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Kinetic theory of surface plasmon polariton in semiconductor nanowires
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Based on the semiclassical model Hamiltonian of the surface plasmon polariton and the nonequilibrium Green-
function approach, we present a microscopic kinetic theory to study the influence of the electron scattering on
the dynamics of the surface plasmon polariton in semiconductor nanowires. The damping of the surface plasmon
polariton originates from the resonant absorption by the electrons (Landau damping), and the corresponding
damping exhibits size-dependent oscillations and distinct temperature dependence without any scattering. The
scattering influences the damping by introducing a broadening and a shifting to the resonance. To demonstrate
this, we investigate the damping of the surface plasmon polariton in InAs nanowires in the presence of the
electron-impurity, electron-phonon, and electron-electron Coulomb scatterings. The main effect of the electron-
impurity and electron-phonon scatterings is to introduce a broadening, whereas the electron-electron Coulomb
scattering can not only cause a broadening, but also introduce a shifting to the resonance. For InAs nanowires
under investigation, the broadening due to the electron-phonon scattering dominates. As a result, the scattering
has a pronounced influence on the damping of the surface plasmon polariton: the size-dependent oscillations are
smeared out and the temperature dependence is also suppressed in the presence of the scattering. These results
demonstrate the important role of the scattering on the surface plasmon polariton damping in semiconductor
nanowires.
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I. INTRODUCTION

Since the pioneering theoretical work by Ritchie1 and
the electron-loss spectroscopy measurements by Powell and
Swan,2 the physics of surface plasmon polariton (SPP) has
been extensively studied for more than five decades.3–9 SPPs
are electromagnetic (EM) waves coupled to the collective
excitations of electrons on the surface of a conductor.10,11 In
this coupling, the electrons oscillate collectively in resonance
with the EM waves and hence trap the EM waves on the
surface. The resonant coupling leads to the SPPs and gives
rise to their unique properties, such as the enhancement of
the surface electric fields and the slowing down of the group
velocity of the EM waves.12–20 Applications exploiting these
properties have been widely studied in biosensing,21 solar
cells,22 quantum information processing,23–25 subwavelength
optical imaging, and waveguiding devices.11,26–31

The SPPs often suffer from dissipative losses.32 Overcom-
ing the losses is crucial for the improvement of performance of
many SPP-based devices, such as the fidelity of the waveguide
and the sensitivity of the single-molecule sensor.21,33 An
effective modulation of the losses is also highly desirable for
the active plasmonic devices proposed in recent years.34–36

Thus a thorough understanding of the damping processes
responsible for the dissipative losses is essential. Since the
SPPs in metals have been the major focus for many decades,
previous studies on the damping processes have traditionally
been focused on metals. It is found that the dominant damping
process is the decay of the SPPs into electrons, i.e., the Landau
damping.37–41 The interband transitions and the many-body
exchange-correlations can have pronounced influences on
the Landau damping. These influences can be incorporated
into microscopic models based on time-dependent density-
functional theory or a semiclassical model Hamiltonian of the

SPP.42–44 Calculations based on these models have shown good
agreement with experiments.45–47

In recent years, doped semiconductors, such as SiC, GaAs,
InAs, Cu2S, and Cu2Se are suggested as promising candidates
to replace metals in SPP applications.48–52 The SPPs in doped
semiconductors are characterized by their substantial low
losses and tunable frequencies.53–56 They are also easier to
be manipulated via doping or external electric/magnetic fields
and to be integrated into complex, functional circuits.57–59 The
further development of the SPPs in doped semiconductors
requires a better understanding of their damping processes.
However, the physics involved in doped semiconductors can
be quite different from that in metals. For doped semicon-
ductors, although the Landau damping is still believed to
be the leading damping process at large wave vectors,60,61

the charge depletion/accumulation layer62,63 and the electron
scattering64,65 are found to have important influence on the
damping. Of particular importance is the effect of the electron
scattering, since the typical scattering rate can be comparable
to the SPP frequency in semiconductors. However, to the best
of our knowledge, this effect has only been discussed by using
phenomenological relaxation times.64,65 A microscopic theory
exploiting this effect has not been established yet.

In this paper, by combining the semiclassical model Hamil-
tonian of the SPP42–45 and the nonequilibrium Green-function
approach,66,67 we present a microscopic kinetic theory to study
the damping of the SPP in doped semiconductors, within which
the relevant electron scatterings are treated fully microscop-
ically. The main purpose of this work is to understand the
influence of these scatterings on the Landau damping of the
SPP. To demonstrate this, we focus here on the SPPs in InAs
nanowires23,28,29,51 and concentrate on the electron-impurity
(ei), electron-phonon (ep), and electron-electron (ee) Coulomb
scatterings. We find that the scattering can have pronounced
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influences on the Landau damping of the SPP by modulating
the resonance between the electrons and the SPPs. Different
scattering has different effect on the resonance. The main effect
of the ei and ep scatterings is to introduce a broadening to
the resonance, whereas the ee scattering can not only cause
a broadening, but also introduce a shifting to the resonance.
For InAs nanowires, the ep-scattering–induced broadening is
found to be the dominant effect. These effects can lead to a
pronounced influence on the damping of the SPP, which can
be seen from both the size and temperature dependence of the
SPP damping: (1) the size-dependent oscillations of the SPP
damping are smeared out and (2) the temperature dependence
of the SPP damping is suppressed by the scattering. These
results demonstrate the important role of the electron scattering
on the SPP damping.

This paper is organized as follows. In Sec. II, we intro-
duce the semiclassical model Hamiltonian of the SPP for
semiconductor nanowires and briefly outline the derivation
of the kinetic equations. We also present an analytic solution
for the SPP damping which provides a simple and physically
transparent picture to understand the influence of the scattering
on the SPP damping process. In Sec. III, we discuss in detail
the influence of the electron scattering on the SPP damping
by numerical solving the kinetic equations. The importance
of the scattering is demonstrated by studying its influences on
the temperature and size dependence of the SPP damping. The
analytic solution is also compared with the numerical ones in
this section. We summarize and discuss in Sec. IV.

II. MODEL AND FORMALISM

A. Semiclassical model for SPP-electron system

We consider an n-type free-standing cylindrical nanowire
with radius R as illustrated in Fig. 1(a). The z axis is
chosen to be along the wire. Following the semiclassical
approach developed in previous works,42–45 we decompose
the Hamiltonian into

H = HSPP + Hel + HSPP-el, (1)

where HSPP, Hel, and HSPP-el are Hamiltonians for the SPP,
electrons and the SPP-electron coupling, respectively. Here
we only present the Hamiltonian, leaving the details to
Appendix A.

For nanowires, there exists one fundamental SPP mode with
axial symmetry, which has no cutoff at low frequency and has
been found to be important for both the terahertz emission
and quantum subwavelength optics.23,28,29,51 In this paper, we
focus on the dynamics of this SPP mode. The corresponding
Hamiltonian takes the form

HSPP =
∑

q

�qb
†
qbq, (2)

where bq(b†q) represents the annihilation(creation) boson op-
erator for the SPP, with �q being the corresponding dispersive
relation illustrated in Fig. 1(b). Note that we set h̄ = 1
throughout this paper.

The Hamiltonian of electrons can be written as

Hel = H 0
el + Hei + Hep + Hee, (3)
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FIG. 1. (Color online) (a) Schematic of the structure of the
electron field E and corresponding surface charge of the axial
symmetric SPP mode in a cylindrical nanowire. ε∞

1 (ε2) is the
dielectric constant inside (outside) the nanowire. The red curves
with arrows represent the electric fields of the SPP mode. (b) The
dispersive relation of the axial symmetric SPP mode for nanowires
with different electron density n̄0 and wire radius R. The thin grey
line marks the energy of the LO phonon.

where the free-electron Hamiltonian H 0
el is modelled by a

mean-field potential. The interaction Hamiltonians Hei, Hep,
and Hee represent the ei, ep, and ee interaction, respectively.

By choosing the mean-field potential to be an infinite
cylindrical potential well with radius R, the free-electron
Hamiltonian H 0

el can be written as

H 0
el =

∑
nkσ

εn
k c

†
nkσ cnkσ , (4)

in which εn
k = k2+(λm̃

ñ /R)2

2m∗ is the eigenenergy with m∗ repre-
senting the electron effective mass. The composed index n =
(m̃,ñ) labels the electron subband with m̃ and ñ representing
the angular and radial quantum numbers, respectively. λm̃

ñ

denotes the ñth zero of the Bessel function of the first kind
Jm̃(x). The corresponding eigenstates read

ψnk(ρ,ϕ,z) = Jm̃

(
λm̃

ñ ρ
/
R
)

√
πRJm̃+1

(
λm̃

ñ

)eim̃ϕeikz. (5)
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The ei interaction Hamiltonian can be written as

Hei =
Ni∑
i

∑
kqσ

vnn′
q ρi(q)c†n′k+qσ cnkσ , (6)

with Ni being the total impurity number and ρi(q) = e−iqzi .
Here we have assumed that the impurities are distributed
on the surface of the nanowire with an axially symmetric
distribution. vnn′

q is the matrix element for the ei interaction.
The ep interaction Hamiltonian can be written as

Hep =
∑
Qq

∑
nn′kσ

Mnn′
Qq(aQq + a

†
− Q−q)c†nkσ cn′k−qσ , (7)

where aQq(a†
Qq) represents the annihilation(creation) operator

for the LO phonons, with Q and q representing the components
of the phonon momentum perpendicular and parallel to the
nanowire. Here, we use bulk phonons in the present investiga-
tion, which is valid for nanowires with large diameters.68,69

Mnn′
Qq is the matrix element for the ep interaction. It is

noticed that although surface-optical (SO) phonons69 also
exist in nanowires, they are of marginal importance since the
corresponding electron-SO-phonon interaction is rather weak
compared with the electron-LO-phonon interaction for the
nanowires we consider here. The influence of the SO phonons
will be further addressed in Sec. III B. The ee interaction
Hamiltonian can be written as

Hee =
∑
kk′q

∑
nn′

∑
σσ ′

V nn′
q c

†
nkσ c

†
n′k′σ ′cn′k′+qσ ′cnk−qσ , (8)

where V nn′
q is the matrix element for the ee interaction. The

SPP-electron coupling Hamiltonian HSPP-el can be written as

HSPP-el =
∑
nkσ

∑
n′k′

gnn′
k−k′(bk−k′ + b

†
k′−k)c†nkσ cn′k′σ , (9)

where gnn′
q is the SPP-electron coupling matrix element. In

these equations, matrix elements vnn′
q , Mnn′

Qq , V nn′
q and gnn′

q are
given in detail in Appendix A.

B. Kinetic equations

In this section, we briefly outline the derivation of the
kinetic equations for the SPP-electron system. The details can
be found in Appendix B.

The damping of the SPP is obtained by studying the
temporal evolution of a coherent SPP wave packet with
central wave vector Qs , which can be expressed as |Bs〉 =∑

q pQs
q e− 1

2 |Bq |2ebqb
†
q |0〉 (see Ref. 70). The line-shape function

of the wave packet pQs
q is chosen to be pQs

q = sin[(Qs−q)L/2]
(Qs−q)L/2 ,

where L is the wave packet length. Such wave packet is typical
in a Fabry-Perot SPP resonator, which has been observed in
various SPP systems.25,71–73

The amplitude of the wave packet can be described by
Bs = ∑

q pQs
q Bq . The kinetic equation of Bs is obtained from

the Heisenberg equation of the SPP annihilation operator bq ,
which has the form

∂tBs(t) =
∑

nn′,kk′,σ

p
Qs

k−k′g
nn′
k−k′G

<
σ (n′k′,nk; t t), (10)

where G<
σ (nk,n′k′; t t ′) is the “lesser” electron Green function

defined as G<
σ (nk,n′k′; t t ′) = i〈c†n′k′σ (t ′)cnkσ (t)〉 (see Ref. 66).

The kinetic equation of the electron Green function
G<

σ (nk,n′k′; t t) is derived by using the nonequilibrium Green-
function approach, which can be written as[−i∂t − (

εn′
k′ − εn

k

)]
G<

σ (nk,n′k′; t t)

=
∑
n̄q

(B−q + B†
q)
[
gn̄n′

q G<
σ (nk,n̄k′ − q; t t)

− gnn̄
q G<

σ (n̄k + q,n′k′; t t)
] + I<σ

nk,n′k′(t), (11)

where the first term in the right-hand side of the equations
is the coherent driving term of the SPP, while the second
term is the scattering term consisting the ei, ep, and ee
scatterings.

Within the rotating wave approximation relative to the SPP
central frequency �s ,66,67 we obtain the kinetic equations for
the SPP-electron system:

∂t B̄s(t) = −i
∑
nn′σ

∑
kk′

p
Qs

k−k′g
nn′
k−k′[Pσ (nk,n′k′; t)]†, (12)

∂tPσ (nk,n′k′; t) = iωnn′
kk′ Pσ (nk,n′k′; t)

+ ignn′
k−k′p

Qs

k−k′B̄
†
s [fnσ (k) − fn′σ (k′)]

+ Ī σ
nk,n′k′, (13)

with the detuning

ωnn′
kk′ = εn′

k′ − εn
k − �s. (14)

In the above equations, B̄s(t) = Bs(t)ei�s t and
Pσ (nk,n′k′; t) = −iG<

σ (nk,n′k′; t t)ei�s t represent the
SPP amplitude and electron polarization, respectively. fnσ (k)
represents the equilibrium electron distribution which is
conventionally chosen to be the spin-unpolarized Fermi-Dirac
distribution at temperature T .

It should be emphasized that in the derivation, we have
treated the SPP-electron coupling gnn′

q perturbatively and
linearized the equations by keeping only terms up to the
linear order of gnn′

q . Thus the SPP couples only to the electron
polarization corresponding to the off-diagonal electron Green
function with respect to the electron momentum k and subband
index n.

The scattering term within the rotating wave approximation
can be expressed as Ī = Ī ei + Ī ep + Ī ee, where Ī ei, Ī ep, and
Ī ee are contributions from the ei, ep, and ee scatterings,
respectively. Their expressions can be found in Appendix B.

C. Landau damping process

In the kinetic equation (13) describes the resonant excitation
of the electron polarizations, while Eq. (12) describes the
back-action of the polarizations to the SPP. The summation
in Eq. (12) implies that even without any scattering, the
phase-mixing between polarizations with different frequencies
can also lead to the damping of the SPP, which is the origin of
the Landau damping.

To further clarify the Landau damping process described
by the kinetic equations, we solve the equations without
the scattering term Ī . From Eq. (13), the corresponding
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polarization can be solved as

Pσ (nk,n′k′; t) = −δk′−k−qg
nn′
q pQs

q B̄†
s (t)[fnσ (k) − fn′σ (k′)]

× [
ei(ωnn′

kk′ +i0+)t − 1
]/(

ωnn′
kk′ + i0+). (15)

Note that in the derivation, we have assumed that the SPP
amplitude B̄s varies slowly compared to the polarization P .

By substituting Eq. (15) into Eq. (12) and taking the long
time limit t → ∞, one gets

∂t B̄s/B̄s = −(τ−1 + iωs), (16)

where ωs represents the frequency shifting, expressed as

ωs =
∑

nk,n′k′,qσ

∣∣pQs

q gnn′
q

∣∣2[fn′σ (k′) − fnσ (k)]
1

ωnn′
kk′

δk′−k−q,

(17)

in which the summation is understood as a principal value
integral. τ−1 is the damping rate of the SPP, which has the
form
1

τ
= π

∑
nk,n′k′,qσ

∣∣pQs

q gnn′
q

∣∣2[fn′σ (k′) − fnσ (k)]δ
(
ωnn′

kk′
)
δk′−k−q .

(18)

Note that Eq. (18) agrees with the Landau damping rate derived
from the Fermi golden rule in the literature.44,45

The above solution suggests that the Landau damping
process can be understood as the resonant absorption of the
SPP by electrons. The two δ functions in Eq. (18) indicate
that for a monochromatic SPP wave with wave vector q,
the absorption occurs between pairs of states |nk〉 and |n′k′〉
satisfying the energy and momentum conservations

ωnn′
kk′ = 0, (19)

k′ − k = q. (20)

Each pair of the states |nk〉 and |n′k′〉 consist a resonant pair
(nk,n′k′) relevant for the SPP damping. For the multisubband
system, there usually exist several such resonant pairs, laying
between different subbands n and n′ and being well separated
from each other. For a nonmonochromatic SPP wave packet
with sufficiently narrow spectrum in q, the two states |nk〉 and
|n′k′〉 of each resonant pair become two wave-vector regions.
Note that in the following discussion, we shall focus on the
nonmonochromatic SPP wave packet, and the resonant pair is
referred to as the wave-vector region unless otherwise speci-
fied. The resonant pairs are illustrated in Figs. 2(a) and 2(b).
By using the resonant pairs, one can rewrite Eq. (18) into

τ−1 =
∑

i

τ−1
i , (21)

τ−1
i = π

∑
qσ

∑
(nk,n′k′)∈i

∣∣pQs

q gnn′
q

∣∣2[fn′σ (k′) − fnσ (k)]

× δ
(
ωnn′

kk′
)
δk′−k−q, (22)

with i being the index for the resonant pair corresponding
to the SPP wave packet, whose spectrum is decided by the
line-shape function pQs

q . (nk,n′k′) ∈ i means that the two
states |nk〉 and |n′k′〉 belong to the ith resonant pair. Thus one
can see that the damping rate of the SPP wave packet is the
sum over the absorption rates of all the relevant resonant pairs.

FIG. 2. (Color online) Schematic of the resonant pairs corre-
sponding to the case of (i) strong and (ii) weak Landau damping
in the electron spectrum (a) and in the electron distribution (b).
The two wave-vector regions of the resonant pairs are illustrated by
thick green/blue curves corresponding to the strong/weak Landau
damping regime. The resonant pairs are centralized around the
resonance corresponding to the SPP central wave vector Qs as
indicated by the vertical black dotted curves. The horizontal dashed
line marks the chemical potential of the electrons μ. (c) The electron
polarization and electron population difference as a function of the
center wave vector K = k+k′

2 with k′ − k = Qs . (i)/(ii) corresponds to
the strong/weak Landau damping regime at low temperatures and (iii)
corresponds to both the strong and the weak Landau damping regimes
at high temperatures. The vertical solid line marks the resonance
corresponding to Qs .
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Note that the electron population difference δf =
fn′σ (k′) − fnσ (k) of the corresponding resonant pair plays an
important role on its contribution to the SPP damping. For
the degenerate electrons where a well-defined Fermi surface
exists around the chemical potential, there exist two regimes of
the SPP damping: (i) a strong Landau damping regime where
states |nk〉 and |nk′〉 of a resonant pair lay in each side of the
chemical potential in the electron spectrum, leading to a large
population difference δf and hence a strong SPP damping;
(ii) a weak Landau damping regime where the chemical
potential lies outside all the resonant pairs, leading to a small
δf and a weak SPP damping. This is illustrated in Figs. 2(a)
and 2(b). Note that at high enough temperatures, the Fermi
surface can be smeared out and such difference vanishes.

It should be emphasized that according to Eq. (15), the
resonant pair can be visualized as the resonant peak in the
polarizations between the two subbands n and n′. In Fig. 2(c),
we illustrate the polarizations P (nk,n′k′) corresponding to the
resonant pairs shown in Figs. 2(a) and 2(b) as a function of
the center wave vector K = (k + k′)/2 with k′ − k = Qs . One
finds that the polarization exhibits a Lorentzian peak around
the resonance corresponding to the central wave vector Qs , as
indicated by Eq. (15).

Note that such resonant peak can show different features
in the strong and weak Landau damping regimes at low
temperatures. In the strong Landau damping regime, the
corresponding polarization P exhibits a strong resonant peak
concentrated in the region with large δf [(i) in Fig. 2(c)],
indicating a large SPP absorption by the electrons. In contrast,
in the weak Landau damping regime, the corresponding
resonant peak is weak and lies outside the large δf region
[(ii) in Fig. 2(c)], indicating a small SPP absorption. In
addition to the resonant peak, side peaks can also exist in
the off-resonant regime due to the corresponding large δf . At
high temperatures where the Fermi surface is smeared out, the
population difference is rather flat for both the strong and weak
Landau damping regimes and the corresponding polarization
exhibits a strong peak around the resonance for both regimes
[(iii) in Fig. 2(c)].

D. Influence of the scattering

The scattering influences the Landau damping by changing
the resonant excitation of the polarizations. Specifically, (1) the
scattering can introduce dissipative channels, inducing a decay
of the polarization; (2) the scattering between polarizations
with different precession frequencies induces a frequency
mixing, leading to a modification of the polarization precession
frequency. These two effects can be further clarified by
assuming that for each resonant pair, the scattering term has
the form

Ī iσ
nk,n′k′ =

∑
q

�i[Pσ (nk − q,n′k′ − q) − Pσ (nk,n′k′)], (23)

where �i stands for the phenomenological relaxation rate for
the polarization of the ith resonant pair. Note that (nk,n′k′)
and (nk − q,n′k′ − q) belong to the ith resonant pair.

For each resonant pair, the polarization P in the scattering
term Ī given above can be obtained by treating �i perturba-

tively and solving Eq. (13) order by order, yielding

Pσ (nk,n′k′; t) = δk′−k−qg
nn′
q pQs

q B̄†
s (t)[fnσ (k) − fn′σ (k′)]

× [
ei(ωnn′

kk′ −�̄a
i +i�̄b

i )t − 1
]/(

ωnn′
kk′ − �̄a

i + i�̄b
i

)
,

(24)

where

�̄b
i = �i

∑
q

(
1 − ωnn′

kk′

ωnn′
k−q,k′−q

)
, (25)

�̄a
i = π�i

∑
q

(
ωnn′

kk′ − ωnn′
k−q,k′−q

)
δ
(
ωnn′

k−q,k′−q

)
. (26)

The summation in Eq. (25) is understood as a principal value
integral. Note that we have omitted the k,k′ dependence of
�̄

a(b)
i inside each resonant pair for simplicity. The detail of the

derivation is given in Appendix C.
By comparing Eq. (24) to Eq. (15), one can see that

the detuning ωnn′
kk′ in the resonant denominator is modified

into ωnn′
kk′ − �̄a

i , indicating that the polarization precession
frequency is shifted by the scattering. The scattering also
induces a finite imaginary part �̄b

i to the resonant denominator,
representing the decay of the polarization due to the scattering.

The above solution indicates that the scattering modifies
the resonance between the polarization and the SPP by
introducing both an energy shift and an energy broadening
to the corresponding resonance pairs. On one hand, the energy
shift modifies the energy conservation Eq. (19) into

ωnn′
kk′ − �̄a

i = 0. (27)

Thus the corresponding resonant pairs are shifted by the
scattering. On the other hand, the energy broadening loosens
the energy conservation constraint given by Eq. (19). Thus
the corresponding resonant pairs are broadened. Note that the
broadening and shifting are usually small and cannot induce
overlaps between different resonant pairs.

Accordingly, the broadening �̄b
i and shifting �̄a

i also
manifest themselves in the SPP damping rate. Following the
same procedure as for the derivation of Eq. (18), the SPP
damping rate in the presence of the scattering can be written
as

τ−1 =
∑

i

τ−1
i , (28)

τ−1
i =

∑
qσ

∑
(nk,n′k′)∈i

∣∣pQs

q gnn′
q

∣∣2[fn′σ (k′) − fnσ (k)]

× �̄b
i(

ωnn′
kk′ − �̄a

i

)2 + (
�̄b

i

)2 δk′−k−q . (29)

By comparing the above equations to Eq. (18), one observes
that the δ function corresponding to the energy conservation
Eq. (19) is broadened into a Lorentzian with width �̄b

i and
shift �̄a

i .
It should be emphasized that the broadening and shifting of

the resonance pair can also be visualized as the broadening and
shifting of the corresponding resonant peak in the polarizations
as illustrated in Fig. 3. This offers a simple way to interpret the
influence of the broadening and shifting on the SPP damping
rate. The influence of the shifting depends on the direction of
the shift. From the figure, one can see that the shifting reduces
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FIG. 3. (Color online) Schematic of the effect of the broadening
and shifting on the electron polarization for (a) strong Landau
damping regime at low temperatures, (b) weak Landau damping
regime at low temperatures, and (c) both strong and weak Landau
damping regimes at high temperatures. The thin solid vertical
lines represent the resonance without broadening and shifting. The
resonances with the broadening and shifting are represented by the
thick solid and thin dotted vertical lines, respectively. For clarification,
only the shifting towards the small K direction is illustrated. Note
that the population differences δf become flat in both regimes at high
temperatures.

the resonant peak in the polarization if the peak is shifted
towards the region with smaller δf , thus the absorption of
the SPP by the corresponding resonant pairs is reduced [(iii)
in Figs. 3(a) and 3(c)] and the corresponding SPP damping
rate is suppressed. Otherwise, if the peak is shifted towards
the region with larger δf [(iii) in Fig. 3(b)], the absorption is
enhanced and the SPP damping rate is enhanced.

The influence of the broadening can be different in the
strong and weak Landau damping regimes at low temper-
atures as illustrated in Figs. 3(a) and 3(b). In the strong
Landau damping regime, the broadening can reduce the sharp
resonance peak of the polarization [(ii) in Fig. 3(a)] and

suppress the absorption of the SPP. Thus the corresponding
SPP damping rate is suppressed in this regime. In contrast,
in the weak Landau damping regime, the broadening of the
resonance increases the absorption from the region with larger
δf [(ii) in Fig. 3(b)], thus the absorption is enhanced and the
corresponding SPP damping rate is enhanced. Note that at high
temperatures, as the polarization exhibits a sharp peak around
the resonance in both the strong and weak Landau damping
regimes, the scattering tends to suppress the SPP damping rate
in both regimes [(ii) in Fig. 3(c)].

E. Broadening and shifting from a simplified model

In order to gain a further understanding of the microscopic
origin of the broadening and shifting, we discuss the contri-
butions of the ei, ep, and ee scatterings to the broadening and
shifting within a simplified model in this section.

Within this model, we assume that the scattering only occurs
between the polarizations inside each resonant pair. Under
such assumption, all the scattering terms can be written in a
unified form for the ith resonant pair:

Ī iσ
nk,n′k′ =

∑
q

{
�a

nk,n′k′,i(q)Pσ (nk − q,n′k′ − q)

−�b
nk,n′k′,i(q)Pσ (nk,n′k′)

}
, (30)

where both (nk,n′k′) and (nk − q,n′k′ − q) belong to the
ith resonant pair. Note that the corresponding �a/b for each
scattering mechanism can be obtained by comparing the
scattering terms [see Eqs. (B11)–(B13)] to Ī iσ

nk,n′k′ given in
the above equation.

Note that Eq. (30) has a similar structure as Eq. (23),
thus one can derive the corresponding broadening and shifting
following a similar procedure, yielding

�̄b
i =

∑
q

[
�b

nk,n′k′,i(q) − �a
nk,n′k′,i(q)

ωnn′
kk′

ωnn′
k−q,k′−q

]
, (31)

�̄a
i = π

∑
q

�a
nk,n′k′,i(q)

(
ωnn′

kk′ − ωnn′
k−q,k′−q

)
δ
(
ωnn′

k−q,k′−q

)
. (32)

The broadening �̄b
i and shifting �̄a

i due to each scattering
can be evaluated by substituting the corresponding scattering
term into Eqs. (30)–(32). Note that we have omitted the k,k′

dependence of �̄
a(b)
i inside each resonant pair to make the

equation simple and physically transparent. For each resonant
pair, �̄a(b)

i is evaluated by choosing (nk,n′k′) corresponding to
the SPP central wave vector Qs (i.e., k′ − k = Qs) since the
line-shape function pQs

q is peaked at q = Qs . The shifting �̄a
i

can be written as

�̄
a(ei)
i = 0, (33)

�̄
a(ep)
i = 0, (34)

�̄
a(ee)
i = 2π

∑
j=1,2

∑
n̄

�n
n′ (n̄k̄j ,0), (35)

where

�n
n′ (n̄k̄,q) =

∑
σ

Ṽ nn̄
q Ṽ n̄n′

q f >
n̄σ (k̄ + q)f <

n̄σ (k̄), (36)
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with Ṽq being the screened ee interaction. k̄1 = −2(εn
k−Qs

−
εn′
k′ + �s)/Qs − Qs/2 and k̄2 = 2(εn

k − εn′
k′−Qs

+ �s)/Qs +
Qs/2. �̄

a(ei)
i , �̄

a(ep)
i , and �̄

a(ee)
i correspond to the contributions

from the ei, ep, and ee scatterings, respectively. The corre-
sponding broadenings have the forms

�̄
b(ei)
i = m∗πni

(
ṽnn

0

|k| − ṽn′n′
0

|k′|

) (
ṽnn

0 − ṽn′n′
0

)
, (37)

�̄
b(ep)
i =

∑
σ

⎧⎨
⎩πm∗

⎛
⎝∑

Q

Mnn
Q,−qM

nn′
Q,−q

⎞
⎠

× [N>
LOf >

nσ (k − q) + N<
LOf <

nσ (k − q)]/|k − q||
q=q

(k)
+

+πm∗

⎛
⎝∑

Q

Mnn
Q,−qM

nn′
Q,−q

⎞
⎠

× [N<
LOf >

nσ (k − q)+N>
LOf <

nσ (k − q)]/|k − q||
q=q

(k)
−

⎫⎬
⎭

+{nk ←→ n′k′}, (38)

�̄
b(ee)
i =

⎧⎨
⎩2π

∑
n̄k̄

[
�n

n(n̄k̄,0) − �n
n′(n̄k̄,0)

]
/|k − k̄|

⎫⎬
⎭

+{nk ←→ n′k′}, (39)

where q
(k)
± satisfies [q(k)

± ]2 − 2kq± ± 2m∗�LO = 0 and ṽnn′
q

represents the screened ei interaction. {nk ←→ n′k′} stands
for the same term as in the previous {} but with the interchange
of indices nk ←→ n′k′.

From Eqs. (33)–(39), one finds that different scattering
has different contribution to the broadening and shifting.
Only the ee scattering contributes to the shifting, while the
contributions from the ei and ep scatterings vanish. Although
all the scatterings can contribute to the broadening, their
relative importance can be quite different. This is because
for the nanowires considered here, the ei, ep, and ee matrix
elements vnn′

q , Mnn′
Qq and V nn′

q are not sensitive to the subband
index n. Thus, for the ei and ee scatterings, according to
Eqs. (37) and (39), the terms in the bracket can largely cancel
each other, leading to small contributions left. In contrast, such
cancellation is absent for the ep scattering, thus its contribution
to the broadening is expected to be larger than the ones from
the ei and ee scatterings.

Equations (28) and (29) with the broadening and shifting
given in Eqs. (33)–(39) consist the analytic solution for the
SPP damping rate. The analytic solution in this section offers
a simple picture to understand the influence of the scattering on
the SPP damping: the SPP damping comes from the resonant
absorption of the SPP by electrons, while the scattering can
introduce a broadening and a shifting to the resonance and
hence affects the damping process. At low temperatures, the
broadening tends to suppress the SPP damping rate in the
strong Landau damping regime. While in the weak Landau
damping regime, the broadening tends to enhance the SPP
damping. At high temperatures, such difference vanishes and
the broadening tends to suppress the damping in both regimes.
The shifting can suppress the SPP damping if the resonance is

shifted towards the region with smaller δf , but boost it if the
resonance is shifted toward the region with larger δf . Different
scatterings can have different contributions to the broadening
and shifting. From the simplified model in this section, one
finds that the shifting is determined by the ee scattering, and
the broadening is mainly decided by the ep scattering for the
typical nanowires considered here.

III. NUMERICAL RESULTS

In the numerical investigation, we choose nanowires to be
free-standing InAs nanowires. The typical electron density
n̄0 is in the range of 1017 ∼ 1018 cm−3 and the wire radius
R is around 25 ∼ 75 nm.74 The LO phonon energy �LO =
29 meV and the electron effective mass m∗ = 0.023m0 with m0

representing the free electron mass. The dielectric constants of
the nanowires are ε∞

1 = 12.3 for high frequency and ε0
1 = 15.5

for low frequency. The dielectric constant outside the nanowire
is ε2 = 1.0. Note that for such nanowires, there are 10–20
electron subbands relevant to the SPP damping. We set the
impurity line density ni = 0.5ne with ne = πR2n̄0 being the
electron line density.

By numerical solving the kinetic equations Eqs. (12)
and (13), one obtains the temporal evolution of the SPP
amplitude B̄s . The SPP damping rate τ−1 can be extracted
by fitting the real part of B̄s with a single exponential decay
of the cosine oscillation: Re[B̄s] = B̄0

s exp(−t/τ ) cos(ωst),
where the initial value of the SPP amplitude B̄0

s is chosen to be
real. We set the wave packet length L = 100R (see Ref. 75).

A. Landau damping: size and temperature dependence

Before we discuss the influence of the scattering, it is
helpful to first obtain an understanding of the SPP damping
without scattering. In Fig. 4(a), we show a typical behavior
of the SPP damping rate as a function of the SPP central
wave vector Qs and wire radius R for the nanowire with
electron density n̄0 = 1.5 × 1017 cm−3. The temperature is
chosen to be 100 K. One finds that the SPP damping rate
oscillates with the radius R. Note that similar size-dependent
oscillations have also been reported in metal nanoparticles and
thin films.43–45,76–78

Such oscillations are usually attributed to the quantized
electron states in the nanostructures,43–45 which can be
understood in terms of the resonant pairs in the nanowires
we studied here. To illustrate this, we concentrate on the
damping rate corresponding to a typical SPP central wave
vector Qs = 1.66 × 10−2 nm−1 [skyblue curves in Fig. 4(a)]
and show the corresponding resonant pairs for radii R = 34,
38.5, 40 and 43 nm in Fig. 4(b). Each resonant pair can be
represented by the resonance corresponding to the central wave
vector Qs , since the line-shape function of the SPP wave packet
is peaked at Qs . There are four resonant pairs in Fig. 4(b)
which lay between different subbands: pair (i) is between the
subbands 1 and 4, pair (ii) is between the subbands 2 and 6, pair
(iii) is between the subbands 3 and 9 and pair (iv) is between
the subbands 4 and 8. In the figure, the four resonant pairs
(i)–(iv) are denoted by the skyblue dots, green squares, brown
open circles, and yellow triangles, respectively. The subbands
corresponding to each resonant pair are also plotted with solid
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FIG. 4. (Color online) (a) The SPP damping rate as a function of SPP central wave vector Qs and wire radius R without scattering
for n̄0 = 1.5 × 1017 cm−3 and T = 100 K. The skyblue curve represents the damping rate corresponding to the SPP central wave vector
Qs = 1.66 × 10−2 nm−1. The number of the relevant resonant pairs are labeled in the R-Qs plane. (b) The resonant pairs for R = 34, 38.5, 40
and 43 nm corresponding to Qs = 1.66 × 10−2 nm−1 in the electron spectrum. For clarification, only the lowest 10 subbands are plotted. (c) The
SPP damping rate without scattering as a function of radius R and temperature T for Qs = 1.66 × 10−2 nm−1. (d) Temperature dependence of
the damping rate τ−1 without scattering for R = 34, 38.5, 40, and 43 nm with Qs = 1.66 × 10−2 nm−1. Symbols correspond to the numerical
results. Red curves represent the results from the analytic solution. The contributions of each resonant pair from the analytic solution are also
plotted as curves with different colors. The skyblue double-dotted chain, green chain, brown dotted, and yellow solid curves correspond to the
contribution from the resonant pairs (i)–(iv), respectively.

curves in the same color. Note that for R = 34 nm, only the
resonant pair (i) is relevant for the damping. For R = 38.5 and
40 nm, both the resonant pairs (i) and (ii) are relevant. For
R = 43 nm, all the four resonant pairs (i)–(iv) contribute to
the SPP damping.

From Fig. 4(b), one can see that as the radius R increases,
the resonant pairs move from left to right in the electron
spectrum. When a resonant pair moves across the chemical
potential marked by the horizontal black dashed lines, a
crossover between the strong and weak Landau damping
regimes occurs, which induces the size-dependent oscillations
shown in Fig. 4(a). Note that the peaks/valleys correspond to
the strong/weak Landau damping regimes. For example, the
oscillation from R = 32 to 38.5 nm is due to the crossover
induced by the resonant pair (i). While the crossover induced

by the resonant pair (ii) induces the oscillation from R = 38.5
to 43 nm. One finds from the figure that R = 34 and 40 nm
correspond to the strong Landau damping regime whereas
R = 38.5 and 43 nm correspond to the weak Landau damping
regime.

One also observes from Fig. 4(b) that due to the many
subbands in the nanowires, there usually exist multiresonant
pairs relevant for the SPP damping. For a given Qs , more
and more resonant pairs become involved as the radius R

increases. The number of relevant resonant pairs are labeled
in the R-Qs plane in Fig. 4(a). Note that as the number of the
resonant pairs increases, the magnitude of the size-dependent
oscillations becomes less pronounced. This is mainly because
the oscillations are usually induced by the crossover due
to one resonant pair as R varies. For the system with
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many resonant pairs, the contribution from one resonant pair
becomes less significant. Thus the size-dependent oscillations
can be suppressed for nanowires with large R.

It should be emphasized that the size-dependent oscillations
can also be suppressed by increasing temperature T . This
is because the crossover is more pronounced for strongly
degenerate electrons where a clear Fermi surface exists
around the chemical potential. In high-temperature regime,
the crossover is largely suppressed. To show this, we plot the
damping rate τ−1 as a function of the radius R and temperature
T for Qs = 1.66 × 10−2 nm−1 in Fig. 4(c). One sees that as
temperature increases, the damping rate τ−1 corresponding
to the strong Landau damping regime decreases, while τ−1

corresponding to the weak Landau damping regime increases.
This leads to a suppression of the size-dependent oscillations
in high-temperature regime.

One can also obtain the above results from the analytic
solution of the kinetic equations without scattering [see
Eqs. (21) and (22)]. To show this, we compare the temperature
dependence of τ−1 from both the numerical (red squares) and
analytic (red solid curves) solutions for the nanowires with
R = 34, 38.5, 40, and 43 nm in Fig. 4(d). One finds good
agreement between each other, indicating that the analytic
solution without scattering offers a good estimation to the
numerical results. Note that according to the analytic solution,
the temperature dependence of the SPP damping rate originates
from the population difference of the resonant pairs.

From the analytic solution, one can also identify contri-
butions from different resonant pairs, which are plotted as
curves with different colors and line shapes in Fig. 4(d). The
skyblue double-dotted chain, green chain, brown dotted and
yellow solid curves correspond to the contributions from the
resonant pairs (i)–(iv), respectively. It is clear that the relative
importance of the resonant pairs can be quite different. For
the strong Landau damping regime, there usually exists one
resonant pair whose contribution is much larger than the
other pairs. For example, the damping rate τ−1 is mainly
determined by the resonant pairs (i) and (ii) for R = 34 and
40 nm, respectively. For the weak Landau damping regime, the
contributions from different resonant pairs can be comparable.
For example, for R = 38.5 and 43 nm, although the resonant
pair (ii) has a large contribution to the damping rate τ−1, the
other resonant pairs can also play important roles, especially
at high temperatures.

From the above results, one finds that the SPP damping
exhibits size-dependent oscillations and distinct temperature
dependence without scattering, which can be explained by the
analytic solution.

B. Influence of scattering

Now we discuss the influence of the scattering on the SPP
damping. In Fig. 5(a), we plot the damping rate τ−1 as a
function of the radius R and temperature T for Qs = 1.66 ×
10−2 nm−1 in the presence of all the scattering. Comparing
to the case without scattering [see Fig. 4(c)], one finds that
the scattering has pronounced influence on the SPP damping:
(1) the size-dependent oscillations are effectively smeared out
and (2) the temperature dependence also becomes weaker
compared to the case without scattering.
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FIG. 5. (Color online) (a) SPP damping rate in the presence
of all the scattering as a function of radius R and temperature T

for Qs = 1.66 × 10−2 nm−1. (b) SPP damping rate τ−1 calculated
from the numerical results for Qs = 1.66 × 10−2 nm−1 with different
scattering for R = 34, 38.5, 40, and 43 nm. Symbols with big blue
dots, small green squares, small olive dots represent τ−1 calculated
with the ep, ee, and ei scatterings, respectively. The brown triangles
represent τ−1 calculated in the presence of all the three scatterings
and the red squares represent τ−1 without scattering.

To gain a better understanding of the influence of the scat-
tering, in Fig. 5(b), we compare the temperature dependence of
the damping rate τ−1 with and without scattering for nanowires
with four typical radii R = 34, 38.5, 40, and 43 nm. The
brown triangles represent τ−1 calculated in the presence of all
the three scatterings, while τ−1 without scattering are plotted
with red squares for comparison. Note that R = 34 and 40 nm
correspond to the strong Landau damping regime, whereas
R = 38.5 and 43 nm correspond to the weak one.

In the presence of the scattering, it is seen that the damping
rate τ−1 is markedly suppressed in the strong Landau damping
regime (R = 34 and 40 nm). In contrast, for the weak Landau
damping regime (R = 38.5 and 43 nm), the scattering plays
different roles in different temperature regimes: The damping
rate is markedly enhanced in the low-temperature regime
(T � 150 K), but is largely suppressed in the high-temperature
regime (T � 150 K). A crossover exists at the intermediate
temperature regime. It is also noted that the damping rate can
be enhanced/suppressed by almost one order of magnitude by
the scattering.

To understand these influences, we first identify the domi-
nant scattering mechanism. To do so, we calculate the damping
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FIG. 6. (Color online) Comparison between the numerical and
analytical results of the SPP damping rate for R = 34, 38.5, 40,
and 43 nm with the ep scattering. Blue dots represent the numerical
results, while the blue dashed curves show the results from the
analytic solution. The contribution of each resonant pair from the
analytic solution is also plotted. The skyblue double-dotted chain,
green chain, brown dotted, and yellow solid curves correspond to
the contribution from the resonant pairs (i)–(iv), respectively. For
comparison, the numerical and analytical results for the damping rate
without scattering are also plotted with red squares and solid curves,
respectively.

rates τ−1 with the ep, ee, or ei scattering only, and plot them
with big blue dots, small green squares and small olive dots in
Fig. 5(b), respectively. It is clear to see from the figure that the
damping rate τ−1 is dominated by the ep scattering.79

We first concentrate on the ep scattering. From the
analytic solution within the simplified model, we have at-
tributed the effect of the ep scattering to the broadening of
the resonant pairs. To see if this picture gives a proper
description of the influence of the ep scattering in general
case, we calculate the temperature dependence of the damping
rate τ−1 by using the analytic solution Eqs. (28) and (29) with
the ep-scattering-induced broadening given in Eq. (38). The
calculated analytic results are compared to the numerical ones
in Fig. 6.

In the figure, the blue dots represent the damping rate
τ−1 from the numerical results, while the blue dashed curves
represent τ−1 from the analytic results. For comparison, we
also plot the numerical and analytic results without scattering
with red squares and solid curves, respectively. One finds good
agreement between each other, indicating that the broadening
can give a proper description of the effect of the ep scattering.
Note that at low temperatures, the broadening tends to suppress
the SPP damping rate in the strong Landau damping regime
(R = 34 and 40 nm), while in the weak Landau damping
regime (R = 38.5 and 43 nm), the broadening tends to enhance
the SPP damping rate. At high temperatures, such difference
vanishes and the SPP damping rate is suppressed in both
the strong and weak Landau damping regimes. This leads
to a crossover between the suppression and enhancement
for R = 38.5 and 43 nm corresponding to the weak Landau
damping regime as shown in Fig. 6. This also agrees with the
conclusion from the analytic solution.

It is worth noting that the scattering can also suppress the
temperature dependence of the SPP damping rate. This is
because the temperature dependence originates from the pop-
ulation difference of the resonant pairs. For the resonant pairs
with the broadening, the corresponding population difference
is less sensitive to the temperature, leading to the suppression
of the temperature dependence of the corresponding SPP
damping rate.

We further point out that the scattering can also change
the relative importance of different resonant pairs. To see this,
we identify contributions of different resonant pairs from the
analytic solution, as applied in Sec. III A for the case without
scattering. In Fig. 6, the skyblue double-dotted chain, green
chain, brown dotted, and yellow solid curves correspond to the
contributions from the resonant pairs (i)–(iv), respectively. One
finds that the resonant pair (i) dominates the damping for R =
34 nm, whereas the resonant pair (ii) plays the most important
role for R = 38.5 and 40 nm. For R = 43 nm, all the four
resonant pairs have comparable contributions to the damping,
with the largest contribution coming from the resonant pair
(iii). Comparing to the case without scattering [see Fig. 4(d)],
one also finds that the relative importance of different resonant
pairs is modified by the broadening, especially in weak Landau
damping regime.

From the above discussion, one comes to the conclusion
that the influence of the ep scattering on the SPP damping rate
can be understood as the broadening of the resonant pairs. The
analytic solution incorporating such broadening shows good
agreement with the numerical result. Note that in the above
results, the contribution of the SO phonons is omitted since it
is much smaller than that from the LO phonons. This is shown
in detail in Appendix D.

Now we briefly address the ee and ei scatterings. From the
analytic solution within the simplified model, the effect of the
ei scattering is attributed to the broadening of the resonant
pairs. While for the ee scattering, the main effect is due to the
shifting. The SPP damping rate with the ee/ei scattering can
also be calculated from the analytic solution [see Eqs. (28)
and (29) with the broadening and shifting given in Eqs. (33)
and (37) for the ei scattering and Eqs. (35) and (39) for the
ee scattering, respectively]. The analytic results are compared
to the numerical ones in Fig. 7. From the figure, one observes
qualitatively good agreement between each other, indicating
that the ee and ei scatterings can also be understood as the
broadening and/or shifting of the resonant pairs.

It is pointed out that the effect of the broadening and shifting
can be visualized from the behavior of the polarization, which
gives a more intuitive picture for the effect of the scattering.
This is discussed in detail in Appendix E.

From the above results, one finds that the scattering tends to
smear out the size-dependent oscillations of the SPP damping
rate. The temperature dependence can also be suppressed by
the scattering. Note that this effect is quite general and can be
seen for nanowires with different electron densities. To demon-
strate this, we show the size and temperature dependence of
the SPP damping rates for nanowires with electron density
n̄0 = 5.0 × 1017 cm−3 without and with scattering in Figs. 8(a)
and 8(b), respectively. The central wave vector of the SPP wave
packet is chosen to be Qs = 1.3 × 10−2 nm−1. From the figure,
it is seen that the size-dependent oscillations are smeared
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FIG. 7. (Color online) Comparison between the numerical and
analytical results of the SPP damping rate for the ee and ei scatterings
for R = 34, 38.5, 40, and 43 nm. Small green squares and green
dotted curves represent the numerical and analytical results for the
ee scattering, respectively. Small olive dots and olive double-dotted
chain represent the numerical and analytical results for the ei
scattering, respectively. For comparison, the numerical and analytical
results for the damping rate without scattering are also plotted with
red squares and solid curves, respectively.

out by the scattering. The temperature dependence is also
suppressed. These effects are similar to the ones for nanowires
with n̄0 = 1.5 × 1017 cm−3 investigated above, indicating that
these effects are quite general for typical InAs nanowires.
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FIG. 8. (Color online) Size and temperature dependence of the
SPP damping rate for nanowires with electron density n̄0 = 5.0 ×
1017 cm−3 (a) without any scattering and (b) with all the scattering.
The central wave vector of the SPP wave packet is chosen to be
Qs = 1.3 × 10−2 nm−1.

IV. CONCLUSION AND DISCUSSION

In conclusion, we present a microscopic kinetic theory
to study the effect of the electron scattering on the Landau
damping of the SPP in semiconductor nanowires. Based on the
semiclassical model Hamiltonian of the SPP-electron system
and the nonequilibrium Green-function approach, we derive
the kinetic equations of the SPP-electron system, with all
the scattering explicitly included. Within this model, the SPP
damping is understood as the absorption of the SPP by the
electron polarization of the resonant pairs. The population
difference of the resonant pairs δf plays an important role on
the SPP damping, leading to a strong and a weak Landau
damping regimes for degenerate electrons. The scattering
influences the SPP damping via the broadening and shifting of
the resonant pairs, which have different effects on the strong
and weak Landau damping regimes. At low temperatures,
the broadening tends to suppress the SPP damping in the
strong Landau damping regime. Whereas in the weak Landau
damping regime, the broadening tends to enhance the SPP
damping. At high temperatures, this difference tends to be
vanished. The shifting can suppress the SPP damping if the
resonance is shifted towards the region with smaller δf , but
boost it if the resonance is shifted toward the region with
larger δf . The broadening and shifting can be visualized
from the corresponding electron polarization of the resonant
pairs. Moreover, different scattering has different contribution
to the broadening and shifting. The main effect of the ei/ep
scattering is to cause a broadening, whereas the main effect
of the ee scattering is to introduce a shifting. The effect of the
broadening and shifting can be incorporated into an analytic
solution, which shows good agreement with the numerical
result.

To demonstrate the effect of the scattering, we inves-
tigate the damping of the axial symmetric SPP mode in
InAs nanowires in the presence of the ei, ee, and ep
scatterings. Without any scattering, the SPP damping ex-
hibits size-dependent oscillations and a distinct temperature
dependence. In the presence of the scattering, the size-
dependent oscillations are markedly smeared out and the
temperature dependence is also suppressed. The damping
rate can be enhanced/suppressed by almost one order of
magnitude. For InAs nanowires investigated here, the ep
scattering is found to be dominant. These results are found
to be general for typical InAs nanowires, which demonstrate
the importance of the scattering on the SPP damping for
semiconductor nanowires. It is further pointed out that our
model can be applied to nanowires made of other semi-
conductors, offering a systematic way to investigate the
effect of electron scattering on the SPP damping in such
systems.
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APPENDIX A: SEMICLASSICAL MODEL FOR SPP

Our derivation of the quantized SPP Hamiltonian HSPP

and its coupling to electrons HSPP-el follows the procedure
used in Ref. 80, in which the SPPs are obtained from
quantization of the classical plasmon field. The classical
plasmon field is derived within the hydrodynamical model,
which treats plasmons as irrotational deformations of the
conduction electrons.80–84 From this model, the Hamiltonian
of the plasmon can be written as80

HSPP =
∫

d r
m∗

2
n(r)|∇η(r)|2

+ e2

2

∫
d r

e2

2

∫
d r ′n(r)n(r ′)Vee(r,r ′)

+
∫

d rG[n(r)], (A1)

where the irrotational flow has been assumed, i.e., v(r) =
∇η(r) with v(r) being the velocity field. n(r) is the electron
density and m∗ represents the electron effective mass.

For both r and r ′ inside the nanowire, the Coulomb
interaction Vee(r,r ′) has the form85

Vee(r,r ′) = e

4πε∞
1

{
1

|r − r ′| + 2

π

(
ε∞

1

ε2
− 1

)

×
+∞∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0
dk cos[k(z − z′)]

× Cm

(
kR,

ε∞
1

ε2

)
Im(kρ)Im(kρ ′)

}
, (A2)

where

Cm

(
kR,

ε∞
1

ε2

)
= Km(kR)K ′

m(kR)

Im(kR)K ′
m(kR) − ε∞

1
ε2

I ′
m(kR)Km(kR)

.

(A3)

Note that the distortion of the Coulomb interaction Vee(r,r ′)
by the dielectric mismatch between the nanowire and the
environment has been taken into account, which is not
addressed in previous work.

G[n(r)] represents the exchange, correlation and internal
energy of the electrons, which is approximated by the Thomas-
Fermi functional

G[n(r)] = 3

10m∗ (3π2)2/3n5/3(r), (A4)

with the exchange-correlation contributions neglected.
From the above Hamiltonian, up to the first order of

the perturbation, one can derive linearized hydrodynamic
equations as

∂tn1(r) = ∇ · [n0(r)∇η1(r)], (A5)

∂tη1(r) = e

m∗

∫
d r ′Vee(r,r ′)n1(r ′) + 5γ

3m∗
n1(r)

[n0(r)]1/3
, (A6)

where n1 and η1 are perturbations around the equilibrium.
n0(r) = n̄0�(R − ρ) is the electron density in the equilibrium
with n̄0 being the average electron density, γ = (3π)2/3

5m∗ .

The normal modes from the above equations include both
the surface plasmon and volume plasmon modes. The surface
modes, which we focus on in this paper, can be represented by
the ansatz83

ηqm(r) = R
∑

q

Q̇qmeimϕ+iqz[Im(qρ) + AIm(κρ)], (A7)

where Im(ρ) is the modified Bessel function of the first kind.
A and κ are parameters depending on m and q, with m

being the angular quantum number of the SPP mode and q

representing the SPP wave vector along the wire axis. Here, the
first term in the square bracket represents the incompressible
deformation of the electrons, while the second term represents
the correction due to the finite compressibility.

By substituting the ansatz Eq. (A7) into Eqs. (A5) and (A6),
one obtains the equation for the parameter κ:

1 − β2

ω2
p

(κ2 − q2) − (qR)Im+1(qR)Km(qR)

×
{
C′

qm

(
κR

qR

Im+1(κR)

Im+1(qR)
− Im(κR)

Im(qR)

)

+
[
κR

qR

Im+1(κR)

Im+1(qR)
A(1 + C′

qm)

−A

(
κR

qR

Im+1(κR)

Im+1(qR)
+ Im(κR)

Im+1(qR)

Km+1(qR)

Km(qR)

)]}
= 0, (A8)

with ωp =
√

e2n̄0
m∗ε∞

1
being the bulk plasma frequency and β =√

5γ

3m∗ n̄
2/3
0 . The parameter A can be expressed as

A = − Im+1(qR)(qR)(1 + C′
qm)

Im+1(κR)(κR)
[
1 + C′

qm
(qR)Im+1(qR)Im(κR)
(κR)Im+1(κR)Im(qR)

] , (A9)

where

C′
m(qR) =

ε∞
1
ε2

− 1

1 + ε∞
1
ε2

Im+1(qR)
Im(qR)

Km(qR)
Km+1(qR)

. (A10)

Once κ is obtained, the corresponding eigenfrequency �qm

can be calculated from the equation

1 + β2 κ2 − q2

�2
qm

− ω2
p

�2
qm

{
1 −

(
ε∞

1

ε2
− 1

)
Cm(qR)

× [(κR)Im+1(κR)Im(qR) − (qR)Im(κR)Im+1(qR)]

}
= 0. (A11)

Note that without the dielectric mismatch (ε∞
1 = ε2),

Eqs. (A8)–(A11) agree with the results for the surface mode
from Ref. 83.

The Hamiltonian of the SPP can be obtained by substituting
Eq. (A7) into Eq. (A1) and keeping only terms up to the linear
order, which can be written as

H = 2πR3m∗n̄0

2

∑
qm

[|Q̇′
qm|2 + �2

qm|Q′
qm|2], (A12)
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where the canonical coordinate Q′
qm has the form

Q′
qm =

√
[AIm(κR)κ + Im(qR)q]

×
√

[AIm(κR) + Im(qR)]Qqm. (A13)

Following the canonical quantization procedure, the collective
coordinate Q′

qm can be transformed into

Q′
qm =

√
1

2πR3m∗n̄0�qm

(bqm + b
†
−qm), (A14)

where the annihilation(creation) operator bqm(b†qm) satisfies
the boson commutation relation [bqm,b

†
q ′m′] = δq,q ′δmm′ . Sub-

stituting Eq. (A14) into Eq. (A12), the Hamiltonian of the SPP
is quantized as

HSPP =
∑
qm

�qm

2
(2b†qmbqm + 1). (A15)

By choosing m = 0, one obtains the Hamiltonian of the axial
symmetric SPP mode under investigation:

HSPP =
∑

q

�qb
†
qbq, (A16)

without taking into account the zero-point energy, which is
irrelevant for our study. The angular quantum number m is
also omitted without confusion.

Following a similar procedure, the induced potential of the
SPP mode can be quantized as

V in(ρ,ϕ,z) =
∫

dqṼ in
q (ρ,ϕ,z)(bq + b

†
−q), (A17)

where

Ṽ in
q (ρ,ϕ,z)

= − e2

2πε∞
1

√
n̄0

2πm∗ωp

eiqz√
�q

× I0(qρ)C ′′
q + AI0(κρ)√

[AI1(κR)κR + I1(qR)qR][AI0(κR) + I0(qR)]
(A18)

with

C ′′
q = −[(κR)AI1(κR) + (qR)I1(qR)][K0(qR)

+C′
0(qR)K0(qR)] + A

[
(κR)I1(κR)K0(qR)

+ (qR)I0(κR)K1(qR) + C′
0(qR)K0(qR)

(
(κR)I1(κR)

− (qR)I0(κR)
I1(qR)

I0(qR)

)]
. (A19)

The SPP-electron coupling Hamiltonian HSPP-el in Eq. (9)
can be obtained by combining the single-electron states in
Eq. (5) and the induced potential of the SPP given above. The
corresponding matrix element reads

gnn′
k−k′ =

∫
ρdρdϕdzψ∗

nk(ρ,ϕ,z)Ṽ in
k−k′ (ρ,ϕ,z)ψn′k′(ρ,ϕ,z),

(A20)

with ψnk given in Eq. (5).

Now let us discuss the matrix elements for the interaction
Hamiltonians for electrons. For the ei interaction, we have
assumed that the impurities are distributed on the surface of
the nanowire with an axially symmetric distribution.74 Given
the electron wave function ψnk in Eq. (5), the corresponding
matrix element vnn′

q can be calculated as

vnn′
q = e2δm̃m̃′

2π2ε∞
1 R

∫ 1

0
dρ̄ρ̄

Jm̃

(
λm̃

ñ ρ̄
)
Jm̃′

(
λm̃′

ñ′ ρ̄
)

Jm̃+1
(
λm̃+1

ñ

)
Jm̃′+1

(
λm̃′+1

ñ′
)

× [I0(qRρ̄)K0(qR) + C′
0(qR)I0(qRρ̄)K0(qR)].

(A21)

Note that the dielectric mismatch effect has been taken into
account in the above expression. For the ep interaction, we
here consider the polar interaction between the electrons and
the LO phonons. The corresponding matrix element reads

Mnn′
Qq =

√
2πe2�LO

(
1/ε∞

1 − 1/ε0
1

)
Jm̃+1

(
λm̃

ñ

)
Jm̃′+1

(
λm̃′

ñ′
) 2

|q|

×
∫ 1

0
dρ̄ρ̄Jm̃

(
λm̃

ñ ρ̄
)
Jm̃′

(
λm̃′

ñ′ ρ̄
)
eiρ̄ Q·eρRδm̃m̃′ , (A22)

where q = ( Q,q) represents the LO phonon wave vector and
�LO is the LO phonon energy. eρ is the unit vector along the
radial direction of the wire and ε0

1 is the dielectric constant of
the nanowire in the static limit. Note that here we model the
LO phonons by 3D modes, which is adequate for nanowires
with large diameter.68,69 For the ee Coulomb interaction, the
corresponding matrix element reads

V nn′
q = 2e2

πε∞
1

∫ 1

0
dρ̄1ρ̄1

∫ 1

0
dρ̄2ρ̄2

[
I0(qRρ̄<)K0(qRρ̄>)

+
(

ε∞
1

ε2
− 1

)
I0(qRρ̄1)I0(qRρ̄2)C0

(
qR,

ε∞
1

ε2

)]

×
[

Jm̃

(
λm̃

ñ ρ̄1
)

Jm̃+1
(
λm̃

ñ

) Jm̃′
(
λm̃′

ñ′ ρ̄2
)

Jm̃′+1
(
λm̃′

ñ′
)
]2

, (A23)

where ρ> = max(ρ1,ρ2) and ρ< = min(ρ1,ρ2). Here we have
omitted the interband term of the Coulomb interaction which
can be small for nanostructures.86 Note that the dielectric
mismatch effect has been taken into account in the ee Coulomb
interaction.

APPENDIX B: DERIVATION OF KINETIC EQUATIONS

The time evolution of Bq(t) = 〈bq(t)〉 can be derived from
the Heisenberg equation of the annihilation operator bq , which
reads

∂tBq(t) = −i�qBq(t) +
∑

nn′,kk′,σ

p
Qs

k−k′g
nn′
k−k′G

<
σ (n′k′,nk; t t).

(B1)
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By using the definitions of B̄s and P given below Eq. (14),
one has

∂t B̄s(t) = −i
∑

q

(
�Qs+q − �s

)
pQs

q BQs+qe
i�s t

− i
∑
nn′σ

∑
kk′

p
Qs

k−k′g
nn′
k−k′[Pσ (nk,n′k′; t)]†, (B2)

where the first term in the right-hand side of the equation
describes the effect of the SPP dispersion on the dynamics
of the SPP wave packet and the second term describes the
dissipative effect due to the coupling to electrons. For the
SPP wave packet with sufficiently large length L, the line-
shape function pQs

q exhibits a sharp symmetric peak around
the central wave vector Qs . In this case, one can perform the
Taylor expansion of the dispersive relation �Qs+q around Qs

up to the linear order of q to eliminate the first term. In doing
so, we omit the effect of the SPP dispersion on the wave packet
dynamics and consider only the dissipative effect.

Within the nonequilibrium Green-function approach, the
quantum kinetic equation of electrons can be derived following
the Kadanoff-Baym method,66,67 yielding[−i∂t − (

εn′
k′ − εn

k

)]
G≷

σ (nk,n′k′; t t)

=
∑
n̄q

(B−q + B†
q)
[
gn̄n′

q G≷
σ (nk,n̄k′ − q; t t)

−gnn̄
q G≷

σ (n̄k + q,n′k′; t t)
] + I

≷σ

nk,n′k′(t), (B3)

where the first term in the right-hand side of the equation is the
coherent driving term of electrons by the SPP and the second
term describes the scattering

I
≷σ

nk,n′k′(t) =
∫ t

−∞
dt̄

∑
k̄

{[�≶(kk̄; t t̄)G≷
σ (k̄k′; t̄ t)

−G≷
σ (kk̄; t t̄)�≶(k̄k′; t̄ t))] − [>←→<]}, (B4)

where [>←→<] stands for the same term as in the previous []
but with the interchange of >←→<. It should be emphasized
that due to the driving of the SPP, the dressed Green
function G

≷
σ has off-diagonal components with respect to the

momentum k and subband index n.
By treating the driving term as a perturbation, the kinetic

equation can be linearized by keeping only terms up to the
linear order,[−i∂t − (

εn′
k′ − εn

k

)]
G≷

σ (nk,n′k′; t t)

= (Bk−k′ + B
†
k′−k)

[
gnn′

k′−kG
≷
0σ (nk,nk; t t)

− gnn′
k′−kG

≷
0σ (n′k′,n′k′; t t)

] + I
≷σ

nk,n′k′(t). (B5)

The first term in the right-hand side of the equation is the
linearized driving term. Note that within the linearization, the
dressed Green function G

≷
σ in the driving term is replaced

by the free-electron Green function G
≷
0σ , which is diagonal

with respect to the momentum k and subband index n. By
using the definition Pσ (nk,n′k′; t) = −iG<

σ (nk,n′k′; t t)ei�s t

and fnσ (k) = −iG<
0σ (nk,nk; t t), one obtains Eq. (13) from

the above equation.

Now we turn to the scattering term. We first discuss the
ei scattering. Following the standard approximation,66 the
corresponding scattering term can be expressed as

I
ei,σ
nk,n′k′ = −[Sei,σ (nk,n′k′; >, <) − S†

ei,σ (n′k′,nk; <, >)]

+ [>←→<], (B6)

Sei,σ (nk,n′k′; >, <)

=
∫ t

−∞
dt̄

∑
n̄n̄′ñ

∑
k̃q

ni ṽ
nn̄
q ṽñn̄′

q

×G>
σ (n̄k − q,n̄′k̃ − q; t t̄)G<

σ (ñk̃,n′k′; t̄ t), (B7)

where ṽnn′
q = vnn′

q /εnn′
(q) is the screened electron-impurity

interaction. The screening εnn′
(q) is evaluated following

Ref. 87 in the static limit, which can be written as

εnn′
(q) = 1 −

∑
lσ

V nl
q V ln′

q

V nn′
q

∑
k

flσ (k + q) − flσ (k)

εl
k+q − εl

k − i0+ . (B8)

Note that Sei,σ contains the product of two dressed Green
functions. By keeping only terms up to the linear order, Sei,σ

can be linearized as

Sei,σ (nk,n′k′; >, <)

=
∫ t

−∞
dt̄

∑
n̄ñ

∑
k̃q

ni ṽ
nn̄
q ṽñn̄

q

×G>
0σ (n̄k − q,n̄k − q; t t̄)G<

σ (ñk,n′k′; t̄ t)

+
∫ t

−∞
dt̄

∑
n̄n̄′

∑
k̃q

ni ṽ
nn̄
q ṽn′n̄′

q

×G>
σ (n̄k − q,n̄′k′ − q; t t̄)G<

0σ (n′k′,n′k′; t̄ t). (B9)

Note that within the linearization, Sei,σ is separated into two
terms. Each term contains only one dressed Green function
G

≷
σ , while the other one is replaced by the free Green

function G
≷
0σ . By applying the rotating wave approximation

with respect to the SPP frequency �s , one can remove the
non-frequency-matched terms in the above equation, yielding

Sei,σ (nk,n′k′; >, <)e−i�s t

= πni

∑
n̄n̄′q

δ
(
εn̄
k−q − εn′

k′ + �s

)
× [

vnn̄
q vn̄n̄′

q f >
n̄σ (k − q)Pσ (n̄′k,n′k′)

− vnn̄
q vn̄′n′

q f <
n′σ (k′)Pσ (n̄k − q,n̄′k′ − q)

]
(B10)

in the Markovian limit. Substituting Eq. (B10) into Eqs. (B6)
and (B7) and using the definition Ī σ

nk,n′k′ = I σ
nk,n′k′ei�s t , one

gets the final expression of the impurity scattering term:

Ī
ei,σ
nk,n′k′

= πni

∑
n̄n̄′q

{
δ
(
εn̄
k−q − εn′

k′ + �s

)
× [

ṽnn̄
q ṽn̄′n′

q Pσ (n̄k − q,n̄′k′ − q) − ṽnn̄
q ṽn̄n̄′

q Pσ (n̄′k,n′k′)
]

+ δ
(
εn̄′
k′−q − εn

k − �s

)
× [

ṽnn̄
q ṽn̄′n′

q Pσ (n̄k − q,n̄′k′ − q) − ṽn̄n̄′
q ṽn̄′n′

q Pσ (nk,n̄k′)
]}

.

(B11)
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The ep scattering term can be derived following a similar procedure, which reads

Ī
ph,σ

nk,n′k′ = π
∑
n̄n̄′

∑
q Q

{
δ
(
εn̄
k+q − εn′

k′ + �s + �LO
)[

Mnn̄
QqM

n̄′n′
Qq (N>

LOf <
n′σ (k′) + N<

LOf >
n′σ (k′))Pσ (n̄k + q,n̄′k′ + q)

−Mnn̄
QqM

n̄n′
Qq(N>

LOf >
n̄σ (k + q) + N<

LOf <
n̄σ (k + q))Pσ (n̄′k,n′k′)

] + δ
(
εn̄
k+q − εn′

k′ + �s − �LO
)[

Mnn̄
QqM

n̄′n′
Qq (N<

LOf <
n′σ (k′)

+N>
LOf >

n′σ (k′))Pσ (n̄k + q,n̄′k′ + q) − Mnn̄
QqM

n̄n′
Qq(N<

LOf >
n̄σ (k + q) + N>

LOf <
n̄σ (k + q))Pσ (n̄′k,n′k′)

]
+ δ

(
εn̄′
k′+q − εn

k − �s + �LO
)[

Mnn̄
QqM

n̄′n′
Qq (N>

LOf <
nσ (k) + N<

LOf >
nσ (k))Pσ (n̄k + q,n̄′k′ + q)

−Mn′n̄′
Qq Mn̄n̄′

Qq(N>
LOf >

n̄′σ (k′ + q) + N<
LOf <

n̄′σ (k′ + q))Pσ (nk,n̄k′)
]

+ δ
(
εn̄′
k′+q − εn

k − �s − �LO
)[

Mnn̄
QqM

n̄′n′
Qq (N<

LOf <
nσ (k) + N>

LOf >
nσ (k))Pσ (n̄k + q,n̄′k′ + q)

−Mn′n̄′
Qq Mn̄n̄′

Qq(N<
LOf >

n̄′σ (k′ + q) + N>
LOf <

n̄′σ (k′ + q))Pσ (nk,n̄k′)
]}

, (B12)

where N
<(>)
LO = NLO + 1

2 − (+) 1
2 with NLO = 1/[exp(�LO

kBT
) − 1] representing the thermal LO phonon distribution. The ee

scattering term can also be derived in a similar way:

Ī
ee,σ
nk,n′k′ = 2π

∑
qn̄k̄

{
δ
(
εn
k−q − εn′

k′ + �s + εn̄
k̄+q

− εn̄
k̄

)[
f <

n′σ (k′)�n
n′(n̄k̄,q)Pσ (nk − q,n′k′ − q) − f >

nσ (k − q)�n
n(n̄k̄,q)Pσ (nk,n′k′)

]
+ δ

(
εn
k−q − εn′

k′ + �s + εn̄
k̄

− εn̄
k̄−q

)[
f >

n′σ (k′)�n′
n (n̄k̄, − q)Pσ (nk − q,n′k′ − q) − f <

nσ (k − q)�n
n(n̄k̄, − q)Pσ (nk,n′k′)

]
+ δ

(
εn
k − εn′

k′−q + �s + εn̄
k̄

− εn̄
k̄+q

)[
f <

nσ (k)�n
n′(n̄k̄,q)Pσ (nk − q,n′k′ − q) − f >

n′σ (k′ − q)�n′
n′ (n̄k̄,q)Pσ (nk,n′k′)

]
+ δ

(
εn
k − εn′

k′−q + �s + εn̄
k̄−q

− εn̄
k̄

)[
f >

nσ (k)�n′
n (n̄k̄, − q)Pσ (nk − q,n′k′ − q) − f <

n′σ (k′ − q)�n′
n′ (n̄k̄, − q)Pσ (nk,n′k′)

]}
,

(B13)

where �n
n′ (n̄k̄,q) = ∑

σ Ṽ nn̄
q Ṽ n̄n′

q f >
n̄σ (k̄ + q)f <

n̄σ (k̄) with Ṽ nn′
q = V nn′

q /εnn′
(q) being the screened ee interaction.

APPENDIX C: SCATTERING-INDUCED FREQUENCY MODIFICATION AND DECAY OF THE POLARIZATION

The polarization P for the ith resonant pair in the presence of the scattering term Ī σ
nk,n′k′ given in Eq. (23) can be solved by

treating �i as perturbation and solve Eq. (13) order by order. By assuming

Pσ (nk,n′k′) =
∞∑

j=0

P (j )
σ (nk,n′k′; t), (C1)

one obtains

∂tP
(0)
σ (nk,n′k′) = iωnn′

kk′ P
(0)
σ (nk,n′k′; t) + ignn′

k−k′p
Qs

k−k′B̄
†
s [fnσ (k) − fn′σ (k′)], (C2)

for zeroth order and

∂tP
(j+1)
σ (nk,n′k′) = iωnn′

kk′ P
(j+1)
σ (nk,n′k′; t) +

∑
q

�i

[
P (j )

σ (nk − q,n′k′ − q) − P (j )
σ (nk,n′k′)

]
, (C3)

for (j + 1)th order, with j � 0.
In the long-time limit t → ∞, the solution of the above equations reads

P (0)
σ (nk,n′k′) = −gnn′

k−k′p
Qs

k−k′B̄
†
s [fnσ (k) − fn′σ (k′)]/

(
ωnn′

kk′ + i0+), (C4)

for zeroth order, and

P (j+1)
σ (nk,n′k′) = P

(j )
σ (nk,n′k′)
ωnn′

kk′ + i0+ i�i

∑
q

[
P

(j )
σ (nk − q,n′k′ − q)

P
(j )
σ (nk,n′k′)

− 1

]
, (C5)

for (j + 1)th order.

Now let us evaluate
∑

q[P
(j )
σ (nk−q,n′k′−q)

P
(j )
σ (nk,n′k′)

− 1]. For zeroth order,

∑
q

[
P (0)

σ (nk − q,n′k′ − q)

P
(0)
σ (nk,n′k′)

− 1

]
=
∑

q

[
gnn′

k−k′p
Qs

k−k′B̄†[fnσ (k) − fn′σ (k′)]

gnn′
k−k′p

Qs

k−k′B̄†[fnσ (k − q) − fn′σ (k′ − q)]

ωnn′
kk′

ωnn′
k−q,k−q ′ + i0+ − 1

]

≈
∑

q

[
ωnn′

kk′

ωnn′
k−q,k−q ′ + i0+ − 1

]
, (C6)
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where we have assumed that fnσ (k) varies slowly with respect to k and can be canceled out. The first-order term can be evaluated
as ∑

q

[
P (1)

σ (nk − q,n′k′ − q)

P
(1)
σ (nk,n′k′)

− 1

]

=
∑

q

⎧⎨
⎩
∑
q ′

[
P (0)

σ (nk − q − q ′,n′k′ − q − q ′) − P (0)
σ (nk − q,n′k′ − q)

] {∑
q

[
P (0)

σ (nk − q,n′k′ − q)

− P (0)
σ (nk,n′k′)

]}−1
ωnn′

kk′

ωnn′
k−q,k−q ′ + i0+ − 1

⎫⎬
⎭

≈
∑

q

[
ωnn′

kk′

ωnn′
k−q,k−q ′ + i0+ − 1

]
, (C7)

where we have assumed that
∑

q[P (0)
σ (nk − q,n′k′ − q) − P (0)

σ (nk,n′k′)] varies slowly with respect to k(k′) and can be cancelled
out.

Following a similar procedure, for j th order, one has

∑
q

[
P

(j )
σ (nk − q,n′k′ − q)

P
(j )
σ (nk,n′k′)

− 1

]
≈
∑

q

[
ωnn′

kk′

ωnn′
k−q,k−q ′ + i0+ − 1

]
, (C8)

with j � 1.
By combining Eqs. (C1), (C4)–(C6), and (C8), one obtains Eqs. (24)–(26).

APPENDIX D: EFFECT OF THE SO PHONONS

The SO phonons in nanowires69 can also influence the
damping of the SPP. However, for the typical InAs nanowires
we considered here, the SO phonons are of marginal impor-
tance since their contribution is much smaller than that from
the LO phonons. This will be shown in this Appendix.

The induced potential due to the SO phonon is given by88–90

VSO =
∑

p

(
�SO

p eiqzeipϕaSO
p + H.c.

)
, (D1)

with

�SO
p =

√
2πe2R

q

D(�SO)

Ip(qR)I ′
p(qR)

Ip(qr), (D2)

D(ω) = ε2(ω)

ε2(ω) ∂
∂ω

ε1(ω) − ε1(ω) ∂
∂ω

ε2(ω)
, (D3)

εi(ω) = ε∞
i

�2
Li − ω2

�2
Ti − ω2

, (D4)

where aSO
p is the annihilation operator for the SO phonons and

�SO is the SO phonon energy. �Li(�Ti) represents the LO(TO)
phonon energy inside (i = 1) and/or outside (i = 2) the
nanowire. The coordinates are chosen according to Fig. 1(a).

As the SO phonon energy is very close to the LO phonon
energy for typical InAs nanowires,69 we assume �SO = �LO

in the calculation. By using the single electron states in
Eq. (5), the corresponding electron-SO-phonon interaction
Hamiltonian can be written as

HSO =
∑
pq

∑
nn′kσ

M̄nn′
pq

[
aSO

pq + (
aSO

−p−q

)†]
c
†
nkσ cn′k−qσ , (D5)

where the interaction matrix element reads

M̄nn′
pq =

√
πe2�SO

(
1/ε∞

1 − 1/ε0
1

)
R/q

Jm̃+1
(
λm̃

ñ

)
Jm̃′+1

(
λm̃′

ñ′
) δm̃,m̃′+p

×
∫ 1

0
dρ̄ρ̄Jm̃

(
λm̃

ñ ρ̄
)
Jm̃′

(
λm̃′

ñ′ ρ̄
) Ip(qRρ̄)√

Ip(qR)I ′
p(qR)

.

(D6)

By using the analytic solution given in Secs. II D and II E,
we calculate the temperature dependence of the SPP damping
rates for R = 34 and 38.5 nm in the presence of the ep
scattering with and without the contribution of the SO phonons,
which is plotted in Fig. 9. One can see that the damping rates
are dominated by the LO phonons, and the SO phonons have
very little effect.

APPENDIX E: VISUALIZATION OF THE BROADENING
AND SHIFTING

We have seen that the SPP damping rate can be understood
as the broadening and shifting of the resonant pairs. In the
analytic solution, the broadening and shifting can be seen
clearly from both the resonant denominator in the polarization
[see Eq. (24)] and the Lorentzian in the damping rate [see
Eq. (29)]. One may wonder whether the broadening and
shifting can also be observed in a more intuitive way from
the numerical results. In fact, inspired by Eq. (24), the
broadening and shifting of the resonant pairs can be visualized
from the normalized polarization P (nk,n′k′)/(δf B̄s), from
which the structure of the resonant denominator can be
identified.
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FIG. 9. (Color online) Temperature dependence of SPP damping
rate in the presence of the ep scattering for R = 34 and 38.5 nm.
Blue dashed curves represent the results with only the LO phonon
scattering, while the brown solid curves represent the results with
both the LO and SO phonon scatterings. The damping rates without
any scattering are plotted with red double-dotted chain curves for
comparison. Other parameters are all the same as Fig. 6.

Before we show the numerical results of the normalized
polarizations, we first explain what we expect from the polar-
izations. According to the analytic solution Eq. (15), the mag-
nitude of the normalized polarization |P (nk,n′k′)/(δf B̄s)|
without scattering can exhibit a sharp Lorentzian peak around
the resonance corresponding to the SPP central wave vector Qs

as indicated by the resonant denominator. Several side peaks
can also exist as the SPP wave packet is nonmonochromatic
[i.e., the line-shape function pQs

q �= δ(q − Qs)]. With scat-
tering, these peaks can be shifted and broadened, indicating
the shifting and broadening of the corresponding resonant
pairs. Small side peaks may also be smeared out by the
broadening. Note that with the scattering, the polarizations
from the numerical results can have more complex behav-
iors. The peaks in the polarization can also be distorted
by the scattering, which has been omitted in the analytic
solution.

We first concentrate on the typical case with R = 34 nm
and T = 150 K corresponding to the strong Landau damping
regime. The magnitudes of the normalized electron polariza-
tion |P (nk,n′k′)/(δf B̄s)| from the computation are plotted in
Fig. 10(a). In the figure, polarizations with different scatterings
are plotted by curves with different colors. The contour
plots of the polarizations are also shown in the K-q plane,
which are useful for identifying the shape and position of the
polarizations. The population differences δf = fn′(k′) − fn(k)
for the resonant pairs are also plotted with orange curves for
comparison, with the corresponding contour map plotted in the
K-q plane. The polarizations with different scatterings and
the population difference have been offset along the q axis
for clarification. The corresponding unnormalized electron
polarizations |P (nk,n′k′)/B̄s | are also plotted in the similar
way in Fig. 10(b) for comparison. Note that all the polarizations
are taken at time t = 2.86 ps. Polarizations taken at other time
show similar behaviors.

FIG. 10. (Color online) 3D plot and the corresponding contour
plot of the normalized (a) and unnormalized (b) electron polarization
corresponding to the resonant pair (i) for R = 34 nm, T = 150 K.
The corresponding population difference is also plotted in the figure.
The olive, green, and blue curves represent the polarization with the
ei, ee, and ep scattering only, respectively. The red curves represent
the polarization without scattering, while the brown curves represent
the polarization in the presence of all the three scatterings. In the
contour plots, the resonance corresponding to the SPP central wave
vector Qs is shown with a skyblue dot in the contour plot. The
population difference is plotted with orange curves. Different curves
are offset along q axis for clarity. To provide a clear visualization, in
(a) the normalized polarizations with the ep and all the scatterings are
enlarged by a factor of 2. In (b), the unnormalized polarization with
the ee/ep/all scattering is enlarged by a factor of 4/30/30.

In Fig. 10(a), the polarization is plotted for the resonant
pair (i) which is the only relevant resonant pair for the
damping. The resonant pair is centralized around the resonance
corresponding to the SPP central wave vector Qs , which is
represented by the skyblue dots in Fig. 10(a). One finds that
without scattering, the corresponding polarization (red curve)
exhibits a sharp main peak around the resonance. Several side
peaks exist around the main peak. These features agree with
the previous discussion. Note that the main peak lies in the
regime with large δf , indicating that the SPP absorption by
the polarization is strong. Also note that due to the strong
resonance, the profile of the unnormalized polarization is
mainly decided by the resonance and shares a similar structure
as the normalized one.

In the presence of the ei scattering, the polarization is
slightly modified. Some side peaks are smeared out. However,
the broadening is rather small and the main peak is almost
unchanged. This can be better seen by comparing the polar-
ization with the ei scattering (olive curve) to the one without
scattering (red curve). According to the previous discussion,
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FIG. 11. (Color online) 3D plot and the corresponding contour
plot of the normalized electron polarization corresponding to the
resonant pair (ii) for (a) R = 38.5 nm, T = 100 K, (b) R = 38.5 nm,
T = 150 K, and (c) R = 38.5 nm, T = 200 K. The corresponding
population difference is also plotted in the figure. The resonance
corresponding to the SPP central wave vector Qs is shown with green
square in the contour plot.

these features indicate that the ei scattering introduces a small
broadening.

In the presence of the ee scattering, a shifting of the peaks
can be seen clearly by comparing the contour plot of the
corresponding polarization (green curve) to the one without
scattering (red curve). Note that small side peaks can also be
identified with the ee scattering. These features indicate that the
ee scattering introduces a large shifting to the corresponding
resonant pairs. The broadening due to the ee scattering is small
since the small side peaks are not smeared out. It is also noted
that the ee scattering can distort the polarization. The peak
becomes fragmented and the profile becomes non-Lorentzian.
However, as the influence to the SPP damping comes from the
summation of the polarizations as indicated by Eq. (12), the
effect of these distortion on the SPP damping is marginal.

In the presence of the ep scattering, the peak in the
polarization (blue curve) is markedly broadened and all
the side peaks are smeared out, indicating that the effect
of the ep scattering introduces a large broadening. Note that
the maximum of the broadened peak is also shifted compared
to the one without scattering. This shows that the ep scattering
can also have contribution to the shifting of the resonant
pairs. However, due to the large broadening, the effect of
such shifting on the SPP damping is marginal. We also
point out that due to the large broadening, the profile of
the unnormalized polarization is mainly determined by the
population difference rather than the resonance, which can be
seen from the corresponding unnormalized polarization (blue
curve) in Fig. 10(b).

In the presence of all the three scatterings, one finds that the
polarization (brown curve) has almost the same profile as the
one with the ep scattering only. The broadening and shifting
due to the ei and ee scatterings are negligible due to the large
broadening introduced by the ep scattering. This indicates that
the ep scattering plays the dominant role.

For the weak Landau damping regime, as the scattering
has different influence on the SPP damping rate in different
temperature regimes. We plot the normalized polarizations in
Fig. 11 for three typical cases: (a) R = 38.5 nm, T = 100 K,
(b) R = 38.5 nm, T = 150 K and (c) R = 38.5 nm,
T = 200 K, corresponding to the low, intermediate, and
high temperature regimes, respectively. The polarizations are
plotted for the resonant pair (ii) which dominates the SPP
damping in these cases. Similar broadening and shifting can
also be identified in the figure. Note that in these cases, the
shifting due to the ee scattering is rather small and difficult to
be identified in the figures.
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83I. Villó-Pérez and N. R. Arista, Surf. Sci. 603, 1 (2009).
84E. Prodan, C. Radloff, N. Halas, and P. Nordlander, Science 302,

419 (2003); E. Prodan and P. Nordlander, J. Chem. Phys. 120, 5444
(2004).

85A. F. Slachmuylders, B. Partoens, W. Magnus, and F. M. Peeters,
Phys. Rev. B 74, 235321 (2006).

86C. Ell and H. Haug, Phys. Status Solidi B 159, 117
(1990).

87D. B. Tran Thoai and H. T. Cao, Solid State Commun. 111, 67
(1999).

88S. N. Klimin, E. P. Pokatilov, and V. M. Fomin, Phys. Status Solidi
B 184, 373 (1994).

89C. R. Bennett, N. C. Constantinou, M. Babiker, and B. K. Ridley,
J. Phys.: Condens. Matter 7, 9819 (1995).

90A. L. Vartanian, Phys. Status Solidi B 242, 1482 (2005).

165412-20

http://dx.doi.org/10.1021/nl101285t
http://dx.doi.org/10.1002/smll.200600379
http://dx.doi.org/10.1007/BF01427000
http://dx.doi.org/10.1007/BF01427000
http://dx.doi.org/10.1103/PhysRevLett.70.2036
http://dx.doi.org/10.1103/PhysRevLett.70.2036
http://dx.doi.org/10.1088/0953-8984/9/27/011
http://dx.doi.org/10.1088/0953-8984/9/27/011
http://dx.doi.org/10.1103/PhysRevB.60.16176
http://dx.doi.org/10.1103/PhysRevB.60.16176
http://dx.doi.org/10.1103/PhysRev.178.372
http://dx.doi.org/10.1103/PhysRev.178.372
http://dx.doi.org/10.1088/0034-4885/42/6/001
http://dx.doi.org/10.1016/j.susc.2008.10.021
http://dx.doi.org/10.1126/science.1089171
http://dx.doi.org/10.1126/science.1089171
http://dx.doi.org/10.1063/1.1647518
http://dx.doi.org/10.1063/1.1647518
http://dx.doi.org/10.1103/PhysRevB.74.235321
http://dx.doi.org/10.1002/pssb.2221590113
http://dx.doi.org/10.1002/pssb.2221590113
http://dx.doi.org/10.1016/S0038-1098(99)00173-8
http://dx.doi.org/10.1016/S0038-1098(99)00173-8
http://dx.doi.org/10.1002/pssb.2221840211
http://dx.doi.org/10.1002/pssb.2221840211
http://dx.doi.org/10.1088/0953-8984/7/50/016
http://dx.doi.org/10.1002/pssb.200440034



