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Second layer of H2 and D2 adsorbed on graphene
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We report diffusion Monte Carlo calculations on the phase diagrams of para-H2 and ortho-D2 adsorbed on
top of a first layer of the same substances on graphene. We found that the ground state of the second layer is a
triangular incommensurate solid for both isotopes. The densities for promotion to a second layer and for the onset
of a two-dimensional solid on that second layer compare favorably with available experimental data in both cases.
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I. INTRODUCTION

Graphite and graphene are closely related forms of carbon
in which the atoms are located in the nodes of a honeycomb
lattice. The main difference is that graphite is formed by
a whole stack of the two-dimensional carbon sheets that
constitute a single graphene layer.1,2 Adsorption of gases on
top of graphene and graphite are expected to show similar
trends. This is, in fact, what has been shown by computer
simulations of the phase diagrams of adsorbed quantum gases
on graphene, both in the first3–8 and second9 layers. In general,
those calculations render phase diagrams which are very close
to the experimental ones on graphite.10–14 The only appreciable
difference is the binding energy of the adsorbate species on
top of the carbon structure; it is bigger in the graphite case.
Unfortunately, to our knowledge, there are no experimental
data yet on the adsorption of quantum gases on graphene with
which to compare.

Most of that work, both from the experimental and
theoretical sides, has been devoted to the determination of the
phase diagram of the first layer of quantum gases and solids
adsorbed on top of graphite.10 However, some measurements
have been made of the properties of a second 4He sheet on top
of an incommensurate helium layer, directly in contact with
a graphite surface,11,12,15–17 which can be compared to the
simulations on the same subject.18,19 On the other hand, the
second layer of molecular hydrogen on top of graphite has been
less explored. Experimentally, the second layer of molecular
hydrogen and deuterium adsorbed both on graphite and MgO
has been studied using calorimetric measurements.20–23 In
particular, Ref. 23 studies the promotion to a second layer
and the phase diagram of pure para-H2 (p-H2) and ortho-D2

(o-D2) second layers on graphite. One of the main conclusions
of that work is that the ground state of both isotopes in
the second layer is a quasi-two-dimensional solid. Those
calorimetric measurements suggest triple points at T ∼ 6 K for
H2 and T ∼ 11 K for D2. For lower temperatures and densities,
those solids seem to coexist with infinitely diluted gases.
The main goal of our present work is to perform diffusion
Monte Carlo calculations to determine the phase diagram of
the second layer of H2 adsorbed on a first layer of H2 on
graphene, and of the second layer of D2 adsorbed on the first
layer of D2, also on graphene. The results so obtained will

be compared to the experimental ones for the same systems
on graphite,23 which are the only ones available, in order to
assess the possible differences. In particular, we try to ascertain
if the oblique structure suggested for D2 in Ref. 23, from
neutron-diffraction experiments, and in Ref. 24, from low-
energy electron-diffraction (LEED) measurements, is more
stable than an arrangement consisting of two incommensurate
triangular solids of different densities.

In the next section, we describe the theoretical method used
in the microscopic study of the adsorbed phases. The results
obtained for both p-H2 and o-D2 on graphene are shown in
Sec. III. Finally, the main conclusions are discussed in Sec. IV.

II. METHOD

The diffusion Monte Carlo (DMC) method is a stochastic
technique that allows us to obtain the ground state of a
zero-temperature system of bosons. Since the species adsorbed
(p-H2 and o-D2) on graphene are both bosons, we can obtain
through DMC the arrangement of molecules with the lowest
energy for each surface density. In order to reduce the statistical
variance of the many-body problem, the algorithm uses a
guiding wave function � which enhances the occupation
probability in places where the hydrogen density is expected
to be large.25 In general, � depends on the coordinates of
all atoms or molecules in the simulation cell. However, in
this work, we will consider that the carbon atoms of the
graphene layer are kept in fixed positions, what means that
their overall effect on the hydrogen molecules can be described
as an external potential. Within this approximation, the guiding
wave function depends only on the positions of the N hydrogen
molecules (r1,. . .,rN ). We chose

�(r1, . . . ,rN ) = �J (r1, . . . ,rN )�1(r1, . . . ,rN1 )

× �2(rN1+1, . . . ,rN ), (1)

where N1 (N2 = N − N1) is the number of molecules ad-
sorbed in the first (second) layer, and �J is a Jastrow wave
function used to take into account the H2-H2 and D2-D2

correlations.4,7 In particular,

�J (r1, . . . ,rN ) =
N∏

1=i<j

exp
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with rij being the distance between the center of mass of
hydrogen molecules (considered as spheres and interacting
through the isotropic Silvera and Goldman potential).26 This
potential was developed to describe the hydrogen-hydrogen
interaction in bulk and it was successfully used to reproduce
the phase diagram of the first layer of both H2 and D2

on graphene.4,7 The variational parameter b in Eq. (2) was
taken to be 3.195 Å for both H2 and D2, in agreement
with variational optimizations done in previous simulations
of similar systems.4,7

The purpose of the remaining terms in Eq. (1), �1 and �2,
is to describe the localization of hydrogen molecules in the
first and second layers on top of graphene, respectively, and
also the correlations due to the carbon-hydrogen interactions.
Concretely,

�n(r1,r2, . . . ,rNn
) =

Nn∏
i

NC∏
J

exp

[
−1

2

(
bC

riJ

)5
]

×
Nn∏
i

exp[−an(zi − zn)2], (3)

with n = 1, 2 for the first and second hydrogen layer,
respectively, and Nn for the number of molecules in each
layer. riJ represents the distance between the center or mass
of each molecule i and each of the NC carbon atoms J in the
graphene layer. Each hydrogen molecule interacts with each
of those carbon atoms by a potential of the Lennard-Jones
type, whose parameters are taken from Ref. 27. This part of
the guiding wave function is again similar to the one used in
previous works to describe the first layer of H2 (Ref. 4) and
D2 (Ref. 7) on graphene, to the point that we took the same a1

and z1 parameters as in those works. Thus, a1 = 3.06 Å−2 for
H2 and a1 = 5.2 Å−2 for D2. bC = 2.3 Åand z1 = 2.9 Å for
both hydrogen isotopes. For hydrogen molecules on the second
layer, bC was kept constant, and a2 and z2 were variationally
optimized. The optimal values were a2 = 1.53 Å−2 for both
H2 and D2, and z2 = 6 Å (H2) and 5.8 Å (D2).

When the phase to be described is a quasi-two-dimensional
solid, �n is multiplied by a Nosanow term,∏

i

exp{−cn[(xi − xsite)2 + (yi − ysite)2]}, (4)

where (xsite,ysite) are the crystallographic positions of the
solid lattice. The cn parameters were taken to be the same
for n = 1,2, i.e., a linear interpolation between the values
corresponding to densities in the range 0.08 Å−2 (cn =
0.61 Å−2) and 0.10 Å−2 (cn = 1.38 Å−2) for H2,4 and between
0.08 Å−2 (cn = 1.11 Å−2) and 0.11 Å−2 (cn = 2.93 Å−2) in
the case of D2.7 If the hydrogen density within the considered
layer was not in those ranges, we used the linear extrapolated
cn value.

To model the second layer of molecular hydrogen on top
of a first layer of the same substance, we followed closely
the prescription of Ref. 9, in which a second layer of 4He on
graphene was simulated. Basically, for a fixed total hydrogen
density, we considered only the arrangement for which the
total energy per molecule was lower. In practice, this means
that we have to take a fixed solid density for the first layer, and
to change the number of molecules (if we have a liquid) or the

lattice constant (if we have a solid) in the second layer. The
structure of the second-layer solid was incommensurate with
respect to the one on the first layer, i.e., the phase diagram
was assumed to be of the same type as that of helium on
graphene. However, to verify that this was so, we considered
also the oblique commensurate structure proposed for D2

from neutron-diffraction23 and LEED24 data. We checked
the stability of that structure for both isotopes. To be able
to treat incommensurate second layers, we used different
periodic boundary conditions for the first and second layers.
No exchange of molecules between the first and second layer
was allowed. Importantly, we did not fix the positions of the
molecules closest to the graphene surface, i.e., we took into
account the zero-point motion of all the hydrogen molecules.
For both isotopes, we considered hydrogen densities up to
those of promotion to a third layer, obtained experimentally
for the same systems on graphite.23

III. RESULTS

A. H2

The phase diagram of the second layer of H2 on graphene
can be extracted from the data displayed in Fig. 1. The full
squares correspond to the energy per molecule of a triangular
incommensurate solid adsorbed on a single layer on top of
graphene, and were taken from Ref. 4. When we considered
only a hydrogen layer, incommensurate means that there is no
registry of the hydrogen molecules with respect to the carbon
sheet. The third-order polynomial fit displayed on top of them
is a guide to the eye. To study second-layer structures, we
put on top of one of these incommensurate structures a set
of hydrogen molecules described by a guiding wave function
with c2 = 0 [Eq. (4)]. The dimensions of the simulation cells
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FIG. 1. (Color online) Maxwell construction (straight line) to
determine the limits of the phase diagram for a second layer of H2 on
top of the same substrate on graphene. Full squares: energy per H2

molecule on a first-layer triangular incommensurate solid; full circles:
same data for a second-layer liquid on a triangular solid; open squares:
a triangular incommensurate solid on top of a first-layer solid. The
open triangle represents the energy per H2 molecule of the oblique
structure proposed in Ref. 23, while the full triangle is the energy of
a second-layer 4/7 structure. The curves are third-order polynomial
fits to the simulation results.
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were determined by the density of the incommensurate solid
in the first layer since, in all cases, the simulation cells were
comprised of 120 H2 molecules close to the graphene surface.
Then, we put enough hydrogen on top of them to produce
surface areas (the inverse of density) in the range displayed
in Fig. 1. To be sure that the energy per molecule considering
both hydrogen sheets was the minimum one, we performed
several sets of simulations with different incommensurate solid
densities (in the first layer). In particular, we considered 0.090,
0.095, 0.10, and 0.105 Å−2. Our results indicate that on the
second layer, the arrangement with the lowest energy per
H2 molecule is a liquid on top of a solid whose density is
0.095 Å−2. Those results are displayed in Fig. 1 as full circles.
The lowest limit of the surface area corresponds approximately
to the experimental value for H2 promotion to a third layer
(5.80 Å2).23

We modeled the second-layer incommensurate triangular
solid on the same principles, i.e., we considered the same
densities as for the liquid case in the first hydrogen sheet, and
distributed the atoms on the second layer so as to produce the
total densities displayed as surface areas in Fig. 1. Here, in-
commensurate means that the second layer is registered neither
with respect to the first layer nor with the underlying graphene.
The minimum energies per H2 molecule corresponded to an
arrangement in which the lower-layer density was 0.10 Å−2;
those data are displayed in Fig. 1 as open squares. The line on
top of them represents also a third-order polynomial fit. We
considered also two second-layer commensurate (with respect
to the first layer) solids: a 4/7 lattice12 and an oblique bilayer
structure,28 both proposed originally to describe second layers
of 4He on graphite. The latter was suggested to be stable
for the second layer of H2 (Ref. 23) and D2 (Refs. 23,24)
on graphite. The energy per H2 molecule of those registered
phases is represented by a full and open triangle, respectively.
We can see that both structures are metastable with respect
to a set of two incommensurate layers, since their energies
per molecule are larger. Their corresponding energies per
H2 molecule are −274.9 ± 0.1 K (oblique structure) and
−304.6 ± 0.1 K (4/7), versus −293.0 ± 0.1 K and −309.38 ±
0.08 K of the corresponding incommensurate structures of the
same densities (0.173 and 0.157 Å−2, respectively). A 7/12
commensurate solid, also proposed to be stable for helium,19

and not displayed for simplicity, was also considered and found
to be unstable with respect to a second-layer incommensurate
solid.

With all of that in mind, we can draw a double-tangent
Maxwell construction to obtain the phase diagram of the
second layer of H2 on graphene. The slope of that line is
minus the internal pressure at which the transition takes place
and has to be positive for stable arrangements. In addition,
if several transitions are possible, one has to consider only
the one corresponding to the lowest pressure. The straight line
displayed in Fig. 1, which joins a single-layer incommensurate
solid and its second-layer counterpart, fulfills all the necessary
requirements. We can see that the energy per H2 molecule
for a second-layer liquid (full circles) is always above the
double-tangent line. This means that a second-layer liquid is
unstable with respect to a mixture of a single-layer solid and
another with two incommensurate sheets. The surface areas
at which the slopes of both third-order polynomial fits are the
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FIG. 2. (Color online) Energy per H2 for molecules located on
the second layer. Full circles are the results of a liquid phase, and full
squares are the results for a triangular incommensurate solid one. The
error bars are similar in both cases and, for simplicity, they are only
shown in the liquid case. Lines are third-order polynomial fits to the
respective data.

same define the stability limits for the phases involved in the
transition. In our case, those correspond to an upper density
limit for a single-layer solid (equivalent to a second-layer
promotion) of 0.094 ± 0.002 Å−2, and a lowest density value
of 0.160 ± 0.002 Å−2 for a two-layered solid. Both results
are in excellent agreement with the calorimetric values of H2

on graphite:23 0.094 and 0.165 Å−2. The chemical potential
for H2 at the monolayer-bilayer transition derived from our
simulations was −161 ± 2 K. This means that a second layer
of H2 is still stable with respect to the formation of a bulk H2

crystal, whose ground-state chemical potential is −92.3 K.30

This also means that the second layer solidifies at H2 densities
as low as 0.060 Å−2. As in 4He,9,11,12 the first layer suffers a
compression that produces a ∼6% increase of its density upon
the adsorption of the second hydrogen sheet.

We also compared our simulation results for H2 on a second
layer to similar data obtained for a pure two-dimensional (2D)
system. In Fig. 2, we show the energy per H2 molecule as a
function of density, but only for the molecules on that second
sheet. These energies are taken from the same set of simulation
results as the ones displayed in Fig. 1, i.e., the molecules of
the first layer are not kept frozen. A glance at the previous
figure indicates that the binding energies of these molecules
are smaller than the ones located in the first layer by at least
a factor of two. This is true for both liquid (full circles) and
triangular incommensurate (full squares) phases. The lines
on top of each set of symbols are least-squares fits to the
expression

E/N = (E/N)0 + a(ρ − ρ0)2 + b(ρ − ρ0)3, (5)

where ρ is the hydrogen density in that second layer and ρ0

stands for the density at which the energy per H2 molecule has
a minimum [(E/N)0]. The parameters obtained for the liquid
and solid phases, together with their first-layer (taken from
Ref. 4) and pure two-dimensional (from Ref. 29) counterparts,
are shown in Table I. Those results indicate that a pure two-
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TABLE I. Density and energy per molecule for the phases
displayed in Fig. 2 from fits using Eq. (5). The results for a pure 2D
system (Ref. 29) and a first layer of H2 on top of graphene (Ref. 4)
are also shown for comparison. E∞ is the energy per H2 molecule in
the infinite-dilution limit for each system, (E/N )0 is the minimum
energy per H2 molecule, and ρ0 is the density that corresponds to that
energy.

Liquid Solid

2D

E∞ (K) 0
(E/N )0 (K) −21.43 ± 0.02 −23.453 ± 0.003
(E/N )0 − E∞ (K) −21.43 ± 0.02 −23.453 ± 0.003
ρ0 (Å−2) 0.0633 ± 0.0003 0.0673 ± 0.0002

Graphene

E∞ (K) −431.79 ± 0.06
(E/N )0 (K) −451.88 ± 0.03 −454.1 ± 0.3
(E/N )0 − E∞ (K) −20.09 ± 0.07 −22.3 ± 0.3
ρ0 (Å−2) 0.05948 ± 0.00005 0.0689 ± 0.0006

Second layer

E∞ (K) −114.4 ± 0.6
(E/N )0 (K) −126.9 ± 0.5 −133.7 ± 0.3
(E/N )0 − E∞ (K) 12.5 ± 0.8 −19.3 ± 0.7
ρ0 (Å−2) 0.055 ± 0.001 0.0646 ± 0.0009

dimensional system of H2 molecules is a worse description
for the second than for the first layer of H2 on graphene,
and that the 2D equation of state is worse for a liquid phase
than for a solid one. For instance, the energy differences, after
substracting the infinite-dilution energy (E∞), between a 2D
system and a first layer of H2 on graphene are ∼6.5% for
a liquid and ∼5% for a solid. In comparison, those same
differences between a 2D and a second-layer system are ∼71%
and ∼22%, respectively. The same, but to a lesser extent, can be
said of the differences between the values of ρ0: ∼2.3% for the
2D and first-layer solids difference, with a gap that increases
up to ∼4.2% if instead of a first layer we have a second one.
Those same percentages grow to ∼6.5% and ∼15% for the
same comparisons for liquid phases. Moreover, Table I gives
us another interesting piece of information: the upper solid
is more stable with respect to a liquid arrangement than in a
flat structure or a first-layer sheet. This is because the energy
difference at the respective equilibrium densities is highest in
the second-layer case. The corresponding values are 6.8 K
(second layer) versus 2.023 K (2D) and 1.8 K (first layer). We
can also see that the density minimum for the second-layer
solid phase (0.0646 ± 0.0009 Å−2) is comparable to the
equilibrium density mentioned above (0.060 ± 0.002 Å−2),
obtained from the Maxwell construction including the whole
system.

B. D2

This section will closely mirror the previous one since we
studied the second layer of D2 on graphene following the
same steps. Our results are summarized in Fig. 3, where all
of the symbols and lines have a similar meaning to those
of Fig. 1. The only difference is that the structures with the

−550

−500

−450

−400

−350

 6  7  8  9  10  11  12

E
ne

rg
y 

pe
r 

D
2 

m
ol

ec
ul

e 
(K

)

Surface area (Å2)

FIG. 3. (Color online) Same as in Fig. 1, but for D2 instead of H2.
The lower limit for the surface density is fixed as the inverse of the
experimental density for a promotion of D2 to a third layer (5.8 Å2,
Ref. 23).

minimum energy per deuterium molecule are those whose
first-layer density is 0.105 Å−2 for both the second-layer solid
and liquid phases. To be sure of that, densities in the range
0.095 to 0.110 Å−2 were tested. The first-layer results (full
squares) are now taken from Ref. 7, and the triangles represent
the same registered phases suggested above for H2. As one
can see, these commensurate phases are still unstable with
respect to a set of two incommensurate solid deuterium layers.
As in H2, the energies per D2 molecule for a second-layer
liquid are above the double-tangent Maxwell construction.
This means that the phases in equilibrium are again a first-layer
incommensurate triangular solid of density 0.100 ± 0.002 Å−2

and a second-layer incommensurate solid whose total density
is 0.175 ± 0.002 Å−2. Both results are again in excellent
agreement with the calorimetric data of Ref. 23 on graphite:
0.099 Å−2 for second-layer promotion and 0.178 Å−2 for the
minimum density at which the double solid is stable. Since, in
this last case, the density of the lower layer is 0.105 Å−2,
we can state that there is also a compression of the first
layer of around 5% upon the adsorption of a second layer
of D2 on top of D2. As in the case of H2, our simulation
results allow us to calculate the chemical potential of D2 at
the monolayer-bilayer transition. The result is −180 ± 2 K,
which is a healthy 30% larger than that corresponding to
bulk D2 (−137.9 K).30 We found also that both the oblique
commensurate structure and the 4/7 one were unstable with
respect to the double incommensurate arrangement, as can be
seen in Fig. 3. The values of their energies per D2 molecule
were −326.1 ± 0.1 K and −352.7 ± 0.1 K, versus −341.1 ±
0.1 K and −358.0 ± 0.1 K for the double incommensurate for
the same densities (0.186 and 0.164 Å−2, respectively).

We can also study the second layer by itself and compare
the results to those of a first layer of D2 adsorbed on graphene
and to a pure 2D system. That can be done with the help of
Fig. 4 and Table II. The conclusions we can draw from this
set of information are similar to those already described in the
H2 case: the equilibrium densities are essentially compatible
with each other, even more so in the solid case, and the energy
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FIG. 4. (Color online) Same as in Fig. 2, but for D2 instead of H2.

per D2 molecule differences between liquid and solid phases
are larger in the case of a second-layer solid than for a single
deuterium sheet. The equilibrium density of the second-layer
solid is also comparable to the one extracted from the Maxwell
construction for the entire system (0.078 versus 0.070 Å−2).

IV. CONCLUSIONS

In this work, we have studied the complete phase diagram of
the second layer of both H2 and D2 adsorbed on top of a single
graphene layer. Since we used a set of diffusion Monte Carlo
calculations, the results correspond to the zero-temperature
ground state of the system. To obtain the real stability limits,
we had to perform Maxwell constructions between phases
that comprised one and two hydrogen layers, but we found

TABLE II. Density and energy per D2 molecule for the phases
displayed in Fig. 4, obtained by the same means as those of H2. The
results for a pure 2D system (Ref. 29, with only data for the solid
phase) and a first layer of D2 on top of graphene (Ref. 7 for the
liquid and this work for the solid) are also shown for comparison.
The variables have the same meaning as in Table I.

Liquid Solid

2D

E∞ (K) 0
(E/N )0 (K) −42.305 ± 0.005
(E/N )0 − E∞ (K) −42.305 ± 0.005
ρ0 (Å−2) 0.0785 ± 0.0002

Graphene

E∞ (K) −464.87 ± 0.06
(E/N )0 (K) −497.2 ± 0.9 −504.2 ± 0.08
(E/N )0 − E∞ (K) −32.3 ± 0.9 −39.3 ± 0.1
ρ0 (Å−2) 0.064 ± 0.001 0.0799 ± 0.0002

Second layer

E∞ (K) −142.4 ± 0.5
(E/N )0 (K) −166.8 ± 0.5 −178.9 ± 0.6
(E/N )0 − E∞ (K) −24.4 ± 0.7 −36.5 ± 0.8
ρ0 (Å−2) 0.068 ± 0.002 0.078 ± 0.003

that if we used only the data corresponding to a second one,
then the description is good enough to reproduce the solid
equilibrium of the complete two-sheet system. Our results for
the promotion density to the second layer and the minimum
density in this second layer agree satisfactorily with available
calorimetric results for graphite, pointing to the accuracy of
both the method used and the interaction potentials entering
in the Hamiltonian. The fact that our results on graphene are
comparable to the experimental ones on graphite also means
that both surfaces are basically equivalent as absorbents, with
the only possible difference being the binding energy of the
hydrogen molecules to the carbon surface.

However, calorimetric measurements only give the total
density for the onset of a solid structure at T → 0. From
Ref. 23, those densities appear to be 0.165 (H2) and 0.178 (D2)
Å−2. Both are lower than the ones assigned in the same work to
the proposed oblique commensurate structures: 0.173 (H2) and
0.186 (D2) Å−2, respectively. The fact that the former densities
are compatible with our simulation results supports our
suggestion of a double incommensurate solid as the structure
for the inferred solid phase. Moreover, a comparison of the
energies per molecule for the oblique solid and the two sets of
triangular layers at the same densities indicates that, at least
for T = 0, the commensurate arrangement is not stable. One
could speculate that the disagreement between calorimetric
data, on one side, and LEED and neutron diffraction, on
the other, could be originated by the tiny difference between
the diffraction patterns of a double incommensurate structure
and a double oblique layer.23,24 In fact, the oblique phase
was proposed in the past as the ground state of a second
layer of 4He on graphite in neutron-diffraction studies,28 but
further calorimetric measurements concluded that triangular
structures were preferred. This could also be the case for
hydrogen. On the other hand, our results rely on empirical
potentials that have been used to reproduce reasonably well
the equation of state of the first layer of both H2 and D2 on
graphene,4,7 but we cannot exclude that, in the future, more
elaborate interactions could change our predictions for the
second layer.

On a different note, we can say that when the number of
adsorbed layers grows, the entire arrangement becomes more
“solidlike” and not more “liquidlike.” The reason is that even
though the binding energy in the second layer is lower than
in the first one, the incommensurate solid structure is much
more stabilized with respect to a liquid than in the first-layer
case. This is probably the reason why the experimental critical
points for the liquid-vapor coexistence regions of H2 and D2

adsorbed on graphite approach those of the bulk solids as the
number of adsorbed layers grows,23 making it impossible to
obtain a stable liquid by reducing the dimensionality of the
system.
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