentially
easier for experimental detection. Reference 14 pointed out
that the measurement results for this state are in conflict
with local realism when quantum mechanics makes definite
(nonstatistical) predictions, in contrast with EPR states. The
GHZ state has a number of potential applications in quantum
information. It can be used for quantum error correction,16 and
it was proved that tripartite states have advantages compared

to bipartite ones in quantum teleportation17 and in dense
coding.18 There are two established methods to produce
entangled states of electrons. The first method exploits the
indistinguishability of fermions and relies on postselection
to get the desired entangled state19 (see also Ref. 20 for a
discussion of the role of projection in this case). The second
way is to use the interaction between particles (application
of this method with flying electronic qubits is described in
Refs. 21–23). The latter has the advantage that the evolution
during the preparation of the state is unitary and thus can be
deterministic, with up to 100% efficiency for producing the
desired state.

While various ways exist to create and manipulate en-
tangled states of qubits in optical systems5,24,25 and NMR
(nuclear magnetic resonance) experiments,26 in mesoscopic
systems the generation of an experimentally determined
entangled state of few electrons and the subsequent proof
that Bell inequalities have successfully violated both rep-
resent a considerable challenge. A proposal which follows
faithfully the quantum optics experimental protocol19 uses
edge states in the IQHE and achieves the GHZ state using
postselection.

The purpose of the present work is to go beyond this existing
protocol and thus to explore three-particle orbital entanglement
with ballistic electrons propagating in mesoscopic devices
using the interaction between electrons. This proposal is
motivated by the recent progress in achieving single-electron
sources27 and for building effective electron Mach-Zehnder
interferometers (MZIs).28

The outline of the paper is as follows. In Sec. II, we describe
the three-MZI setup and specify how the beam splitters (BSs)
and Coulomb interaction operate. In Sec. III we justify that a
GHZ state is produced at the outcome. In Sec. IV we describe
the Bell inequality test, which is used to show that maximal
entanglement is achieved. In Sec. V we implement this test
for our three- MZI device. In Sec. VI we show a possible
realization of our setup in the IQHE regime. We conclude in
Sec. VII.

165417-11098-0121/2013/87(16)/165417(13) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.165417


VYSHNEVYY, LESOVIK, JONCKHEERE, AND MARTIN PHYSICAL REVIEW B 87, 165417 (2013)

π π
lv 1

lv 2

lv 2’

lv 3
L R L R L R

FIG. 1. (Color online) Proposed setup for the creation of an
electronic GHZ state. Three MZIs interferometers (solid lines),
coupled by Coulomb interactions (π boxes). Three electrons are
injected simultaneously into the three MZIs and propagate from
the bottom to the top. The crossing of the lines indicates a beam
splitter (BS), where an electron can exit in one of the two output
branches. The dotted lines for each MZI show a third BS, used to
explainthe detection process theoretically. Dashed horizontal lines
specify different levels of the setup, which are used in the theoretical
explanations.

II. DESCRIPTION OF THE SETUP

A schematic of the device is depicted in Fig. 1. It consists
of three MZIs, which are placed side by side (shown by
solid lines in Fig. 1). Each MZI consists of two incoming
channels, which meet at the first BS. The two outgoing
channels from this BS propagate and meet at the second
BS. The theoretical setup also has a second loop (shown
by dotted lines in Fig. 1), with propagation from the output
channels of the second BS, and recombination at a third
BS. We use this second loop to explain theoretically the
detection of the GHZ states, and we show in Sec. V that
it is possible in practice to get rid of this second loop and
perform the GHZ-state production and detection with a single
loop.

We distinguish the right (R) and left (L) sides of
each interferometer and label single-electron-wave func-
tions accordingly. For instance, at any stage of the
wave-packet evolution, ψjC denotes an electron wave
packet on the C side (C = R,L) of the j th MZI
(j = 1,2,3).

The most likely candidates for electron channels are edge
states in the IQHE regime, which have the advantage that they
are immune to backscattering effects by impurities and have a
long phase breaking time. Several experiments involving MZIs
in the IQHE have already been performed,28 some of them
involving setups with two MZIs. A proposal for a detailed
setup is given in Sec. VI. We assume that a single-electron
wave packet is emitted in each MZI above the Fermi sea.
Such single-electron emission was recently demonstrated
experimentally with an on-demand single-electron source27,29

which uses the mesoscopic capacitor as the injector. The
BSs are assumed to be reflectionless, i.e., incident particles
cannot be backscattered in the same channel; they can only
be transmitted farther “up” (in Fig. 1). The BS can be

tLL

tRL tLR

tRR

FIG. 2. (Color online) Reflectionless beam splitter with transition
amplitudes.

parametrized by a transfer matrix,

T =
(

tRR tLR

tRL tLL

)
=

(
i sin θ cos θ

cos θ i sin θ

)
, (1)

which relates incoming states to outgoing states; θ is the
transparency parameter (see Fig. 2). For example, if θ = 0 the
BS is transparent, meaning that the incident particle goes from
R to L and from L to R without scattering, while for θ = π/4
the incident particle may appear in each of the output channels
with equal probability, 1/2. There exists an additional freedom
in choosing the phases of scattering matrix elements but it
does not affect the results in a crucial manner (see Appendix B
for details). Here we specify the bottom BSs to have equal
probability, 1/2, for transmission in the R and L side channels
(θ = π/4). The transfer matrix is then simply

T =
(

i/
√

2 1/
√

2

1/
√

2 i/
√

2

)
. (2)

This choice of the bottom BSs as well as the π phase
shift in the Coulomb interaction is analogous to that in
studies21–23 of two MZIs. In each of them a maximally
entangled bipartite state was achieved when the first row of
BSs was half-reflecting.

The main steps in the production of the GHZ state are
as follows. The first stage is the synchronized injection of
electrons (filled circles with arrows at the bottom in Fig. 1),
which then pass through the first BS of each of the three MZIs.
Beyond the first BS, free propagation occurs for electrons
wave packets, until they reach the “interaction region”: the
L channel of the first MZ and the R channel of the second
MZ and, separately, the L channel of the second MZ and
the R channel of the third MZI are put in close proximity
so that Coulomb interaction effects between the two pairs of
neighboring channels become important. The effective length
of this interaction region is such that it generates an overall
π phase shift of the two-particle wave functions associated
with the two neighboring channels. It may be unclear why
Coulomb interaction would produce a phase shift because the
Coulomb interaction involves an energy exchange process.
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FIG. 3. Illustration of the analogy between an MZI and a spin
counter: one MZI coupled to a lead via Coulomb interaction (see text
for details).

This matter and conditions required for the phase shift to be
produced are discussed in Appendix E. After the interaction
region the three electrons propagate freely towards the second
BS, but we allow the insertion of a phase difference � in
each MZ loop. The phase differences which are needed here
could be achieved via the Aharonov-Bohm (AB) effect or
via a scalar potential. Actually, AB and Coulomb interaction
phase accumulation occur together but logically the process
can be decoupled into a sequence of independent processes.
From this point of view the AB phase effectively changes the
transfer matrix of the following BS (see Appendix B), which
is convenient for further calculations. The final stage in our
setup is the measurement of the state of the three particles in
the output arms (top of Fig. 1).

To understand the role of the interaction regions, let us
consider first a given MZI with an electron injected into the
right lead (see Fig. 3). The electron in this interferometer can
be treated as a “flying qubit,” i.e., a two-state system, where
states are specified by the side chosen in the interferometer,
where the electron travels. The initial state therefore is ψR .
After the bottom BS, at level “lv1” (see Fig. 3), the state of the
electron is

� = 1√
2

(iψR + ψL). (3)

Next, we add a wire coupled to the interferometer with
an electron injected simultaneously. So the initial state is
ψ1Rψ2. When two electrons pass the interaction zone they
accumulate mutual phase π . After interaction the two-particle
state remains separable, and each particle has a wave function.
If the interaction occurs, we get at level “lv2” for the left
electron:

ψπ = 1√
2

(−iψ1R + ψ1L). (4)

If we do not inject an electron into the right lead, then at level
lv2 we have, for the left electron,

ψ0 = 1√
2

(iψ1R + ψ1L). (5)

These two outcomes are orthogonal to each other,
〈ψ0|ψπ 〉 = 0, thus we can distinguish cases when zero or one
electron travels in the neighboring lead. Moreover, the relation

FIG. 4. (Color online) The three-MZI setup (up to lv2) repre-
sented in terms of spin counters: because of the interaction regions,
the left and right MZIs in Fig. 1 act like spin counters (large arrows
here) coupled to the left and right wires of the middle MZI.

〈ψ0|ψπ 〉 = 0 is universal in the sense that it is preserved when
we change the lead where electrons are injected into the MZI
or when we place the wire to the left of the MZI (as long
as the bottom BS remains half-reflecting). We may put in
correspondence with the wave function ψ0 a qubit state |⇑〉,
and with ψπ a state |⇓〉. This makes our three-MZI setup
very similar to the situation displayed in Fig. 4. There we
have a spin-based electron counter with spin flipping after one
electron passes through a wire (as described in Ref. 30). This
analogy between the MZI and the spin-based counter described
here is helpful for understanding the nature of the GHZ state
in the proposed setup (Fig. 1).

Up to level lv2 in Fig. 1, the evolution can be represented in
terms of spin counters (Fig. 4). After passing through the BS
the electron state in the middle MZI is ψ = 1√

2
(ψR + iψL).

Depending on the arm from which the electron came, the
corresponding spin flips. This produces the final state,

� = 1√
2

(|⇑〉ψR|⇓〉 + i|⇓〉ψL|⇑〉), (6)

which is obviously a GHZ-type state.

III. GHZ-STATE PRODUCTION

A. Standard GHZ-state production

We give here a detailed explanation of the GHZ-state
production. We find an exact expression for the electron state at
level lv2 in Fig. 1, and we identify the local unitary transform,
making it a standard GHZ state. “Local” means that the
unitary transform is a direct product of three unitary operators
each acting over a Hilbert space of a corresponding electron,
U = U1 ⊗ U2 ⊗ U3.

Specifically the initial three-particle state is chosen to be
(see bottom of Fig. 1):

ψ = ψ1Rψ2Lψ3L. (7)

Note that we choose a simple product state, instead of choosing
a Slater determinant of the three single-particle wave functions.
This is due to the fact that the electron wave functions do not
have mutual parts of trajectories, so that exchange effects do
not play any considerable role.

At level lv1, after passing the first row of BSs,

� = 1

23/2
(ψ1L + iψ1R)(ψ2R + iψ2L)(ψ3R + iψ3L). (8)
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In order to determine the state after the Coulomb interaction
has acted, we rewrite the previous equation as

� = 1

2
√

2
(ψ1L + iψ1R)ψ2R(ψ3R + iψ3L)

+ 1

2
√

2
(ψ1L + iψ1R)iψ2L(ψ3R + iψ3L). (9)

The state after interaction (at lv2),

� = 1

2
√

2
(ψ1L + iψ1R)ψ2R(ψ3R − iψ3L)

+ 1

2
√

2
(ψ1L − iψ1R)iψ2L(ψ3R + iψ3L), (10)

or, in a more symmetrical way,

� = 1

2
√

2
(ψ1L + iψ1R)(−i)ψ2R(iψ3R + ψ3L)

+ 1

2
√

2
(iψ1L + ψ1R)ψ2L(ψ3R + iψ3L). (11)

Now it is easy to see the unitary transformation which produces
the canonical GHZ state,

�GHZ = 1√
2

(ψ1Rψ2Rψ3R + ψ1Lψ2Lψ3L), (12)

from Eq. (11). It should transform 1√
2
(ψ1L + iψ1R) into ψ1R ,

i√
2
(ψ1L − iψ1R) into ψ1L, −iψ2R into ψ2R , ψ2L into ψ2L,

1√
2
(ψ3R − iψ3L) into ψ3R , and 1√

2
(ψ3R + iψ3L) into ψ3L. This

transform is

U = U1 ⊗ U2 ⊗ U3, (13)

where

U1 = U3 = 1√
2

(−i 1

1 −i

)
, U2 =

(
i 0

0 1

)
. (14)

So, at level lv2 of our setup (Fig. 1) we have the GHZ
state up to a change of basis achieved by the transform,
Eq. (14). This transform could be performed by the second
BS row between level lv2 and level lv2′. As one may notice,
transformation U2 does not correspond to any θ parameter
in the formula for the transfer matrix of BS, (1). We may
avoid this problem by choosing θ = π

2 and shifting the AB
phase in the next MZ loop by π

2 . In reality we do not need
this action because we intend to use the “condensed” scheme,
where preparation and measurement are performed with one
row of the BSs (see Sec. V B).

It is interesting to note that, from the quantum computation
point of view, we have an algorithm implemented on three
flying qubits which is essentially similar to the coding scheme
depicted in Fig.10.2. of Nielsen-Chuang.16

B. Generalized GHZ-state production

In this work we stay focused on the creation of a GHZ state
in its original form, |�〉 = 1√

2
(|↑↑↑〉 + |↓↓↓〉). However, in

some cases it might be useful to obtain a more general GHZ-
type state such as |�〉 = a|↑↑↑〉 + b|↓↓↓〉 with arbitrary a

and b. Such a generalized state could be useful, e.g., for
quantum error correction.16 In our setup it is possible to get

such a GHZ-type state by a slight modification of the method
presented above. We simply need to replace the half-reflecting
BS in the second MZI with another one. As we pointed out
earlier in the general case the transfer matrix of the BS can be
represented as follows:

T =
(

i sin θ cos θ

cos θ i sin θ

)
. (15)

With this BS in the second MZI the electronic wave function
is

ψ = cos θ |⇑〉ψR|⇓〉 + i sin θ |⇓〉ψL|⇑〉), (16)

which is a generalized GHZ state in a “rotated” basis. Using
the same unitary transformation U = U1 ⊗ U2 ⊗ U3, where
Ui are defined in Eq. (14), produces the generalized GHZ state
in its canonical form.

IV. BELL-TYPE INEQUALITY FOR THREE PARTICLES

To detect the GHZ state experimentally we suggest using a
Bell-type inequality violation test for three particles.31 Let us
discuss some basic facts about Bell-type inequalities for three
particles, which constitute one of the possible generalizations
of the Bell inequality in a tripartite case.

We start from an algebraic inequality,

|B| = |x ′
1x2x3 + x1x

′
2x3 + x1x2x

′
3 − x ′

1x
′
2x

′
3| � 2, (17)

which is satisfied when x1, x2, x3, x ′
1, x ′

2, and x ′
3 are real

variables with absolute values �1 (this is a three-particle gen-
eralization of the algebraic inequality used for Bell inequality
tests on two particles).

Consider a three-particle entangled state, written in pseu-
dospin notation (R =↑, L =↓; each particle can be detected
in one of two leads, L and R). The projection of the pseudospin
of j on some vector aj corresponds to xj , while the projection
on a′

j corresponds to x ′
j . From the point of view of LHVTs,

after the creation of the three-particle state, between the two
measurements the first electron has projections σa1 and σa′

1
;

the second one, σa2 and σa′
2
; and the third one, σa3 and σa′

3

(σa1 = 1 if the spin is parallel to a1, and σa1 = −1 if it has the
opposite direction). Different outcomes of measurements are
due to a hidden variable ξ which varies from measurement to
measurement. We have identified the real numbers x1, x ′

1, x2,
x ′

2, x3, x ′
3 with σa1 (ξ ), σa′

1
(ξ ), σa2 (ξ ), σa′

2
(ξ ), σa3 (ξ ), σa′

3
(ξ ). The

average value of B is then given by

B̄ =
∫ (

σa′
1
σa2σa3 + σa1σa′

2
σa3 + σa1σa2σa′

3
− σa′

1
σa′

2
σa′

3

)
× ρ(ξ )dξ, (18)

where ρ(ξ ) is the distribution function of the hidden variable.
Experimentally this value can be measured by the following
procedure. Let us define the correlator,

E(a1a2a3) = 〈
σa1σa2σa3

〉 ≡
∫

σa1σa2σa3ρ(ξ )dξ. (19)

Then

B̄ = E(a′
1,a2,a3) + E(a1,a′

2,a3) + E(a1,a2,a′
3)

−E(a′
1,a

′
2,a

′
3), (20)
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and from Eq. (17) the local hidden variable average is such
that

B̄ � 2. (21)

From a quantum mechanical point of view, the correlator of
Eq. (19) is an average over the state of an operator describing
the measurement of three spins in specific directions,

E(a1,a2,a3) = 〈
σ̂a1 ⊗ σ̂a2 ⊗ σ̂a3

〉
, (22)

and

B̄ = 〈B̂〉, (23)

where the analog of the “Bell operator” for three particles reads

B̂ = σ̂a′
1
⊗ σ̂a2 ⊗ σ̂a3 + σ̂a1 ⊗ σ̂a′

2
⊗ σ̂a3

+ σ̂a1 ⊗ σ̂a2 ⊗ σ̂a′
3
− σ̂a′

1
⊗ σ̂a′

2
⊗ σ̂a′

3
. (24)

In Appendix A we recall under which conditions this Bell
operator gives a maximal violation of the Bell-type inequality.
The demonstration is based on the fact that, first, in order for
B̂2 to have an eigenvalue equal to 16, the state must be a linear
superposition of |↑↑↑〉 and |↓↓↓〉. Second, the Bell operator
B̂ has eigenvalues ±4 only if the state is related to the GHZ
state,

� ≡ 1√
2

(|↑↑↑〉 + |↓↓↓〉) , (25)

by local unitary transformations. Finally, in Appendix A, we
specify which angles of spin measurement give the maximal
value for B̄. The resulting angles are

a1 =

⎛
⎜⎝

cos φa1

sin φa1

0

⎞
⎟⎠, a′

1 =

⎛
⎜⎝

cos
(
φa1 ± π/2

)
sin

(
φa1 ± π/2

)
0

⎞
⎟⎠,

a2 =

⎛
⎜⎝

cos φa2

sin φa2

0

⎞
⎟⎠, a′

2 =

⎛
⎜⎝

cos
(
φa2 ± π/2

)
sin

(
φa2 ± π/2

)
0

⎞
⎟⎠, (26)

a3 =

⎛
⎜⎝

cos φa3

sin φa3

0

⎞
⎟⎠, a′

3 =

⎛
⎜⎝

cos
(
φa3 ± π/2

)
sin

(
φa3 ± π/2

)
0

⎞
⎟⎠,

where φa1 + φa2 + φa3 = ∓π/2 (different signs identify two
classes of angles corresponding to the upper and lower signs
in the formulas). The origin of these classes lies in the
symmetry of the GHZ state with respect to reflection in
the x-y plane. These angles will further be transformed into
the corresponding BS parameters, θ and �.

V. DETECTION SCHEME

A. Detailed detection scheme

We are now in a position to describe all the steps for
production and detection, which are achieved in a rather
complicated three-MZI setup, with each MZI containing
double loops (Fig. 1). The incoming state of Eq. (7) is injected
into the first BS and becomes that of Eq. (8) at level lv1. The
π shift is applied to neighboring channels and it results in
the rotated GHZ state of Eq. (11) at level lv2. The true GHZ
state of Eq. (12) is achieved at level lv2′ by passing through

the second BS row (with phase shift). The next MZI loop is
associated with the Bell measurement process.

To produce the Bell measurement correlator we need three
values, x1, x2, and x3, corresponding to separate measurements
with results within the band [−1; 1]. In the spin case, the spin
projection measurements serve this purpose. In our setup we
can detect a particle in the left or in the right arm. So one of
the possible assignments is x = −1 for a particle detected in
the left arm and x = 1 for a particle detected in the right arm.
Then the Bell correlator is the average of the product x1x2x3,
which, by definition, is

E = 〈x1x2x3〉 = 1 ∗ P1 + (−1) ∗ P−1, (27)

where P1 is the probability for x1x2x3 to be equal to 1, and P−1

to −1, correspondingly. x1x2x3 = 1 in four cases. The first is
x1 = 1, x2 = 1, x3 = 1, which corresponds to the case where
the three electrons were observed in the right arms. We define
the probability of this event as PRRR . The other three possible
cases have corresponding probabilities PLLR , PLRL, PLLR . So

P1 = PRRR + PLLR + PLRL + PRLL. (28)

Analogously,

P−1 = PLLL + PRRL + PRLR + PLRR. (29)

Finally,

E = 〈x1x2x3〉 = PRRR + PRLL + PLRL + PLLR

−PLLL − PLRR − PRLR − PRRL. (30)

This correlator measured on level “lv3” of the setup in Fig. 1
corresponds to the 〈σ̂z ⊗ σ̂z ⊗ σ̂z〉 correlator of the pseudospin.

1. Measurement of pseudospin in arbitrary directions

As we have seen in Sec. III, in order to make Bell
measurements we should be able to measure pseudospin
projections in arbitrary directions, say, n. Nevertheless, it
cannot be achieved directly because we can only measure
the presence of the particles in the right or the left lead
(“spin up-spin down”). Instead one can do an equivalent
measurement which gives the same expectation values. One
should transform the state in such a way that the direction n
of the pseudospin converts to z and then perform the standard
measure procedure, Eq. (30). This is done by the upper BSs,
and we obtain 〈σ̂n1 ⊗ σ̂n2 ⊗ σ̂n3〉 for the state on level lv2′. The
relation between rotation parameters and BS characteristics
is described in Appendix B. For each Bell correlator the
parameters of this loop are different. As soon as we have
defined the correlators E(a′

1,a2,a3), E(a1,a′
2,a3), E(a1,a2,a′

3),
and E(a′

1,a
′
2,a

′
3) we are ready to calculate the value of the Bell

observable,

B = E(a′
1,a2,a3) + E(a1,a′

2,a3) + E(a1,a2,a′
3)

−E(a′
1,a

′
2,a

′
3), (31)

which is the result of the experiment.
Granted, the fact that we have to include an additional

loop in each MZI is quite cumbersome and renders the
implementation of our setup with mesoscopic devices more
difficult. In the next section we show that it is possible to
perform the same task without the additional loop.
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B. Condensed detection scheme

Here, we insist that the use of an additional loop in each MZ
can be circumvented, provided that we exploit the composition
of two BS in series. We call the setup where the additional loop
has been removed the “condensed detection scheme.” Consider
one of three interferometers (Fig. 1). After level lv2 it has two
BSs, each performing its own unitary transformation. Let the
transformation matrices of the BS located between level lv2
and level lv2′ and the BS between lv2′ and lv3 be U and
V , correspondingly. Then the total transformation UV is also
unitary. The idea is to perform this total transformation with
a single BS and, thus, to keep the setup as simple as possible
(i.e., remove the dotted-line part of Fig. 1).

To be precise, note that a single BS cannot reproduce fully
all unitary transformations, and there is the possibility that the
transform UV cannot be reproduced in full generality with a
single BS. But it can be shown that, from the point of view
of measurement, it is always possible with a single BS to
perform a transformation which gives the same measure as the
total transformation UV . We leave the details of the proof of
this statement to the appendixes (in particular, Appendix D).

It is interesting to note that in the condensed detection setup,
there exists a measurement scheme where the desired violation
B = 4 is achieved using only changes of the phase difference
�i , i = 1,2,3 of the MZI loops, while the transparencies of
the BS remain constant:

θ1 = π/8, θ ′
1 = π/8, �1 = −π/2, �′

1 = π/2,

θ2 = π/4, θ ′
2 = π/4, �2 = π, �′

2 = π/2, (32)

θ3 = π/8, θ ′
3 = π/8, �3 = −π/2, �′

3 = π/2.

Here we stress that the � phases presented in the last formula
are “effective,” meaning that they depend on the practical
implementation of the BSs [values in the formula are for T

given by Eq. (1)]. In Appendix B we show how to adjust
the phases in the case of real experiments. This constitutes
the justification for removing the additional loop in each
MZ. The whole set of measurement schemes with B = 4 is
presented in Appendix D.

VI. SETUP IN THE IQHE

While the setups which we have presented and discussed
in this work were schematic, we think that a practical
implementation is within reach with current experimental
techniques. Using edge states in the IQHE regime, one can
obtain chiral channels where backscattering is impossible.
BSs can be obtained using quantum point contact. Several
experiments realizing one or two electronic MZIs have already
been achieved.28

The actual geometry for a working device, reproducing the
setup in Fig. 1, is shown in Fig. 5. This figure represents a
three-dimensional potential landscape. Lines going near the
potential walls represent chiral edge eigenstates in the IQHE.
Dotted lines represent unoccupied edge states. The Fermi sea
is expelled from the setup region to prevent screening effects
and parasitic entanglement. The edge states meet at quantum
point contacts, whose transparency can be controlled by gate
voltages. Each MZI has two electronic sources (labeled Si and
S ′

i , i = 1,2,3, in Fig. 5) and two drains collecting the electronic

S1

S1‘D1‘

D1

S2

S2‘D2‘

D2

S3

S3‘D3‘

D3

FIG. 5. (Color online) Geometry of the setup in the IQHE regime.
Sj and S ′

j (j = 1,2,3) are electron sources and Dj and D′
j are

drains. Guiding centers of electron edge states meet at quantum point
contacts, whose transparency can be controlled with gate voltages.
The rounded rectangles indicate the interaction regions between
neighboring MZIs. Space available for the Fermi sea is within the
hatched regions.

current(Di and D′
i). Note that by changing the gate voltages,

it is possible to modulate the length of the different paths and,
thus, to control the AB phase acquired by the electrons during
propagation. The two rounded rectangles in the pictures show
the interaction regions, where two branches of two different
MZIs are put close to each other, in such a way that a π

phase shift is produced when electrons are present in the two
branches.

In order to have time-correlated propagation of electrons
over interaction regions, we need on-demand electron sources
similar to the ones which have already been experimentally
realized in the IQHE.27,29 In experiments on single-electron
injection, the time of injection varied from 10−10 to 10−8 s
(in this paragraph we use numerical values from Refs. 27–29).
The wave packets should be shorter than the length of the
interaction region. The mall size of wave packets ensures that
the interaction produces a simple phase shift of the whole wave
packet (see Appendix E). The suitable interaction time t then
should be at least 10 times larger (more detailed calculations in
the case of two MZIs are presented in Ref. 22) and starts with
10−9 s. The phase accumulated due to the interaction must be
equal to π . For this to happen the interaction strength must
exceed U = h

2t
≈ 3.3 × 10−25 J. The unscreened Coulomb
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interaction e2

εr
(ε ≈ 12 is the dielectric constant of GaAs)

provides such a strength at distances starting at 6.4 × 10−5 m,
which is about 104 of the magnetic length lH ≈ 10−8 m for a
magnetic field B = 5 T. If the Fermi sea regions and various
gates are at a distance larger than the distance between the edge
states in the interaction region, using the unscreened form
of the Coulomb interaction looks reasonable. Therefore the
needed phase accumulation is accessible in realistic structures.
If one uses short electron wave packets, another demand
appears. As short packets have a wide energy distribution
we must ensure that BS scattering is energy independent
within that range. The energy width of a wave packet with
duration 10−10 s is approximately 10 μeV. This requires a
short enough scattering structure (e.g., quantum point contact)
in the BS. The next issue is the size of the setup. If the
interaction time equals 10−9 s, then for a drift velocity of
104–105 ms−1 (taken from Ref. 35), the interaction region
length would be 10−5–10−4 m. This length exceeds the size
of electronic MZIs, where AB oscillations were observed. A
satisfactory length for the interaction region should be of order
10−6 m. To achieve this length one may either produce shorter
wave packets (keeping in mind that the BSs should remain
energy independent) or reduce the drift velocity via making
the potential walls smoother. Another issue is the accuracy
of the interaction phases. First, one can tune the interaction
strength with extra gates. If there is no such possibility, the
setup should be fabricated with an interaction producing a
phase shift exceeding π . Electrons then should be sent with a
delay between them to reduce the interaction time and strength.
The procedure for phase control may be developed in the same
style as the AB-phase adjustment described in Appendix B.
One should tune the bottom BS in the second MZI to transfer
incoming electrons to the adjacent edge state and set the AB
phase in the first MZI to 0. The interaction strength then should
be tuned to the point where the electron sent to the first MZI
comes out from a different lead. After this, for better tuning
one applies an AB phase π/2. Here if the Coulomb interaction
phase is equal to π , the sensitivity of one-particle probabilities
in the first MZI reaches its maximum. Then the same procedure
should be repeated for the second interaction zone. Although
it appears to be possible to meet the requirements listed above,
the realization of the experiment remains very challenging. It
might therefore be very interesting to realize a less ambitious
project with a constant voltage and detection of low-frequency
third-order current-current correlator. The latter substitutes
single-particle detection, while the former substitutes single-
electron sources. One can also express orbital correlators,
(30), in terms of current-current correlators (see Refs. 10
and 36). Third-order current correlation can be measured along
the lines realized in Ref. 37 or theoretically suggested in
Ref. 38. Still, in this case there is small hope for observation
of Bell inequality violation, as it requires time-correlated
propagation of electrons for accumulation of a definite phase
(π ) with the Coulomb interaction, which is a very rare event
in the constant-voltage regime; the most probable event is
no phase at all since electrons usually pass the interaction
region separately. Therefore, in the constant-voltage regime
the Bell inequlity violation paradigm becomes impractical and
one has to come back to the usual physics and compare the

experiment with some specific theory. This approach does not
have the main advantage of Bell inequality violation, which
indicates entanglement without addressing the details of the
setup construction. Instead, one has to measure irreducible
third-order current cross correlators as a function of interaction
strength and other parameters (e.g., AB phases and BS
transparencies). From that function it should be possible to find
a term originating from the Coulomb interaction which would
indirectly indicate entanglement. This kind of observation
would also be a significant step towards the realization and
detection of the GHZ state and electronic orbital states.

VII. CONCLUSION

In this article we have demonstrated how to produce a
generalized GHZ state for three flying qubits, formed as orbital
electron states in MZI-type geometries. Our setup relies on
two state-of-the-art devices of nanophysics: (a) single-electron
sources, which have been demonstrated27 and characterized29

experimentally, as well as theoretically;32 and (b) MZIs, which
have equally been the object of thorough experimental28 and
theoretical33,34 investigations. In our proposal, both devices
should be integrated together, and moreover, three MZIs placed
in parallel are needed to achieve the GHZ state. While it
is plausible to think that it will be challenging to build a
prototype in the near-future, we judge that it is useful for the
mesoscopic physics community to be aware that advanced
quantum information protocols—here the production of a
GHZ state—can be achieved with electrons.

At the beginning of the paper we justified that our ideal
devices generate the GHZ state. Subsequently, we provided a
detailed explanation of the type of Bell inequalities which
need to be used to prove unambiguously that we have
generated the proper state. The problem which we encountered
with the actual MZI setup which is needed to implement
the Bell test is that it requires three more MZI loops than
the “condensed scheme,” thus making the integration of the
device even more challenging. Fortunately, we provided a
“condensed detector scheme” where this complication can be
circumvented, arguing that the operations achieved by two BSs
in series can be combined with a single BS. This allowed us to
actually draw a “realistic” device inspired from the so-called
“air bridge” technique which is used in the experiments in
Ref. 28.

This work thus belongs to the ongoing effort called
“electron quantum optics” where experiments and paradigms
of quantum optics are reproduced with mesoscopic physics
devices. The great advantage of the present method for
producing GHZ states lies in the fact that no postselection
procedure is needed here. The steps described in this paper
rely on a unitary evolution of the initial state, and moreover,
we exploit the Coulomb interaction between electron wave
packets in order to generate the desired phase shift in the
electron wave function. This particular feature departs strongly
from the photon protocols, as photons interact weakly when
traveling in vacuum. We thus state that the use of electron-
electron interactions in single-electron devices schemes may
open up new possibilities for quantum information schemes
which are not envisionable for photons.
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Granted, the present work has addressed the case of an ideal
device which is free from dephasing effects. Such phenomena
are likely to affect the operation of our device, as they are
already known to be present in single-MZI electronic setups.33

Nevertheless, our top priority is to clarify how to implement an
abstract quantum information scheme in an actual mesoscopic
device. Our analysis could be refined by taking dephasing
effects into account. The authors plan to consider this in the
future. In the case of a similar scheme with two MZIs this
is done in Ref. 22. Also, we have pointed out some factors
that need to be accounted for in experiments and mentioned
a simplified scheme with a constant voltage instead of on-
demand electron sources.

ACKNOWLEDGMENTS

We acknowledge financial support from CNRS LIA agree-
ments with Landau Institute and RFBR Grant No. 11-02-
00744-a (A.A.V. and G.B.L.). T.J. and T.M. acknowledge
support from Grant No. ANR 2010 BLANC 0412 02.

APPENDIX A: GHZ MAXIMAL VIOLATION PARAMETERS

Here we prove that in the tripartite case B = 4 can be
achieved only for the GHZ state or states that can be reduced
to GHZ with some local unitary transformations. Next we find
all possible series of measurement angles which give B = 4
for the GHZ state. We use the spin-based approach in this
section for convenience.

First, we compute the square of the Bell operator, (24), and
find the conditions necessary for 〈B̂2〉 = 16:

B̂2 = 4 − [
σ̂a1 ,σ̂a′

1

] ⊗ [
σ̂a2 ,σ̂a′

2

] ⊗ 1

− 1 ⊗ [
σ̂a2 ,σ̂a′

2

] ⊗ [
σ̂a3 ,σ̂a′

3

]
− [

σ̂a1 ,σ̂a′
1

] ⊗ 1 ⊗ [
σ̂a3 ,σ̂a′

3

]
. (A1)

Pauli matrices (i,j,k = x,y,z) obey angular momentum com-
mutation relations,

[σi,σj ] = 2iεijkσk, (A2)

from which we obtain the commutator for a spin pointing along
arbitrary vectors c and d,

[σc,σd] = 2i|e|σe, (A3)

where e = c × d. For our task we need vectors f1 = a1 × a′
1,

f2 = a2 × a′
2, f3 = a3 × a′

3. They allow us to represent B̂2 in
the following form:

B̂2 = 4
(
1 + |f1||f2|σf1 ⊗ σf2 ⊗ 1 + |f2||f3|1 ⊗ σf2 ⊗ σf3

+ |f1||f3|σf1 ⊗ 1 ⊗ σf3

)
. (A4)

This operator has a maximum eigenvalue B2 = 4(1 +
|f1||f2| + |f2||f3| + |f1||f3|) � 4(1 + 1 + 1 + 1) = 16.

For the maximum value to be achieved we require that
|f1| = |f2| = |f3| = 1, which implies a1 ⊥ a′

1, a2 ⊥ a′
2, a3 ⊥

a′
3. The eigenstates � of this value obey the relations

σf1 ⊗ σf2 ⊗ 1� = �, 1 ⊗ σf2 ⊗ σf3� = �,
(A5)

σf1 ⊗ 1 ⊗ σf3� = �.

It is convenient to choose a basis in each particle’s space in
relation to the corresponding f vector. For example, |↑〉 for the
first spin means that σ̂f1 |↑〉 = |↑〉. In this basis the only states
which give B2 = 16 are |↑↑↑〉 and |↓↓↓〉, so in full generality
we choose a superposition:

� = a|↑↑↑〉 + b|↓↓↓〉. (A6)

We can now find which state of the form of Eq. (A6) is
an eigenstate of operator B̂ with eigenvalue B = 4. Choosing
the basis we associate the ẑ axis of the first spin space with
vector f1, and similarly for the other two spin states. This
implies that a1 and a′

1 are orthogonal vectors in the x̂ − ŷ

plane, and similarly for a2, a′
2 and for a3, a′

3. For specificity
we choose a1 ≡ x̂ and a′

1 ≡ ŷ, and analogously for the other
spin components. Note that

σa′
1
σa2σa3 |↑↑↑〉 = σa1σa′

2
σa3 |↑↑↑〉 = σa1σa2σa′

3
|↑↑↑〉

= −σa′
1
σa′

2
σa′

3
|↑↑↑〉 = i|↓↓↓〉,

(A7)
σa′

1
σa2σa3 |↓↓↓〉 = σa1σa′

2
σa3 |↓↓↓〉 = σa1σa2σa′

3
|↓↓↓〉

= −σa′
1
σa′

2
σa′

3
|↓↓↓〉 = −i|↑↑↑〉,

thus implying that

B̂(a|↑↑↑〉 + b|↓↓↓〉) = −4ib|↑↑↑〉 + ia|↓↓↓〉). (A8)

From this we easily confirm that when b = ia we have the
desired eigenstate with B = 4:

� = 1√
2

(|↑↑↑〉 + i|↓↓↓〉). (A9)

Also, note that the orthogonal state � ′ = 1√
2
(|↑↑↑〉 − i|↓↓↓〉)

has an eigenvalue B = −4. Both states are equivalent to the
GHZ state up to local unitary transformations. In conclusion,
we have shown that each state which can violate the Bell-
type inequality maximally is a GHZ state up to trivial
transformations.

Now we proceed with the reverse problem. Starting from
the GHZ state, let us find all sets of vectors a1, a2, a3, a′

1, a′
2, a′

3
which yield B̄ = 4. We consider a spin correlator 〈σ̂n1 ⊗ σ̂n2 ⊗
σ̂n3〉 for arbitrary unitary vectors n1, n2, n3 with corresponding
spherical coordinates θn1 , φn1 , θn2 , φn2 , θn3 , φn3 .

The operator for the spin projection in direction n is
then

σ̂n = nxσ̂x + nyσ̂y + nzσ̂z =
(

cos θn sin θne
−iφn

sin θne
iφn − cos θn

)
.

(A10)

This allows us to find

σ̂n1 ⊗ σ̂n2 ⊗ σ̂n3 |↑↑↑〉
= cos θn1 cos θn2 cos θn3 |↑↑↑〉

+ sin θn1 sin θn2 sin θn3e
i(φn1 +φn2 +φn3 )|↓↓↓〉 + · · · ,

(A11)

σ̂n1 ⊗ σ̂n2 ⊗ σ̂n3 |↓↓↓〉
= sin θn1 sin θn2 sin θn3e

−i(φn1 +φn2 +φn3 )|↑↑↑〉
− cos θn1 cos θn2 cos θn3 |↓↓↓〉 + · · · , (A12)
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and the average of the spin correlator in the GHZ state is then〈
σ̂n1 ⊗ σ̂n2 ⊗ σ̂n3

〉= sin θn1 sin θn2 sin θn3 cos
(
φn1 + φn1+φn3

)
.

(A13)

The simple formula which we have obtained is a justification
of the spin-based approach to Bell-stype inequalities. The
tripartite case is simpler than the bipartite state when it comes
to finding the specific angles giving the Tsirel’son bound, since
here all the correlators should have unit absolute value. This
implies

sin θn1 = sin θn2 = sin θn3 = 1, (A14)

and thus we should consider only vectors of the x̂-ŷ plane as
candidates for B = 4. The polar angles of these vectors a1, a2,
a3,a′

1, a′
2, a′

3 are defined by the conditions〈
σ̂a′

1
⊗ σ̂a2 ⊗ σ̂a3

〉 = 1,
〈
σ̂a1 ⊗ σ̂a′

2
⊗ σ̂a3

〉 = 1,
(A15)〈

σ̂a1 ⊗ σ̂a2 ⊗ σ̂a′
3

〉 = 1,
〈
σ̂a′

1
⊗ σ̂a′

2
⊗ σ̂a′

3

〉 = −1,

which, in terms of polar angles, reads

cos
(
φa′

1
+ φa2 + φa3

) = 1, cos
(
φa1 + φa′

2
+ φa3

) = 1,

cos
(
φa1 + φa2 + φa′

3

) = 1, cos
(
φa′

1
+ φa′

2
+ φa′

3

) = −1.

(A16)

This system of equations has the solution

φa1 + φa2 + φa3 = ±π

2
, (A17)

with φa′
i
= φai ∓ π/2, where i = 1,2,3. All the vectors lie in

the x̂-ŷ plane.
This concludes the definition of the angles giving B = 4

for the GHZ state.

APPENDIX B: BEAM-SPLITTER PARAMETRIZATION

One of the essential parts of the device is the BS. The BS
is a four-arm scatterer with a special type of scattering matrix
which allows us to split the beam into two parts without any
reflection. Generally the scattering matrix of a four-arm splitter
looks like

S =

⎛
⎜⎜⎜⎝

r11 t21 t31 t41

t12 r22 t32 t42

t13 t23 r33 t43

t14 t24 t34 r44

⎞
⎟⎟⎟⎠. (B1)

In this matrix the tij parameters refer to the transmission
amplitudes from arm j to arm i, and rii is the reflection
amplitude in arm i. This matrix obeys only a unitarity
condition. If time-reversal invariance is added, a new condition
appears: tij = tj i . The BS scattering matrix is

S =

⎛
⎜⎜⎜⎝

0 0 t31 t41

0 0 t32 t42

t31 t32 0 0

t41 t42 0 0

⎞
⎟⎟⎟⎠. (B2)

For these parameters the following system of equations is
valid:

T31 + T41 = 1, T31 + T32 = 1,
(B3)

T32 + T42 = 1, t31t
∗
32 + t41t

∗
42 = 0,

where Tij = |tij |2. For such an equation set it is rather easy
to find a simple parametrization. Let us assume that t31 =
cos θeiφ31 , t41 = sin θeiφ41 , t32 = sin θeiφ32 , t42 = cos θeiφ42 .
Then we substitute all the t values into the last equation and
get

cos θ sin θeiφ31−iφ32 + sin θ cos θeiφ41−iφ42 = 0. (B4)

For this equation to be valid the following must hold:

φ31 − φ32 − φ41 + φ42 = π + 2πn, n ∈ Z. (B5)

In the present work we focus on symmetrical BSs for
simplicity. For a symmetrical BS

t31 = t42, t32 = t41, (B6)

so the phases are φ31 = φ42, φ32 = φ41 and Eq. (B5) simplifies
to

φ31 − φ32 = π/2 + πn, n ∈ Z. (B7)

One of the possible solutions is

φ31 = 0, t31 = t42 = cos θ,
(B8)

φ32 = π/2, t32 = t41 = isinθ.

This parametrization is used in further calculations.
We are interested in the properties of electron transport

from bottom to top, so we need only the values of t31, t32, t41,
and t42. Now we can introduce the transfer matrix:

T =
(

tRR tLR

tRL tLL

)
=

(
isinθ cos θ

cos θ isinθ

)
. (B9)

Note that we have changed indices because of the reflectionless
nature of the BS: tRR = t32, tRL = t42, tLR = t31, tLL = t31. In
order to find the state of particles after the BS one must perform
the following substitution with wave functions before the BS:

ψR → cos θψL + i sin θψR,
(B10)

ψL → cos θψR + i sin θψL.

Since we have chosen a specific parametrization of the BS,
we must confirm that if the BS used in the experiment has a
transfer matrix which is different from the one in Eq. (B9) it
will not spoil the whole experiment.

We consider again the phase relation in the general case:

φ31 − φ32 − φ41 + φ42 = π + 2πn, n ∈ Z. (B11)

Each phase can be presented as

φ31 = φ̃31 + 2πn ≡ φ̃31, φ32 = π/2 + φ̃32,
(B12)

φ41 = π/2 + φ̃41, φ42 = φ̃42,

where the phases φ̃31, φ̃32, φ̃41, φ̃42 represent the deviation
from the chosen parametrization. These obey the relation

φ̃31 − φ̃32 − φ̃41 + φ̃42 = 0. (B13)

165417-9



VYSHNEVYY, LESOVIK, JONCKHEERE, AND MARTIN PHYSICAL REVIEW B 87, 165417 (2013)

L R

Φ=0

FIG. 6. For � = 0 the electron goes to the left arm.

All solutions of this equation are taken into account by the
following representation:

φ̃31 = φ3, φ̃32 = φ3 + φ2, φ̃41 = φ4, φ̃42 = φ4 + φ2.

(B14)

where φ2, φ3, φ4 are some real values.
This answer has an explicit physical meaning. All BSs have

the same transfer matrix up to the phase accumulation in
each channel. This phase accumulation can affect the phase
difference in the left and the right paths of the MZI. In order to
restore the original interference pattern we need to adjust the
applied phase difference. During the experiment this means
choosing a reference point with � = 0 for a given MZI. This
could be achieved using the fact that at � = 0 an electron
injected into the right arm of the MZI has zero probability of
being detected in the right arm (Fig. 6). Even better tuning
can be achieved near π/2. Here the probabilities for each arm
are equal and the difference between the probabilities has a
maximum derivative with respect to the phase.

1. Beam splitter with phase

In our MZI the electrons have two possible paths to travel.
If there is a difference in the accumulated phase between
two paths, it will affect the interference between them in
a subsequent BS. It is convenient to account for this phase
difference (which can be generated e.g. by applying a magnetic
flux through the MZI loop) in the transfer matrix of the BS. If
the phase lengths of the right and left the paths are φL and φR ,
then the transfer matrix of the BS takes the form

T =
(

isinθeiφR cos θeiφL

cos θeiφR isinθeiφL

)
. (B15)

Actually the final results depend only on the phase difference
of the two paths � = φL − φR , so the transfer matrix can
be multiplied by any phase factor without affecting the final
results. We can represent the transfer matrix in a form similar

to the spin rotation operator:

T =
(

sin θe−i�/2 −icosθei�/2

−icosθe−i�/2 sin θei�/2

)
= e−iσx

(π−2θ )
2 e−iσz

�
2 .

(B16)

Since the measurement procedure in the condensed scheme
includes changing θ and � and measuring 〈σz ⊗ σz ⊗ σz〉 at
level lv2′ (Fig. 1), it is convenient to define a measurement
operator with respect to level lv2 in the scheme, where the
electron state is invariant during the measurement procedure.

As we see, the operator is a sum of two rotations: first,
a rotation of angle � around the z axis and. second, another
rotation of angle π − 2θ around the x axis. The rotation around
the x axis corresponds to the action of the BS itself, while the
rotation around z corresponds to an AB phase accumulation.
This whole rotation transforms a vector,

n =

⎛
⎜⎝

sin 2θ sin �

sin 2θ cos �

− cos 2θ

⎞
⎟⎠, (B17)

onto the z axis. As the vector thus defined is in one-to-one
correspondence with the pair of BS parameters θ, �, we call
it a characteristic vector of the BS. Rotation means that

T |n〉 = Un→z|n〉 = |↑〉. (B18)

The projection of the rotated pseudospin onto z can be shown
to be equal to the projection of the initial pseudospin onto n:

〈Un→z�|σz|Un→z�〉 = 〈�|U+
n→zσzUn→z|�〉 = 〈�|σn|�〉.

(B19)

For three-particle spin correlators the same relation holds:

〈T1 ⊗ T2 ⊗ T3�|σz ⊗ σz ⊗ σz|T1 ⊗ T2 ⊗ T3�〉
= 〈�|T +

1 σzT1 ⊗ T +
2 σzT2 ⊗ T +

3 σzT3|�〉
= 〈�|σn1 ⊗ σn2 ⊗ σn3 |�〉. (B20)

So now we have found that the measured correlator with
respect to level lv2 is 〈σn1 ⊗ σn2 ⊗ σn3〉.

APPENDIX C: PSEUDOSPIN ANALOGY

In Appendix A we have defined angles yielding B = 4
for the three-spin GHZ state. To obtain the parameters of the
actual setup (Fig. 1) we need to “translate” the spin angles
into BS parameters. This chapter contains the derivation of the
“translation” rules.

We start with the logic of the GHZ experiment described
in Sec. III. We need three values, x1, x2, x3, corresponding to
separate measurements with results within the interval [−1; 1].
In the spin case, the spin projection measurements serve this
purpose. In our setup we can detect a particle in the left or
the right arm. So one of the possible assignments is x = −1
for a particle detected in the left arm and x = 1 for a particle
detected in the right arm. Then the Bell correlator is

〈x1x2x3〉 = PRRR + PRLL + PLRL + PLLR

− PLLL − PLRR − PRLR − PRRL. (C1)

This correlator measured on level lv3 of the setup (Fig. 1)
corresponds to the 〈σ̂z ⊗ σ̂z ⊗ σ̂z〉 correlator of pseudospin.
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Due to the rotation between lv2′ and level lv3, the correlator
of Eq. (C1) corresponds to the 〈σ̂n1 ⊗ σ̂n2 ⊗ σ̂n3〉 measured
for the initial pseudospin state at lv2′, which is the GHZ.
The vectors n1, n2, n3 are characteristic vectors of the
corresponding BSs, (B17).

Now we calculate BS matrices corresponding to the angles
giving maximum violation, (A17). All the vectors are in the
x̂-ŷ plane, thus θ = π/4 for all of them. For a vector with a
polar angle φ, correspondingly, � = α = π/2 − φ and the BS
transfer matrix is

T (α) =
⎛
⎝ 1√

2
e−iα/2 − i√

2
eiα/2

− i√
2
e−iα/2 1√

2
eiα/2

⎞
⎠ ≡

⎛
⎝ i√

2
1√
2
eiα

1√
2

i√
2
eiα

⎞
⎠,

(C2)

where equivalence means that the overall phase does not
change the observable outcomes. α parameters then should
obey the restrictions

αa1 + αa2 + αa3 = π/2 ± π/2, αa′
i
= αai ± π/2, (C3)

for i = 1,2,3.

APPENDIX D: SETTINGS GIVING MAXIMUM VIOLATION
OF THE BELL INEQUALITY

In Appendix C we have defined the properties of the BS
between level lv2′ and level lv3 in Fig. 1. The next step lies in
defining the parameters of the BS in the condensed scheme. For
this purpose we use the properties of the unitary transformation
made between level lv2 and lv2′ of the initial setup, (14).

The problem is simplified by the fact that all BSs between
level lv2′ and level lv3 are of the same type:

T (α) =
( i√

2
1√
2
eiα

1√
2

i√
2
eiα

)
. (D1)

a. First and third MZIs

Since U3 = U1 all the results are valid for the third MZI
as well. The first MZI chain makes two consequent unitary
transformations; the first one is U1 = 1√

2
( −i 1

1 −i ), and the next

is T (α) = 1√
2
( i eiα

1 ieiα ). The product of these is unitary:

T1(α) = T (α)U1 = 1

2

(
1 + eiα i − ieiα

−i + ieiα 1 + eiα

)
. (D2)

Shifting the whole matrix phase by −α/2 we get the following
expression:

T1(�) =
(

cos(α/2) sin(α/2)

− sin(α/2) cos(α/2)

)
. (D3)

The next step is to find from the matrix of the BS the parameters
θ , �. We encounter the problem that the matrix of Eq. (D3)
cannot represent the transfer matrix of any BS. The relation
arg(tRR/tRL) = π

2 , which is universal for any representation
of the transfer matrix [see Eq. (B15)], is not valid for Eq. (D3).
The BS transfer matrix should not necessarily be equal to
T1(�) but it should lead to the same three-particle probabilities.

This happens if the transfer matrix of the BS equals

T1(�,φ1,φ2) =
(

cos(α/2)eiφ1 sin(α/2)eiφ1

− sin(α/2)eiφ2 cos(α/2)eiφ2

)
, (D4)

where φ1 and φ2 are some phase shifts. They do not contribute
to the tripartite probabilities, while this matrix with properly
chosen phase shifts can be the transfer matrix of the BS.

If tan(α/2) > 0, then φ1 = π/2, φ2 = π , and

θ = π − α

2
, � = π

2
. (D5)

If tan(α/2) < 0, then φ1 = π/2, φ2 = 0, and

θ = π + α

2
, � = −π

2
. (D6)

Both formulas can be unified as

θ = π − signtan(α/2)α

2
, � = signtan(α/2)

π

2
. (D7)

If α ∈ [−π ; π ], the last formula is simplified:

θ = π − |α|
2

, � = π |α|
2α

. (D8)

b. Second MZI

For the second MZI everything is simpler since U2 is a
diagonal matrix:

T2(α)=T (α)U2 = 1√
2

(−1 eiα

i ieiα

)
≡ 1√

2

(
i ei(α−π/2)

1 iei(α−π/2)

)
.

(D9)

This matrix corresponds to a BS with parameters θ = π/4 and
� = α − π/2.

Finally, we can introduce the algorithm for the generation
of the measurement settings resulting in B = 4.

(1) Choose angles αa1 , αa2 , αa3 obeying relations

αa1 + αa2 + αa3 = π/2 ± π/2, αa′
i
= αai ± π/2, (D10)

where i = 1,2,3.
(2) Make αai ,αa′

i
be within [−π ; π ] by applying 2πn,n ∈ Z

shifts if needed.
(3) Calculate the BS parameters:

θ1,3 = π − ∣∣αa1,3

∣∣
2

, θ ′
1,3 = π − ∣∣αa′

1,3

∣∣
2

,

�1,3 = π
∣∣αa1,3

∣∣
2αa1,3

, �′
1,3 = π

∣∣αa′
1,3

∣∣
2αa′

1,3

,

(D11)
θ2 = π/4, θ ′

2 = π/4,

�2 = αa2 − π/2, �′
2 = αa′

2
− π/2.

From the last equation we can extract the following
common features of these measurement sets:

(a) In the first and the third MZIs the AB phase can take
values ±π/2;

(b) In the second MZI the transparency of the BS does not
change during the experiment.

165417-11



VYSHNEVYY, LESOVIK, JONCKHEERE, AND MARTIN PHYSICAL REVIEW B 87, 165417 (2013)

Among the measurement schemes there exist ones where
the transparencies of all BS do not change during the
experiment. For example, choosing

αa1 = −3π/4, αa′
1
= 3π/4,

αa2 = −π/2, αa′
2
= π, (D12)

αa3 = −3π/4, αa′
3
= 3π/4,

we get

θ1 = π/8, θ ′
1 = π/8, �1 = −π/2, �′

1 = π/2,

θ2 = π/4, θ ′
2 = π/4, �2 = π, �′

2 = π/2, (D13)

θ3 = π/8, θ ′
3 = π/8, �3 = −π/2, �′

3 = π/2.

In conclusion, we have found the general parametrization
for measurement settings giving B = 4 in a regular MZ
setup and described a special case where we get a maximum
violation only by adjusting the AB phases.

APPENDIX E: COULOMB INTERACTION

Here we solve the two-particle problem for the propagation
of two electrons in neighboring channels between the two
BSs. We consider two chiral edge channels of the IQHE.
The two particles propagating in different channels interact
electrostatically within a specified interaction region. The
potential of the interaction U (x1,x2) depends on the position
of both particles. The energy spectrum is assumed to be linear
and the drift velocity of the electrons in each channel is the
same vD . We consider the Hilbert space of two electron wave
functions such that

∫
�(x1,x2)e−ik1x1−ik2x2dx1dx2 = 0 if k1 or

k2 is negative. The Schrödinger equation for this two-particle

problem reads

i
∂

∂t
�(x1,x2,t) =

(
−ivD

∂

∂x1
− ivD

∂

∂x2

)
�(x1,x2,t)

+U (x1,x2)�(x1,x2,t). (E1)

Let us make the substitution aα = xα − vF t . Then
�(x1,x2,t) = �(a1,a2,t). Here

∂

∂t
= ∂

∂t
+ vD

∂

∂x1
+ vD

∂

∂x2
, (E2)

and this allows us to rewrite the equation,

∂

∂t
� = −iU (a1 + vDt,a2 + vDt)�. (E3)

The solution is

�(a1,a2,t) = �(a1,a2,0)e−i
∫ t

0 U (a1+vDτ,a2+vDτ )dτ . (E4)

In terms of the initial variables,

�(x1,x2,t) = �0(x1 − vDt,x2 − vDt)

× e−i
∫ t

0 U (x1+vD (τ−t),x2+vD (τ−t))dτ . (E5)

The phase accumulated during the interaction is posi-
tion dependent and describes the energy exchange and the
deformation of the wave packets. Here the condition for
simple phase accumulation is that the size of the wave
packets is small. In this case the position dependence of
the phase should not manifest itself. The solution agrees
well with the derivation in Ref. 23 except for the fact that
the interaction kernel differs [we used a kernel of general
form U (x1,x2)].
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