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Equation-of-motion technique for finite-size quantum-dot systems: Cluster expansion method
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An equation-of-motion based theory for the description of light emission from multilevel semiconductor
quantum dots (QDs) is presented. It accounts for electronic excitations in the presence of Coulomb interaction,
leading to multiexciton states, and their coupling to the quantized electromagnetic field. The two key aspects
of this work concern (i) the combination of an exact treatment of the electronic degrees of freedom with an
approximate approach for the photonic degrees of freedom that is based on the cluster expansion technique
and (ii) the consistent incorporation of scattering and dephasing due to the coupling to delocalized electronic
states and phonons into the equations of motion via Lindblad terms. Differences to previously used theories are
discussed and results of the theory are shown for free-space emission, where multiexciton spectra are shown, and
for emission into a single high-Q cavity mode. In the latter case, a full solution of the von-Neumann equation is
used to benchmark the proposed theory, which we term “finite-size hierarchy” (FSH) method.
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I. INTRODUCTION

Semiconductor heterostructures1 are of central importance
in the design of today’s optoelectronic devices with a wide
application range in light emitters, detectors, and quantum in-
formation technology. Quantum dots (QDs) play an important
role as active material in semiconductor lasers and quantum
light emitters.2–8 For the development of microscopic models,
the cluster expansion technique9–20 has been successfully
used to address correlation effects due to various many-
body interactions. In semiconductors, many-body effects are
present due to carrier-photon and carrier-carrier Coulomb
interactions as well as the interaction between carriers and
phonons. The idea of the cluster expansion technique is to
formulate equations of motion for correlation functions up
to a given order N and to express all expectation values of
interest in terms of these correlation functions. The underlying
assumption is the presence of a large Hilbert space for the
many-body excitations, so that the configuration averages
render higher-order correlations increasingly unimportant. The
cluster expansion technique has initially been applied to
systems with many degrees of freedom, where the number of
possible electronic configurations by far exceeds the highest
number of considered N -particle correlations (typically N =
2,3,4). This included, for example, photoluminescence,21

resonance fluorescence,11 exciton formation dynamics12 in
quantum-well systems, quantum dynamics of condensed Bose
gases,22 and spin dynamics of ferromagnetic system.23

More recently, applications have been extended to QD-
based systems, where the cluster expansion method has
successfully been used to study quantum-optical and re-
lated effects, like photon anti-bunching and coherence
properties of the light emission,13,19,24,25 coherent emis-
sion of cavity phonons,26 correlation build-up,27 quantum
spectroscopy,28 as well as the influence of Coulomb-induced
carrier correlations.14–16 In QDs, the carrier confinement
results in a small number of localized states, which contrasts
the situation in quasicontinuous systems like quantum wells.

In both theory and experiment,29 QDs with only a few or even
a single localized electron state have been considered. It is one
aim of this paper to discuss the implications of the system-size
limitation to the application of the cluster expansion and to
propose a new way to describe systems in which the small
size of the electronic Hilbert space leads to strongly enhanced
correlations.

The single-QD case is often addressed with methods from
atomic quantum optics, where the emitter is represented by
a few-level system. The nonperturbative interaction with a
high-Q cavity mode via the Jaynes-Cummings Hamiltonian
and the perturbative interaction with a continuum of free-space
modes via Lindblad terms can be treated by directly solving
the von-Neumann equation for the density matrix of the
electronic system and the cavity mode.30 This requires the
underlying Hilbert space to be small enough and is currently
only feasible for a single or very few emitters. Examples
for applications to single-QD systems are.31,32 Recently, the
authors have presented a QD theory in which the von-
Neumann dynamics includes both the Jaynes-Cummings and
the Coulomb Hamiltonians, accounting for the interplay of
various multiexciton configurations and the nonperturbative
treatment of the light-matter interaction.33,34 Furthermore,
based on the von Neumann dynamics including the Coulomb
Hamiltonian, the influence of multiexciton effects on the
efficiency of carrier scattering has been studied.35 When
considering explicitly the case of many individual emitters
or the emission into many modes, however, the size of the
Hilbert space precludes direct calculations of the many-particle
density matrix, and one has to retreat to approximate many-
body methods like the cluster expansion technique.

Another central point addressed in this paper is the
consistent description of scattering and dephasing in the
equation-of-motion approach. QDs are embedded systems
and coupled to continuum states of the surrounding material.
The Coulomb interaction and the coupling to LO-phonons
leads to efficient carrier scattering processes between localized
and delocalized states, feeding carriers into the QD after
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off-resonant excitation into the continuum states of the barrier
material, as well as being a source of dephasing. A Hamiltonian
description of these scattering processes is naturally possi-
ble within an equation-of-motion approach, but practically
challenging.12,25 More often, scattering and dephasing were
accounted for phenomenologically by adding constant rates to
the equations of motion. Especially for equations describing
the dynamics of higher-order correlation functions, this may
lead to inconsistencies and produce artifacts, such as heating.12

In quantum optics, one typically discriminates between the
system and environmental degrees of freedom and treats the
interaction of the system with the environment via Lindblad
terms36 that are added to the von-Neumann equation. As
we show, this can be carried over to an equation-of-motion
based approach, because the carrier dynamics in QDs naturally
separates into the system, represented by the localized states,
and the environment, provided by the quasicontinuum of delo-
calized states. Then the Coulomb and light-matter interactions
are fully accounted for the localized QD states, while the
interaction processes with the continuum states are described
via Lindblad terms. These can be obtained with standard many-
body techniques.35,37–39 The result is a consistent formulation
of scattering and dephasing that is free of the problems
associated with the phenomenological approaches.

We begin by addressing the equation-of-motion technique
for the carrier system, before we introduce and classify mixed-
operator correlation functions that are subject to different
interactions. The “finite-size hierarchy” (FSH) method is intro-
duced in which we combine an exact treatment of the carrier
degrees of freedom with an approximate cluster expansion
approach for the arising hierarchy in the photon operators.
In Sec. III, we specify the nature of the environment coupling
and the inclusion in the theoretical formalism. In order to apply
the theoretical framework in the following sections, a specific
QD system is introduced in Sec. IV. We derive equations of
motion for the Hamiltonian time evolution of the QD carriers as
well as the dissipative interaction with carriers in delocalized
states. Section V is devoted to emission into a continuum of
free-space modes. Here, we discuss how carrier correlations
give rise to multiexcitonic effects in the emission spectra and
how the various scattering and dephasing processes manifest
themselves in the line widths of the various emission peaks. A
comparison with the conventional cluster expansion technique
reveals insight into the physical representation of the system by
a limited number of correlation functions. Numerical results
for the emission of a single QD in a microcavity are presented
in Sec. VI. For this system, we are able to compare the
approximate treatment of the system dynamics in terms of
the cluster expansion method to an exact solution obtained
from the FSH and von-Neumann equation. This comparison
illustrates the impact of the truncation at different orders
in the hierarchy of photon operators and demonstrate the
applicability of the FSH method. Finally, in Sec. VII two
different incoherent excitation mechanisms are discussed.

II. MANY-BODY TREATMENT OF THE EMBEDDED
QD SYSTEM

QDs are embedded systems and their electronic single-
particle states are coupled to those of the surrounding

environment by the Coulomb interaction and the interaction
with LO phonons. It is important to stress that correlations
amongst QD carriers are dominated by the interaction within
the dot as well as, e.g., in the presence of a resonator,
by the interaction with photons. Based on this, we treat
the localized electronic degrees of freedom explicitly, fully
accounting for the Coulomb interaction amongst QD carriers
and their light-matter interaction. In this section, we focus on
the system dynamics and its formulation in the von-Neumann
and equation-of-motion approaches. The coupling of the
environment states to the system dynamics via Lindblad terms
is discussed in Sec. III.

The system dynamics is determined by the von-Neumann
equation

d

dt
ρ = −i[H,ρ]. (1)

Here, we consider the free electronic contributions to the
Hamiltonian H as well as the Coulomb interaction and
subsequently in Sec. II B also the Jaynes-Cummings inter-
action. The time-dependent solution of Eq. (1) then includes
the full configuration interaction (FCI) due to the Coulomb
Hamiltonian. The electronic Hilbert space is finite and limited
by the possible number of carriers that the QD system can
accommodate. In (quasi-) continuous systems this limitation is
merely formal. In a QD with only few confined states, however,
the limitation is perceivable and may even allow for a direct
solution of Eq. (1), see, e.g., the Refs. 31 and 32 for a small
and Refs. 34 and 40 for a large number of configurations.

By suitable tracing of the many-body density matrix,
Eq. (1) can be rewritten into a hierarchy of equations of motion
for expectation values, in which single-particle expectation
values are coupled to two-particle expectation values, and so
on. The hierarchy of coupled equations is limited by the finite
size of the Hilbert space that introduces a natural truncation.
This can also be understood by considering the fact that only
those normal-ordered operator averages, addressing up to the
maximum possible number of carriers in the system, can
be different from zero, as the consecutive application of a
number of creation or annihilation operators that exceeds the
number of possible single-particle states must give a vanishing
contribution. As long as no further approximations are in-
troduced, both the density-matrix and the equation-of-motion
approaches are equivalent. For a system with mixed hierarchies
in carrier and photon operators, this equivalence will be used
to establish the link between the “exact” von-Neumann-based
treatment for the electronic degrees of freedom for which
we introduce the name “finite-size hierarchy” (FSH) method
and the approximate cluster expansion method in which the
electronic hierarchy is truncated typically at an order that is
lower than the size limitation of the Hilbert space.

A. Equation-of-motion formulation for the electronic
degrees of freedom

We begin by schematically formulating the hierarchy of
equations of motion for a system that can accommodate up to
Nc,v

max conduction- and valence-band carriers per spin direction.
Since the successive application of Nc

max + 1 conduction-
band electron or Nv

max + 1 valence-band electron annihilation
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operators yields zero, an automatic truncation of the hierarchy
is implied. To achieve a simplification of the following dis-
cussion, we consider from here on equal numbers of confined
states in both bands, so that the highest operator average that
can differ from zero contains 2(Nc

max + Nv
max) ≡ 4Nmax carrier

operators.
In the following, we embrace the formulation of the cluster

expansion where correlation functions are used instead of
operator averages. As long as the hierarchy of equations
is not terminated at an order below its natural truncation,
both formulations are equivalent. However, if a truncation is
desired, a formulation in terms of correlation functions is better
suited. A correlation function of the order N is defined as

δ〈N〉 = 〈N〉 − δ〈N〉F , (2)

where δ〈N〉F represents products of all possible factorizations
of the operator expectation value 〈N〉 into correlation functions
of orders smaller than N . (In case of fermionic operators, a
sign change is required if an odd number of permutations is
necessary to regain normal ordering.) The order N is defined as
half the number of carrier operators. For example, occupation
probabilities of single-particle states 〈c†i ci〉 and 〈v†

i vi〉 (for
the notation see Appendix A) are of first order (singlets) that
represent uncorrelated entities,

δ〈1〉 ≡ 〈1〉. (3)

Examples for correlation functions of the order N = 2 (dou-
blets) are δ〈c†i c†j ckcl〉 or δ〈c†i v†

j ckvl〉.
The hierarchy defined by Eqs. (2) and (3) terminates due to

the discussed limitation in operator averages to 2Nmax carrier
operators and is represented by the boundary condition

δ〈N〉 = −δ〈N〉F if N > Nmax. (4)

For N = Nmax + 1, Eq. (4) terminates the coupling to higher
expectation value and ensures a correct treatment of the finite
carrier system, so that indeed the formulation in terms of
dynamical equations for correlation functions is equivalent
to a solution of Eq. (1) for the corresponding finite set of basis
states.

When the electronic Hilbert space, and correspondingly the
number of electronic degrees of freedom is large, an inclusion
of correlation functions up to this level is neither possible
nor necessary. This defines the regime of applicability of the
cluster expansion method, where suitable approximations are
based on a truncation of the hierarchy at a level much lower
than Nmax, realized by setting all correlation functions above
a certain cutoff Ntrunc to zero:

δ〈N〉 = 0 if N > Ntrunc. (5)

In what comes next, it is important to emphasize that this
procedure introduces two separate approximations. Firstly,
the influences of correlated processes involving more than
Ntrunc carriers are neglected. Secondly, for N > Nmax there is
a contradiction between Eqs. (4) and (5) in the sense that
the latter formally violates the boundary condition due to
the finite system size. We discuss the implications of both
approximations in the following.

For an approximate treatment of carrier correlations in large
systems, the order up to which N -particle correlations need to

be calculated depends on the strength of dephasing processes
on the one hand, and on the quantities of interest on the other.
Scattering processes, introduced, e.g., by the Coulomb- and
LO-phonon interactions, are responsible for damping out cor-
relation effects, and so are cavity losses that act on the photonic
subsystem, see Sec. II B. Higher-order correlation functions
are typically subject to stronger dephasing, so that their impact
on the dynamics of lower-order quantities decreases with
increasing N . Nevertheless, if correlation effects themselves
are of interest, the corresponding correlation functions must
be accounted for, and corrections due to the next higher
order may be relevant even if the impact on lower orders
is small. For example, exciton formation is described by
second-order correlation functions δ〈c†i v†

j ckvl〉. Their study
therefore requires going beyond the singlet level.

The error introduced by the violation of the boundary
condition (4) depends on the system size in relation to the
order Ntrunc at which the cutoff is performed as well as
on the strength of dephasing processes in the system that
assist in damping out correlations. In large systems, where
the allowed number of carriers exceeds the cutoff by orders
of magnitude, the effect of violating the boundary condition
at the highest order is imperceptible. In QDs with only few
localized states, the situation may be entirely different, and
this is the point we are addressing. If the cutoff Ntrunc imposed
by an approximative treatment is close to the intrinsic cutoff
Nmax, the error made in replacing Eq. (4) by Eq. (5) is more
likely to propagate into those correlation functions that are kept
and become significant. In terms of the underlying physics,
the restriction to a few-particle system enhances higher-order
carrier correlations. In Sec. IV, we will focus on a particular
QD with two confined states for electrons and holes and show
that the cluster expansion method is, in fact, not applicable to
the electronic subsystem, and the exact description including
Eq. (4) must be used instead.

B. Many-body description for mixed expectation values

We now turn to the case that a hierarchy arises not only in the
electronic degrees of freedom, but also due to other interactions
that may explicitly appear in the Hamiltonian, like the coupling
to photons or phonons. Extra thought must be given how to
classify the order and how to perform the truncation of the
arising hierarchies of mixed-operator expectation values.

As an example, consider the time derivative of a con-
duction band carrier and a photon annihilation operator with
respect to the light-matter interaction Hamiltonian HLM (see
Appendix A):

d

dt
ci

∣∣∣∣
HLM

= −
∑

ξ

gξbξvi, (6a)

d

dt
bξ

∣∣∣∣
HLM

=
∑

i

g∗
ξ v

†
i ci . (6b)

Two hierarchies are introduced, one in the photon operators
and one in the carrier operators: In the equation of motion for
a carrier operator (6a), an additional photon operator is added,
and vice versa, a carrier transition v

†
i ci is associated with the

derivative of a photon operator in Eq. (6b).
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FIG. 1. (a) Illustration of the classification of mixed correlation functions δ〈N,M〉 according to the number of carrier (2N ) and photon (M)
operators (represented by dots). (b) Classification and truncation employed by the conventional cluster expansion method. Mixed correlation
functions are treated by a single hierarchy of order N + M . The shaded area encloses those correlations up to the doublet level (N + M)trunc = 2.
(c) A situation found in a system where the number of electrons and holes is limited to two. Then the hierarchy of carrier operators closes
naturally on the four-operator level Nmax = 2 and is, in principle, not restricted in the number of photon operators M . A truncation must be
performed manually. As an example, the shaded area shows the necessary correlation functions for Mtrunc = 4.

Regarding the additional light-matter interaction, we intro-
duce a classification of mixed correlation functions δ〈M,N〉,
containing M photon and 2N carrier operators by the tuple of
numbers (M,N ). Equation (2) is generalized to

δ〈M,N〉 = 〈M,N〉 − δ〈M,N〉F , (7)

where the factorization δ〈M,N〉F contains all possible prod-
ucts of lower-order correlation functions of order (M ′,N ′) that
meet the three criteria N ′ � N , M ′ � M , and N ′ + M ′ <

N + M . The classification is illustrated in Fig. 1(a), where
each set of correlation functions of the order (M,N ) is
represented as a dot.

This suggested classification scheme serves two purposes;
on the one hand, it offers a clear-cut definition of the correlation
effects included at each order, namely, those involving N

carriers and M photons. On the other hand, it provides a
platform to treat the two hierarchies in a different fashion,
which we discuss in detail below.

A different classification scheme has been used in the
past and is typically associated with the cluster expansion
method.11,18 There, mixed correlation functions δ〈M,N〉 are
classified by a single number M + N , as schematically
depicted in Fig. 1(b). It is based on the observation that the
coupling of carriers and photons, provided by the Jaynes-
Cummings Hamiltonian, leads to the formal equivalence of a
photon annihilation operator and an electron-hole-pair creation
operator. Correlation functions with N + M = 1,2,3,4, . . .

have been termed singlets, doublets, triplets, quadruplets, and
so on. As described for the electronic system in Sec. II A,
a cutoff (N + M)trunc is performed, and all higher-order
correlation functions are approximated as zero in the fashion
of Eq. (5),

δ〈M,N〉 = 0 if N + M > (N + M)trunc. (8)

An illustration is given in Fig. 1(b), where the shaded area
corresponds to those correlation functions kept up to the
doublet level. The cluster expansion method based on this
scheme has been used for systems where the truncation was
performed at an order much lower than the implicitly assumed

size of the electronic subsystem (the photonic subsystem is,
by nature, not limited).11,12

This brings us to the question how to formulate the
hierarchy problem in systems where the electronic subsystem
is limited to accommodate a small number of carriers, which
leads to the definition of the finite-size hierarchy (FSH)
method. As we have discussed for the electronic subsystem in
the absence of additional interactions in Sec. II A, the approx-
imate treatment of the cluster expansion method introduces
errors in the boundary condition that may require an exact
treatment of the electronic degrees of freedom in a fashion
analog to the von Neumann equation. For a system with
mixed-operator correlation functions δ〈M,N〉, the boundary
condition (4) can be generalized to

δ〈M,N〉 = −δ〈M,N〉F if N > Nmax. (9)

The exact treatment of electronic correlations requires taking
all correlation functions δ〈M,N〉 up to N = Nmax into account
and to satisfy Eq. (9) at the highest level N = Nmax. The
photonic hierarchy is not limited and must be truncated at a
manually introduced cutoff Mtrunc. The order at which this
approximation is performed depends on the quantities of
interest as well as on the relationship between correlation
built-up and dephasing. A schematic illustration is found in
Fig. 1(c), where the number of electrons and holes is restricted
to Nmax = 2, and the truncation is performed at Mtrunc = 4
photons.

Summarizing this section, starting from the general form
of the von-Neumann equation, the treatment of an electronic
system residing in a finite Hilbert space can be formulated as a
closed set of equations of motion for correlation functions,
fully representing the electronic degrees of freedom (FSH
method). An additional hierarchy in the photon operators
spoils the exact representation, as all electronic operator
averages can appear with additional photon operators. The
hierarchy in terms of photon operators requires an approximate
truncation in the fashion of the cluster expansion method. This
is, however, uncritical and works very well in practice, as we
will demonstrate in Sec. VI.
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Performing an additional truncation also on the electronic
degrees of freedom constitutes a different approximation that
is much more intricate. A discussion of the manifestation of
differences between the cluster expansion and FSH methods
is found in Secs. V and VI.

III. ENVIRONMENT COUPLING: TREATMENT OF
SCATTERING AND DEPHASING PROCESSES

The localized states of self-assembled QDs are generally
coupled to delocalized states of the surrounding semiconductor
matrix material. In experiments and device applications,
carriers are excited optically or electrically in these continuum
states. The successive capture into the localized QDs states
is mediated by scattering processes with carriers in the
continuum, but also with lattice vibrations that are known
to effectively exchange excess energy by emission/absorption
of phonons.41–44 Redistribution by scattering of carriers is
always accompanied by dephasing. Dephasing of coherences
and correlations in QD-based nanostructures is of central
importance for the emission properties of devices.

The discrete nature of the localized states in QDs allows for
the possibility to make a distinction between the QD system
and its environment, where the dynamics of the first is fully
accounted for by contributions to the system Hamiltonian, and
the latter are treated in a system-bath approach. The purpose
of Sec. III A is the specification of both components and
the description of the Lindblad formalism that is commonly
used to model system-reservoir coupling within the von-
Neumann equation. This is carried over to the equation-
of-motion approach for expectation values in Sec. III B
to provide a consistent platform to include scattering and
dephasing contributions. The consistent inclusion of dephasing
is a major advancement from previous versions of the theory
and one of the central achievements in this work.

A. System-reservoir interaction

In quantum well or bulk material, a large number of carriers
are distributed amongst dense-lying states that are generally
treated as a continuum. Processes involving the continuum
states, such as carrier-carrier scattering, optical recombination,
and scattering with phonons, must be treated on equal footing.
In QDs the situation is different. The three-dimensional carrier
confinement leads to a discretization of the single-particle
density of states. Typical self-assembled QDs are grown on
a wetting layer (WL) and the whole system is embedded in
a barrier material. The energy of the lowest-lying continuum
states of the WL provides an energetic upper bound for the
localized QD states and, therefore, limits their number.

One, therefore, finds the situation in which the localized
states are responsible for the recombination dynamics of
interest, whereas the nearby continuum provides carriers that
can be captured into the localized states or serve as scattering
partners for carriers in the QD states. A separation into system,
consisting of the localized states, and reservoir, consisting of
the continuum states, is justified if the interaction between the
two does not lead to a mixing of states (hybridization). The
dynamics of carriers in the continuum states is determined
by an excitation process, by scattering amongst carriers in

the continuum as well as by the interaction with carriers in the
localized QD states. The first two effects can be accommodated
in the calculation of the rates γη. The last effect only plays
a role if the QD recombination dynamics has a noticeable
impact on the continuum dynamics, as it would be the case in
a microcavity laser with many QDs.

The contribution of the reservoir, which can either be seen
as a fermionic or a bosonic bath (depending if a coupling to
carriers in the continuum, or to phonons is considered), to
the density operator can be treated, e.g., in the Born-Markov
approximation. This approach leads to a Lindblad term Lη

36,45

for each capture and relaxation process (in the following,
denoted by the index η) associated with the considered
reservoir and of the form

d

dt
ρ

∣∣∣∣
Lη

= γη

2

[ ∑
α,β

2
∣∣f η

α

〉 〈
iηα

∣∣ ρ ∣∣iηβ 〉 〈
f

η

β

∣∣

−
∑

α

( ∣∣iηα 〉 〈
iηα

∣∣ ρ − ρ
∣∣iηα 〉 〈

iηα

∣∣ )] . (10)

Here, γη is referred to as the corresponding capture/relaxation
rate and |iηα〉 are the initial and |f η

α 〉 the final configurations
of the described scattering process. The contribution of the
Lindblad terms to the dynamical equations for the diagonal
elements of the density matrix ρ,

d

dt

〈
f η

α

∣∣ρ∣∣f η
α

〉 = γη

〈
iηα

∣∣ρ∣∣iηα 〉 = − d

dt

〈
iηα

∣∣ρ∣∣iηα 〉
, (11)

reflect the trace-conserving nature of the Lindblad form,
leading to an equilibration of the system with respect to the
bath at a characteristic time 1/γη, determined by the QD
level-spacing, the lattice temperature, and the carrier density.
Additionally, dephasing originates from the contribution of the
second line in Eq. (10) to the equations for the nondiagonal
elements of the density matrix, i.e.,

d

dt

〈
iηα

∣∣ρ∣∣f η
α

〉 = −γη

2

〈
iηα

∣∣ρ∣∣f η
α

〉
, (12)

and its complex conjugate. Thus all optical transitions involv-
ing |iηα〉 and/or |f η

α 〉 as an initial/final state are consistently
dephased by the process η.34,40 More sophisticated many-body
methods beyond the Born-Markov limit,35,46,47 as well as ex-
perimental results,29,48 can be used to determine more accurate
rates γη, which enter this formalism as input parameters.

B. Lindblad terms in the equation-of-motion technique

The time evolution of the density operator is determined by
the von-Neumann equation with the Hamiltonian part H and
the dissipative Lindblad-type superoperator Lη according to
Eq. (10), which can be written as

d

dt
ρ = −i[H,ρ] +

∑
η

Lηρ. (13)

This we refer to as the von-Neumann-Lindblad (vNL) equa-
tion. Once the solution is known, arbitrary single-time operator
averages 〈O〉 can be obtained by taking the trace Tr {ρO}.

Equations of motion are derived by considering the time
evolution of expectation values 〈A〉 = Tr {ρA}, expressed by
Heisenberg’s equation of motion for operator averages for
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which the explicit knowledge of ρ is not required, see Sec. II.
A natural way to include the Lindblad contributions in the
many-body formalism is to add them to the equations of mo-
tion, which follows directly from the von-Neumann-Lindblad
equation (13) by calculating operator averages and leads to

d

dt
〈A〉 = i 〈[H,A]〉 +

∑
η

γη

2
(〈[σ †

η ,A]ση〉 + 〈σ †
η [A,ση]〉)

(14)

with ση = ∑
α |f η

α 〉 〈iηα |.
Both the interaction parts of the Hamiltonian and the

Lindblad contributions in the above equation introduce a
hierarchy of coupled equations. What has been discussed for
the Hamiltonian contributions in Sec. II also applies for the
latter with respect to finite system size and truncation.

The proposed method has the benefit of a consistent
inclusion of scattering and dephasing in a reservoir fashion,
while rates for the interaction with the carrier and phonon reser-
voirs can be obtained from separate calculations of desired
sophistication. In the past, dephasing has often been included
phenomenologically by adding a constant dephasing rate 


to the dynamical equations for expectation values associated
with polarizations.14,15,24,49 Next to providing dephasing, this
method has been shown to introduce artifacts, like artificial
heating of the system.12 A consistent formulation of dephasing
requires a relationship between both, that is expressed in
Eqs. (11) and (12).

IV. EQUATIONS OF MOTION

In the following, we will illustrate the FSH method
by deriving the dynamical equations for a particular QD-
microcavity system. So far, the model has been formulated
for an arbitrary type and number of single-particle states.
However, it greatly simplifies our discussion and the resulting
equations if we consider a QD with only two confined states
for electrons and holes each. These levels we refer to as s

and p shells. Furthermore, only carriers of one spin direction
are considered. The restriction to one spin subsystem has
been shown34,40 to constitute a reasonable approximation in
the regime of strong off-resonant excitation in self-assembled
QDs, where scattering processes with quasicontinuum carriers
broaden the spectral lines. For applications like low-excitation
spectroscopy, the QD system must be augmented to explicitly
contain the spin degree of freedom. On the two-particle-
correlation level this situation has, e.g., been studied by
Hohenester et al.51

In Secs. IV–VI, we will use an additional approximation
that considerably simplifies the arising hierarchy of equations
and that we would like to discuss in detail. The total number of
possible configurations in the described QD is 16, since zero
to four electrons can be distributed amongst four localized
single-particle states. The FSH method, in which the electronic
degrees of freedom are treated exactly, requires to take operator
averages with up to 2(Nc

max + Nv
max) = 8 carrier operators into

account. The highest possible-carrier operator average that can
differ from zero is the four-particle quantity

〈c†s c†pv†
s v

†
pvpvs cpcs〉. (15)

FIG. 2. Possible configurations in a four-level QD, in which
valence- and conduction-band carriers are excited and de-excited only
in pairs. The representation is given in the conduction-valence-band
(cv) picture.

A derivation of the equations of motion for the corresponding
correlation functions is a cumbersome and error-prone en-
deavor and only recommended with an automatic generation
algorithm. For this work, a separate program has been written
in FORM52 to fulfill this goal. For simplification purposes, we
restrict the number of possible configurations by the following
assumptions. (1) An effective pair-wise carrier capture in
which the in-scattering of an electron into the QD p shell
is always accompanied by the in-scattering of a hole (in the
cv picture: a carrier present in the valence-band p state is
excited into the conduction-band p state). (2) Only intraband
scattering processes preserving the carrier number within the
QD are considered.

Since, in the cv picture, the optical recombination is also
carrier-number conserving, only the six configurations shown
in Fig. 2 can form under this condition, all of which contain
two carriers in the system. Thus the largest operator averages
that have to be evaluated for a system with the boundary
condition Nc

max = Nv
max = 2 are those with up to four carrier

operators, plus additional photon operators. One example
is discussed in the beginning of Sec. V in the context of
biexcitonic recombination.

Several scattering processes are accounted for: the
discussed pair-wise capture of carriers from the continuum
into the localized p states at rate P , as well as scattering from
the conduction band p to s shell and valence-band s to p shell
via the rates γ cc

sp and γ vv
ps . The rates γ cc

ps and γ vv
sp correspond

to the reverse processes. The model system together with
the considered scattering and recombination processes is
sketched in Fig. 3.

This section is split into two parts in which the FSH
hierarchy is derived: the first Sec. IV A deals with the
dynamics due to the Hamiltonian contributions using the
light-matter interaction as an example. Contributions due to
other parts of the Hamiltonian are given in Appendix B. In
Sec. IV B, contributions from the system-reservoir interaction
are discussed. A special emphasis is placed on the differences
between the FSH and the cluster expansion method and
deviations occurring in the equations are pointed out.

A. Hamiltonian dynamics

The lowest-order observables of interest are the carrier
populations as well as the mean number of cavity photons.
Higher-order operator averages appear in the derivation of
equations of motion. The arising hierarchy is finite in the
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FIG. 3. QD model with the considered rates γ for electrons in
the conduction and valence bands, describing scattering into and
out of the s shell. Carrier generation is modeled by a transition
process between the p levels at rate P . Light-matter coupling leads
to recombination processes between the s and the p states due to
spontaneous emission (dashed arrows).

carrier degrees of freedom, while the photonic hierarchy is
truncated at the Mtrunc = 2 level, see Sec. II B.

The contribution of the light-matter interaction HLM to
Heisenberg’s equations of motion for the conduction band
carrier population f c

i = 〈c†i ci〉, are given by

d

dt
f c

i

∣∣∣∣
HLM

= −2 Re
∑

ξ

g∗
ξ �ξ,i . (16)

The real part of the photon-assisted polarization
�ξ,i = δ〈b†ξ v†

i ci〉 describes transition amplitudes between
QD levels, and is proportional to the light-matter coupling
strength gξ . In order to solve Eq. (16) additional dynamical
equations for the photon-assisted polarization, which are one
step up in the hierarchy with respect to photon operators, are
required and evolve as

d

dt
�ξ,i

∣∣∣∣
HLM

= gξ f c
i

(
1 − f v

i

) + gξ

∑
α

Cx
αiiα

+ gξNξ

(
f c

i − f v
i

) + gξN c
ξ,i − gξN v

ξ,i . (17)

The recombination of a QD excitation described by �ξ,i does
not only require the presence of a conduction-band carrier, but
also the nonoccupancy of a valence-band state, which ends up
in an emission rate proportional to 〈c†i viv

†
j cj 〉 (see Ref. 11).

In Eq. (17) enters the decomposition of this expectation value
in a contribution of two uncorrelated carriers ∝f c

i (1 − f v
i ) in

the upper and lower states, plus interband carrier correlations
∝Cx

ijji := δ〈c†i v†
j cj vi〉 according to Eq. (2). Thus the first line

in Eq. (17) can be identified as the source term of spontaneous
emission, naturally appearing within this formalism due to
quantization of the light field. The second line of Eq. (17) arises
from mixed expectation values 〈b†ξ bξ c

†
i ci〉 and 〈b†ξ bξ v

†
i vi〉 of

which the uncorrelated contribution is proportional to the pho-
ton number Nξ := 〈b†ξ bξ 〉 and can be attributed to stimulated

emission and absorption, whereas N c
ξ,i := δ〈b†ξ bξ c

†
i ci〉 and

N v
ξ,i := δ〈b†ξ bξ v

†
i vi〉 represent carrier-photon correlations.

Note that 〈b†ξ 〉 and 〈v†
i cj 〉 vanish in the incoherent regime.

Throughout this paper, we do not account for correlations
between different optical modes. This is well justified in
the presence of a microresonator, where a single cavity
mode strongly dominates over all other leaky and detuned
cavity modes. When free space emission is considered, mode
coupling effects may play a role and an evaluation of such
terms can be considered. One must be aware, however, that
the inclusion of continuum mode-coupling effects severely
increases the numerical effort, and is, in fact, not feasible
in a straightforward manner for higher-order correlation
functions.

Significant contributions of higher-order correlations with
respect to photons can be expected, e.g., if one of the
considered QD transitions is resonant with a cavity mode,
thereby providing feedback of the emitted photons. However,
for QD emission into a continuum of free-space modes, where
photons disappear once emitted, corrections to the dynamical
evolution of the photon-assisted polarization, introduced by
higher order photon correlations are negligible. Nevertheless,
carrier correlations can still play an important role, as
we have pointed out in our previous work.15 Especially in
the regime of few emitters these correlations strongly dictate
the carrier-photon dynamics and are indispensable for the
description of single-QD luminescence.

The light-matter part of the Hamiltonian (A5) yields the
time evolution

d

dt
Cx

ijkl

∣∣∣∣
HLM

= −
∑

ξ

δilδjk

[
g∗

ξ

(
f v

i − f c
i

)
�ξ,j + gξ

(
f v

j − f c
j

)
�∗

ξ,i

]
+

∑
ξ

[
gξ�

c,∗
ξ,lkj i + g∗

ξ �
c
ξ,ijkl − gξ�

v,∗
ξ,lkj i − g∗

ξ �
v
ξ,ijkl

]
.

(18)

The first line contains the factorized contributions of the
expectation values 〈b†ξ c†i v†

j ckcl〉 and 〈b†ξ v†
i v

†
j ckvl〉. The re-

maining correlation contributions �c
ξ,ijkl := δ〈b†ξ c†i v†

j ckcl〉 and

�v
ξ,ijkl := δ〈b†ξ v†

i v
†
j ckvl〉 appear in the second line. Specif-

ically, �
c/v

ξ,ij ij = −�
c/v

ξ,ijj i describe the correlated process of
a photon-assisted polarization in presence of an additional
carrier in the conduction- or valence-band, respectively. In a
similar manner, equations for the intraband carrier correlations
Cc

ijkl := δ〈c†i c†j ckcl〉 and Cv
ijkl := δ〈v†

i v
†
j vkvl〉 can be obtained

and are provided in Appendix B.
The before-mentioned natural truncation of the hierarchy

of carrier operators becomes apparent in the time evolution of
the mixed correlation functions �c

ξ,ijkl and �v
ξ,ijkl . To facilitate

a better understanding, we provide a schematic explanation
using the notation introduced in Sec. II. The quantities �c

ξ,ijkl

and �v
ξ,ijkl are correlation functions δ〈M,N〉 of the order

M = 1 and N = 2. The time evolution with respect to the
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TABLE I. Overview of all relevant correlation functions for the semiconductor luminescence model discussed in Sec. IV.

N

0 1 2

0 / 〈c†c〉 , 〈v†v〉 δ〈c†v†cv〉, δ〈c†c†cc〉, δ〈v†v†vv〉
M 1 / δ〈b†v†c〉 δ〈b†c†v†cc〉, δ〈b†v†v†cv〉

2 〈b†b〉 δ〈b†bc†c〉,δ〈b†bv†v〉 δ〈b†bc†v†cv〉, δ〈b†bv†v†vv〉, δ〈b†bc†c†cc〉, δ〈b†b†v†v†cc〉
...

...
...

...

light-matter part of the Hamiltonian is given by

d

dt
δ〈1,2〉

∣∣∣∣
HLM

= 〈0,3〉 + 〈2,2〉

− d

dt
(δ〈1,1〉) 〈0,1〉 − δ〈1,1〉 d

dt
〈0,1〉. (19)

Each term in this schematic representation may correspond to
several contributions. The time derivative of the factorization
is subtracted in the last line in order to obtain a correlation
function [see Eq. (2)]. Due to the limitation to two carriers in
the QD states the first term drops out, because it describes
processes where three carriers are created or annihilated.
Enforcing this property of the system requires the strict
fulfillment of the additional condition

δ〈0,3〉 = −δ〈0,2〉 〈0,1〉 − 〈0,1〉 〈0,1〉 〈0,1〉, (20)

which means that, in fact, all correlation functions up to
Nmax = 2 must be taken into account. This is the explicit
manifestation of what we referred to earlier as the enhancement
of correlations due to the limited size of the system.

The remaining hierarchy in the photon operators is trun-
cated at the desired level Mmax. All terms appearing in the
cluster expansion up to Mmax = 2 are summarized in Table I.
Applying the cluster expansion to the remaining second term
in Eq. (19) yields

d

dt
δ〈1,2〉

∣∣∣∣
HLM

= +δ〈2,2〉 + δ〈2,0〉δ〈0,2〉

+ δ〈1,1〉δ〈1,1〉 + δ〈2,1〉 〈0,1〉
− d

dt
(δ〈1,1〉) 〈0,1〉 − δ〈1,1〉 d

dt
〈0,1〉. (21)

Explicitly performing the calculation behind this schematic
representation leads to the following equations of motion:

d

dt
�c

ξ,ijkl

∣∣∣∣
HLM

=
[
gξf

c
i f c

j f v
j − g∗

ξ �ξ,i�ξ,j + gξN c
ξ,i

(
f c

j − f v
j

)

− gξf
c
i

∑
α

Cx
αjjα

]
(δilδjk − δikδjl) + gξ (1 + Nξ )Cc

ijkl

+ gξNξ

(
Cx

ijlk − Cx
ijkl

) + gξ δ〈b†ξ bξ c
†
i c

†
j ckcl〉

+ gξ δ〈b†ξ bξ c
†
i v

†
j clvk〉 − gξ δ〈b†ξ bξ c

†
i v

†
j ckvl〉

− g∗
ξ δ〈b†ξ b†ξ v†

i v
†
j ckcl〉, (22)

and similar equations can be given for �v
ξ,ijkl by exploiting the

symmetries of the Hamiltonian.
It is worthwhile pointing out that the restriction to a certain

system size fundamentally changes the structure of the under-
lying equations of motion. In Eq. (22), the uncommon product
of three populations appears in the first line, originating from
the subtraction of the factorization in the last line of Eq. (21)
[from Eq. (17) one finds that there is a contribution d

dt
δ〈1,1〉 ∝

〈0,1〉 〈0,1〉]. In a system where the restriction to two carriers
was lifted, these terms would be compensated by the factor-
ization of the three-particle expectation value 〈0,3〉, which
would, in this case, have a nonzero contribution. In fact, this
compensation is also known as the linked-cluster theorem.18

Finally, the correlation function δ〈b†ξ b†ξ v†
i v

†
j ckcl〉 in the last

line of Eq. (22) can be attributed to spontaneous two-photon
emission, recently demonstrated for a single-QD in a high-Q
photonic crystal nanocavity.53

Equations (16)–(22), together with the additional equations
given in Appendix B, form a closed set of coupled nonlinear
equations for the Hamiltonian dynamics. Before we turn to
numerical results, we discuss the scattering and dephasing
contributions to these equations.

B. System-bath interaction

In Sec. III, we have discussed the reservoir-treatment of
scattering and dephasing, as well as carrier pumping. In the
equations of motion, these contributions are included via
Lindblad terms in Eq. (14).

As we have briefly mentioned, a microscopic treatment
of these processes is also possible and can be derived from a
mixed basis of localized and extended states. For the quantum-
well case, this has has been performed by including the
carrier-phonon interaction explicitly in the Hamiltonian.12,25

However, this approach comes along with an additional
hierarchy in the phonon operators that makes the classification
of mixed correlation function containing carrier, photon,
and phonon operators more difficult. Furthermore, including
delocalized states of the two-dimensional WL continuum on
the same level of complexity as the equations presented in
Sec. IV A, i.e., by considering correlation functions of an order
up to Mtrunc = 2 and Nmax = 2, would involve nonlinearly
coupled integrodifferential equations for correlation functions
that carry several indices of continuum states. A numerical
solution would currently be possible only for certain limiting
cases. Therefore we base our approach for the inclusion of
scattering and dephasing within the cluster expansion method
on the Lindblad formalism. As a benefit, delocalized states
enter the system dynamics only in the calculation of the
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Lindblad rates, which can be obtained phenomenologically
or from independent quantum-kinetic calculations.35,46,47,54–59

In principle, the structure of the Lindblad formalism allows
for a high degree of sophistication. For example, occupation-
induced energy renormalizations due to the Coulomb inter-
action can be explicitly taken into account in the calculation
of scattering, which then leads to different scattering rates
for different configurations.35 The influence of this effect is
strongly entwined with the dynamics of the system. Especially
at low WL carrier densities when screening is weak, the rates
may differ significantly, and a study of the impact on the
emission dynamics of a single QD in a microcavity could
prove interesting for future studies.

We now turn to the equations of motion. By evaluating the
second line of Eq. (14), we can calculate the contributions for
scattering, pumping, and cavity losses.

1. Intraband scattering

For the scattering between the bound QD states μ and ν in
the conduction band, we obtain

d

dt
〈A〉

∣∣∣∣
scatt

=
∑
μ �= ν

μ,ν ∈ {s,p}

γ cc
μν

2

(〈[c†νcμ,A]c†μcν〉 + 〈c†νcμ[A,c†μcν]〉),
(23)

where we have identified ση by c†μcν , and the Lindblad rates
γη by the intraband scattering rates γ cc

μν . The resulting change
in the single-particle population f c

ν = 〈c†νcν〉 due to intraband
scattering,

d

dt
f c

ν

∣∣∣∣
scatt

= S in
ν

(
1 − f c

ν

) − Sout
ν f c

ν

+
∑
μ �=ν

(
γ cc

νμ − γ cc
μν

)
Cc

νμνμ, (24)

takes on the form of a Boltzmann-like collision term
(first line), consisting of in- and out-scattering contributions
with the corresponding rates S in

ν = ∑
μ �=ν γ cc

νμf c
μ and Sout

ν =∑
μ �=ν γ cc

μν(1 − f c
μ), as well as correlation contributions beyond

the single-particle description (second line). It it evident
that the total carrier number is preserved, i.e., d

dt

∑
ν f c

ν =
0, reflecting the trace-conserving property of the Lindblad
formulation that we have already discussed in the context of
Eq. (11).

If carrier correlations Cc
νμνμ are neglected in Eq. (24),

only populations of single-particle states f c
ν are taken into

account. These populations are obtained by averaging over all
configurations containing a carrier in the state ν. Due to this
averaging, the single-particle description is not able to distin-
guish between different configurations with an occupation of
the state ν and can, thereby, account for the Pauli exclusion
principle only in an averaged sense. Consider, for example, the
carrier relaxation in the conduction band. The configurations
|1Xp〉, |0Xp〉, and |2Xsp〉 are valid initial configurations for a
p-to-s electron scattering process, although the Pauli exclusion
principle forbids a carrier transition for the latter, because the

s shell already contains one carrier. Thus, in this case, the
single-particle description allows for relaxation and attributes
for dephasing, whereas an exact configuration-based treatment
does not. Especially for few-emitter systems, this deficiency
of the single-particle description (sometimes called “collision
approximation” of carrier correlations) should be avoided by
considering the carrier correlations in Eq. (24).

The inclusion of scattering processes introduces a natu-
ral source of dephasing for all correlation functions. The
scattering contribution to the equations of motion of the
photon-assisted polarization,

d

dt
�ξ,ν

∣∣∣∣
scatt

= −
ν�ξ,ν − 1

2

∑
μ �=ν

(
γ cc

νμ − γ cc
μν

)
�c

ξ,μννμ,

(25)

includes a population-dependent dephasing rate 
ν = 1
2 (S in

ν +
Sout

ν ), instead of a constant rate 
 that is frequently used
in the literature. To study the influence of correlations, it
is crucial to account for their proper dephasing, because it
determines the timescale on which correlations are damped
out. We have shown in Ref. 15 that the influence of the carrier
correlations on the luminescence dynamics can be strong if no
dephasing is used at all, while a small constant dephasing
of the interband correlation function in the μeV regime
already leads to a complete damping towards an uncorrelated
system on a timescale of several 100 ps. To make quantitative
predictions, a consistent treatment of dephasing with correct
rates for the different correlation functions is important. The
dynamics of the interband carrier correlations due to intraband
scattering introduced by the Lindblad term (23) is given
by

d

dt
Cx

ijkl

∣∣
scatt = −

∑
μ �= ν

μ,ν ∈ {s,p}

γ cc
μν

2

{
Cx

ijkl(δiμ + δkμ)

− 2
[
f c

μf v
j (δiμδkμ − δiνδkν)δjl + Cx

μjμlδiνδkν

]
− 2

[(
f c

μ

(
1 − f c

i

) − Cc
μiiμ

)
δiν

− (
f c

i

(
1 − f c

ν

) − Cc
iννi

)
δiμ

]
f v

j δikδjl

}
, (26)

from which we obtain, using Cc
spsp = Cc

psps = −Cc
spps =

−Cc
pssp, the following sum rule:

d

dt

(
Cx

ssss + 2Cx
psps

)∣∣
scatt = 0. (27)

Thus both correlation functions Cx
ssss and Cx

psps are not
independent quantities but are linked by the scattering process
they represent. Obviously this property cannot be fulfilled by
a simpler approach, where equal and constant rates 
 are used
to describe the dephasing of both correlation functions.

2. Pumping

In a typical situation, carriers are excited in the barrier states
and subsequently captured into the QD states. We describe this
by a simultaneous generation/annihilation of carriers in the
conduction/valence band p state, which is assumed to persist
during the pump pulse and to rapidly disappear afterwards.
Specifically, we consider a time-dependent capture rate P (t)
following a Gaussian-shaped pump pulse. The corresponding
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Lindblad contribution to the equation of motion reads

d

dt
〈A〉

∣∣∣∣
pump

= P (t)

2
(〈[v†

pcp,A]c†pvp〉 + 〈v†
pcp[A,c†pvp]〉).

(28)

This treatment of the pump process leads to an automatic
built-up of correlation functions, e.g., for correlations between
conduction- and valence-band carriers in the p shell:

d

dt
Cx

pppp

∣∣∣∣
pump

= P (t)
(
f v

p − f c
p

)[
Cx

pppp + (
1 − f c

p

)
f v

p

]
.

(29)

This way, initial conditions for correlations do not have to
be calculated separately by considering a quasiequilibrium
initial-state population that is defined by a total carrier density
and a temperature.14,15

It is worth noting that it is particularly the pair-wise
generation of electrons and holes that leads to the generation
of certain electron-hole correlations in the system. Further-
more, since the recombination also destroys electrons and
holes pairwise, only configurations with an equal number of
electrons and holes appear in the system dynamics. Thereby,
charged excitonic configurations are excluded. Alternative
pump schemes can be considered34,40 in which electrons and
holes are captured independently. The implications are worth
a separate discussion, which we give in Sec. VII.

3. Cavity losses

In Sec. VI, we show results for a QD in a microcavity.
The latter provides a three-dimensional confinement of the
electromagnetic field, leading to a spectrum of well-separated
cavity modes. This allows for the situation, in which only
a single mode ξ̄ is resonant with the s-exciton transition of
the QD. Nevertheless, nonresonant modes ξ �= ξ̄ are weakly
coupled to QD transitions and introduce dissipation on a
nanosecond timescale.

To account for a finite lifetime of the resonant mode, we
introduce the following Lindblad contribution:

d

dt
〈A〉

∣∣∣∣
cav

= κξ̄

2
(〈[b†

ξ̄
,A]bξ̄ 〉 + 〈b†

ξ̄
[A,bξ̄ ]〉), (30)

where the photon loss rate κξ̄ is directly connected to the
quality factor Q = ωξ̄/κξ̄ of the cavity mode ξ̄ at the energy
ωξ̄ .

Note that this contribution has a similar structure as the
one for the carrier scattering (23), but now contains system
operators acting only on the photonic degrees of freedom and
leading to transitions between states involving n and n − 1
photons in the mode ξ̄ . The contribution to the equations of
motion leads to a damping of correlations at a rate Mκξ̄/2,

d

dt
δ〈(b†

ξ̄
)p(bξ̄ )qQ〉

∣∣∣∣
cav

= −M
κξ̄

2
δ〈(b†

ξ̄
)p(bξ̄ )qQ〉, (31)

where M = p + q is the order of the corresponding correlation
function with respect to the photon operators, independent
of further carrier operators Q contained in the correlation
function. Thus photon correlations get more strongly damped
in the presence of a lossy cavity and, even more so, with

increasing order. This plays an important role in the truncation
of the hierarchy within the cluster expansion approach and is
demonstrated in Sec. VI.

C. Luminescence dynamics and spectrum

The luminescence dynamics is determined by the change of
the mean photon number Nξ for which the equation of motion
reads (

d

dt
+ κξ

)
Nξ = 2 Re

∑
ν

g∗
ξ �ξ,ν . (32)

The only contributions to this equation arise from the light-
matter interaction and the cavity losses in Eq. (30). One can see
that cavity losses lead to a decrease of the mean photon number,
while spontaneous and stimulated emission and absorption
due to the emitter are expressed in terms of the sum over the
photon-assisted polarizations over all bound QD states.

In the absence of a cavity, emission into the continuum
of free space modes takes place, and the corresponding
luminescence spectrum I (ω,t) is given by

I (ω,t) = 2 Re
∑
ν,ξ

|gξ |2 �ξ,ν

∣∣∣∣
|q|= ω

c

. (33)

Note that from here on, we consider all polarization-like
quantities to be rescaled with the light-matter coupling strength
g in order to have the square of the coupling constant appear
in the equations; for details, we refer to Ref. 15. Here, the
sum runs over wave vectors with the same photon energy
irrespective of the direction of the wave vector. When studying
time-resolved photoluminescence, the spectral information is
discarded by integration over all frequencies, i.e.,

I (t) =
∫

dω I (ω,t). (34)

V. PHOTOLUMINESCENCE INTO FREE SPACE

We first present numerical results for the luminescence
from a single QD into a continuum of modes, i.e., free-space
emission. Here, the equation-of-motion approach can play out
its full advantage, because the large Hilbert space associated
with a continuum of modes prohibits a direct solution of the
von-Neumann equation. The particular four-level QD is used
that we have introduced in the previous section. The lumines-
cence spectra and the time-resolved photoluminescence decay
provide direct insight into both the physical system and the
underlying mechanism of the FSH approach. Furthermore,
comparing with results from the cluster expansion method
enables us to gain an understanding how the approximate
treatment of the carrier degrees of freedom leads to an
effective “mean-field”-like approximation of the exact result
and the limitations of this description. The frequency-resolved
and time-dependent luminescence spectra are calculated from
Eq. (33).

In Fig. 4, we show four series of luminescence spectra
from the emission 10, 20, 30, and 50 ps after the start of
the time evolution. Continuum-state carriers are excited by a
laser pulse and are subsequently captured pairwise into the
QD p states. A separate discussion of the particularities and
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FIG. 4. (Color online) Frequency-resolved photoluminescence spectra for the emission into a continuum of modes. Compared are FSH
(top) and doublet-level cluster expansion (bottom) results after a weak (left, Ptotal = 0.1) and strong (right, Ptotal = 1.0) excitation pulse. Spectra
are shown after 10 (solid line), 20 (dash-dotted), 30 (dotted), and 50 (dashed) ps of the time evolution. The excitation pulse is centered at 25
and 10 ps in width. The spectra have been rescaled for better visibility. In order to be able to compare absolute heights, the scaling factors are
required. Typical relaxation times for electrons in the conduction and valence bands are used: γ cc

sp = 1.07/ps, γ cc
ps = 0.02/ps, γ vv

sp = 0.13/ps,
and γ vv

ps = 0.59/ps. The peak height of the top right spectrum after 50 ps has been set to unity. Relative to this, in all panels, the spectra after
40, 30, 20, and 10 ps have been scaled by 0.76, 0.31, 0.02, and 1.4 × 10−5.

implications of pairwise carrier generation is the topic of
Sec. VII. The Gaussian pulse is centered at 25 ps and has
a width of 10 ps (FWHM) and a dimensionless pulse area
of Ptotal. The spectra in the left panel correspond to weak
excitation with Ptotal = 0.1, whereas the right panel shows
results after strong excitation with Ptotal = 1. Upper and lower
panels compare results from the FSH method for Mtrunc = 1,
and the doublet-level cluster expansion with (N + M)trunc = 2,
respectively.

We first provide an explanation of the FSH results. Since
the FSH method contains an exact treatment of the carrier
degrees of freedom, the resulting (multi)exciton lines appear
at renormalized energies that are equivalent to those obtained
from a diagonalization of the carrier and Coulomb Hamilto-
nian with the “full configuration interaction” procedure. The
position of the lines is fixed, and their intensity in the spectrum
is determined by the probability of the corresponding transition
taking place. Four peaks are visible, which correspond to
the four possible recombination channels of the excited QD
system, namely the decay to the ground state from the s and

p excitons, as well as the s and p recombination from the
s-p-biexciton configuration. The s and p recombination are
separated by approximately 63 meV in the spectrum due to the
level spacing of the single-particle states and direct (Hartree)
interaction. The Coulomb Hamiltonian introduces a further
splitting, if the recombination takes place in the presence
of another electron-hole pair in the other shell. The splitting
between the 2Xsp → 1Xs/p and the 1Xs/p → 0X transitions is
mainly determined by the Coulomb s-p-exchange interaction
and gives raise to a detuning of 2Vspsp, which amounts
approximately to 9.8 meV.

Because all recombination channels are spectrally sepa-
rated, it is possible to infer information about the carrier
dynamics from the time-dependent spectra in Fig. 4. The
following discussion is valid for both upper panels, as
the situation is similar for weak and strong excitation. In
the lowermost spectrum in each panel, corresponding to the
beginning of the excitation pulse, only signatures of s- and
p-exciton emission are visible. Because excitation is still weak,
relaxation and recombination are by far the fastest processes
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in the system, so that excitations decay before a biexciton can
form. The second spectra (dotted lines) depict the situation just
before the peak of the excitation pulse. The now faster refilling
of the p states already leads to weak signatures of the biexciton
emission. One can also see that the s-exciton emission clearly
dominates over that of the p exciton. This effect becomes even
more obvious in the spectra at later times and is explained by
the scattering processes between s and p shells; at a considered
temperature of 120 K, down-scattering from p to s shell is
much faster than the reverse process and offers a fast second
channel in addition to the direct recombination, through which
the p exciton can decay.

Before we discuss the results of the cluster expansion,
we elaborate on the origin of the spectral splitting between
exciton and biexciton emission in the formalism. The biexciton
recombination process is described by the expectation value
〈b†ξXsX

†
pXp〉. Here, exciton operators X

†
i = c

†
i vi have been

used to express the recombination process of an exciton in
the s shell in the presence of a second exciton in the p

shell (equivalently, p-shell recombination in the presence of
an s-shell exciton is given by a similar expression). Normal
ordering yields

〈b†ξXsX
†
pXp〉 = 〈b†ξ v†

s csc
†
pvpv†

pcp〉
= 〈b†ξ v†

s csc
†
pcp〉 − 〈b†ξ v†

s c
†
pv†

pvpcpcs〉. (35)

The assumption of pairwise carrier generation and the resulting
limitation to the six possible configurations shown in Fig. 2
imply that the second term must be zero (annihilation of three
carriers is not possible under the described circumstances), so
that the biexciton recombination process is actually described
by the quantity 〈b†ξ v†

s csc
†
pcp〉. This can readily be understood,

as the presence of two carriers in the conduction-band s and p

states automatically implies their absence in the valence-band
states. At this point, the limitation to account for scattering
processes that leave the total number of carriers in the localized
states constant constitutes a significant simplification of the
FSH method. In the more general case, which is the topic
of Sec. VII, equations of motion for correlation functions
containing up to 2Nmax = 8 carrier and Mtrunc = 1 photon
operators are required.

We now turn to the results of the cluster expansion method
(lower two panels). Here, the truncation is performed at the
level (N + M)trunc = 2, implying that all correlation functions
containing more than four carrier operators are approximated
as zero. Correlation functions �

c/v

ξ,ijkl responsible for biexci-
tonic emission, as they appear in the spectra obtained from
the FSH, are not included in the theory at the doublet level.
As a result of the truncation, the cluster expansion method
performs a compensation in a mean-field-like fashion:50 peaks
appear at the s- and p-exciton transitions at energies that are
renormalized proportionally to the single-particle electron and
hole populations in the QD states. With increasing excitation
the resonances are tuned continuously towards the energies
of the multiexciton configurations that are visible in the full
theory. The amount of the shift results from the singlet con-
tribution

∑
μ Viμiμ(1 + f c

μ − f v
μ ) in the dynamical equation

for the photon-assisted polarization �ξ,s/p responsible for the
s-(p-)shell recombination. The exact Coulomb-renormalized
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FIG. 5. (Color online) Time-resolved photoluminescence for the
results shown in the previous figure.

energies of the four recombination channels are shown as
vertical lines as a guide to the eye to better visualize the
shift. This effect can also be observed in the absorption spectra
shown in Ref. 51, where results from calculations on the mean-
field and two-particle correlation level are compared. Spectral
line shifts, though not the main focus of that publication, are
prominent especially in the first case and are reduced by the
important step to include two-particle correlations.

Complementary information, which turns out less sensitive
to the approximate treatment of carrier correlations, is provided
by the time-resolved photoluminescence, which is obtained by
integrating the spectrum over all energies at every point in time.
The result for the discussed four situations is shown in Fig. 5,
where curves from the FSH and cluster expansion methods are
compared. For weak excitation (Ptotal = 0.1), both results are
in good agreement, demonstrating that the “interpolation” per-
formed by the cluster expansion on the doublet level provides
indeed a good approximation of the total photon emission. At
high excitation (Ptotal = 1.0), when additional configurations
become increasingly important, deviations appear. Strong line
shifts are observed in the corresponding spectra (lower right
panel in Fig. 4) in order to mimic the dominant emission from
the filled QD configuration at the p shell resonance. In this
regime, the doublet-level cluster expansion method breaks
down and unphysical results, like negative populations may
occur.

The interpolation of the transition energies in the doublet-
level cluster expansion method leads to a problem in the
presence of a high-Q resonator. The narrow line width
associated with the cavity mode makes the light emission
very sensitive to shifts of the emission lines, leading to
a population-dependent overlap between QD transition and
mode. This artificial situation is discussed in detail in Sec. VI.

The final aspect of the spectra that requires additional
explanation regards the line widths of the different transitions.
We have explained in the context of Eq. (12) that scattering
processes lead to dephasing of optical transitions if they act
on either the initial and/or final state of that transition.34,40

The strength of the underlying dephasing manifests itself in
the line widths in the emission spectrum. For example, the
s exciton to ground-state transition is subject to the p-shell
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carrier generation process as well as the up-scattering of
electrons and holes from s to p states. While the latter is very
weak, the pump process is responsible for the line broadening
of the corresponding peak. After the pump pulse is over, the
line clearly narrows (compare the spectra at 10 and 50 ps). The
situation is similar for the p-exciton-to-ground-state transition,
which is affected by the pump process in the same way, but
is additionally dephased by the fast carrier relaxation from p

to s states. In contrast to the previously discussed transition,
the line of the corresponding peak is not narrowed after the
excitation pulse is over.

The effect of carrier relaxation is reversed for the biexciton
emission lines. Since for the considered QD system, the initial
configuration of this recombination process is the completely
filled QD, only the final configuration, which is either the s

or the p exciton, can be involved in carrier scattering. For
the p exciton, this is the fast p-to-s relaxation, while for the
s exciton, it is the much slower s-to-p up-scattering process.
Accordingly, the line width of the 2Xsp → 1Xs is significantly
smaller than that of the 2Xsp → 1Xp transition. The impact
of the dephasing reaches even deeper than its reflection in the
transition line widths, and the final point we would like to
discuss in the context of the spectra are the relative intensities
of the two biexciton emission channels. Recombination at the s

shell leaves behind a p exciton. As we have discussed before,
this is subject to strong dephasing due to carrier relaxation.
Recombination at the p shell, on the other hand, leaves behind
the s exciton, which is only weakly dephased in the absence
of pumping. Thus the photon-assisted polarization that drives
the transition process is damped more strongly in the first case,
which is clearly reflected by the higher peak in the spectrum
at 50 ps after the pump pulse has ended.

VI. NUMERICAL RESULTS FOR A SINGLE
QD IN A MICROCAVITY

Now we turn to the situation in which a single-QD emitter
is embedded in a resonator structure and coupled to a single
high-Q mode of that resonator. In contrast to the free-
space emission considered in the previous section, the cavity
strongly enhances the resonant emission from the QD. We
will demonstrate that the resulting sensitivity to the resonance
condition can lead to an enhancement of artifacts introduced

by the truncation of the hierarchy of equations of motion. The
limited size of the Hilbert space now facilitates a direct solution
of the vNL equation (13), which is exact, and against which we
check the validity of (i) the FSH method, where carrier degrees
of freedom are represented by a closed set of carrier correlation
functions, plus the corresponding correlations augmented by
photon operators up to order Mtrunc, and (ii) the approximate
treatment of carrier and photon degrees of freedom according
to the conventional cluster expansion method at the doublet
level (N + M)trunc = 2.

We consider the s-exciton transition to be resonant with a
single cavity mode, and a corresponding light-matter coupling
strength of g = 0.01/ps. The pump process is modeled like in
Sec. V [a Gaussian pulse centered at 25 and 10 ps of width
(FWHM)] with a total area of Ptotal = 0.5. Typical relaxation
times for electrons in the conduction and valence bands
are used: γ cc

sp = 1.07/ps, γ cc
ps = 0.02/ps, γ vv

sp = 0.13/ps, and
γ vv

ps = 0.59/ps.
In analogy to the discussion in Sec. IV C, we can infer that

the luminescence dynamics follows from Eq. (33), when only
a single mode ξ̄ is considered. We drop the mode index in the
remainder of this section. This leads to the expression

I (t) = 2|g|2 Re
∑

ν

�ν. (36)

For a light-matter coupling strength of g = 0.01/ps and a
cavity loss rate of κ = 0.1/ps (Q ≈ 20 000 for a cavity mode
wavelength of 915 nm), the time-resolved photoluminescence
at the cavity resonance is shown in Fig. 6(a). The FSH
method, which treats the electronic degrees of freedom exact
and the photonic degrees of freedom up to second order
(Mtrunc = 2), is in excellent agreement with the exact solution
of the vNL equation (symbols). The solid line represents
the cluster expansion at the doublet level (N + M)trunc = 2
and is found to exhibit a peculiar oscillatory behavior that
strongly deviates from the exact result. The reason lies in
the fact that, at this level of approximation, the transition
energies are not fixed but are renormalized as a function of
the carrier populations, as it was demonstrated in Sec. V.
With the cavity tuned to the properly renormalized energy
of the exciton transition, this transition comes into resonance
as the mean QD carrier occupancy increases. With the onset

FIG. 6. (Color online) (a) Time-resolved photoluminescence at the cavity-mode frequency. Results obtained from the FSH (dashed lines)
and doublet-level cluster expansion (solid lines) methods are compared to the exact solution (symbols) of the vNL equation. (b) Displays the
same results under the omission of Coulomb interaction, see text.
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FIG. 7. (Color online) Comparison between the solution of the
von-Neumann equation (symbols) and the FSH method for the time
evolution of the single-QD photoluminescence. For all curves a
light-matter coupling strength of g = 0.01/ps is used. The red lines
and crosses correspond to the results for cavity losses at a rate
κ = 0.01/ps. In comparison to the red curves, κ = 0.1/ps is used
for the blue lines and plus symbols. The various line styles show the
results of the FSH method obtained at different truncation levels with
respect to the photonic hierarchy.

of emission, the QD is depopulated, which, in turn, reduces
the renormalization and brings the exciton transition out of
resonance again. This leads to an initial oscillatory behavior
and finally to a strongly suppressed emission due to the reduced
spectral overlap between emitter and cavity mode. This picture
is supported by a comparative calculation where the influence
of Coulomb interaction is neglected, shown in Fig. 6(b). In
this case, exciton and biexciton recombination take place at
the same energy, so that the shifting of the transition lines is
artificially suppressed in the results of the cluster expansion
method.

In Fig. 7, we study the influence of the truncation level
in the photonic degrees of freedom when using the FSH
method. The blue set of curves and plus symbols correspond
to the parameters used in Fig. 6, the crosses and red set of
curves depict the case of a cavity with an exaggeratedly long
storage time of photons (κ = 0.01/ps, Q ≈ 200 000). For the
Q ≈ 20 000 cavity, a truncation of the photon hierarchy at the
Mtrunc = 1 level (dash-dotted line) can hardly be distinguished
from the results for Mtrunc = 2 (dashed line). The reason lies
in the dephasing of these correlations due to the dissipation
of photons from the cavity according to Eq. (31). In the
higher-Q cavity, the dephasing is significantly weakened,
thereby strengthening the impact of photon correlations. Thus,
the calculation for Mtrunc = 1 yields a visibly less accurate
description of the time-resolved photoluminescence than the
Mtrunc = 2 calculation. In the well-known manner of the cluster
expansion, the level of truncation depends on the strength of
correlations, as well as on the quantities of interest.

In this section, we have demonstrated that the FSH method
yields an accurate description of the system dynamics and
can overcome the limitations inherent to the cluster expansion

method at the doublet level. The results were obtained for a
pairwise carrier generation process, which greatly simplifies
the hierarchy of equations of motion. A generalization of the
carrier generation is the topic of the next section.

VII. CORRELATED AND UNCORRELATED
CARRIER GENERATION

Up to this point, we have considered pair-wise capture
of carriers from the continuum states into the localized p

states of the QD, as well as QD-carrier-number conserving
scattering processes, see Sec. IV. This implies full correlation
between the generated electrons and holes. Since the optical
recombination also acts pairwise, the dynamics of the con-
sidered QD system is completely determined by the smaller
subset of configurations shown in Fig. 2. In this sense, the
above approximations provide a convenient way to reduce
the numerical effort of the discussed theoretical approach. In
general, it would be desirable to model optical excitation of the
continuum states and subsequent capture into localized states
microscopically. For this, we expect only partial correlations
between the generated electrons and holes. Some evidence
for this picture is provided in Ref. 35, where it has been
demonstrated that the independent capture of electrons and
holes, which leads to a charging of the QD, is compensated by
Coulomb interaction effects favoring the capture of additional
carriers of the opposite charge.

In this section, we address the differences between cor-
related and uncorrelated electron-hole capture into the QD,
as well as its reflection in the carrier correlations. Like in
Sec. VI, we consider a single QD coupled to the single mode
of the confined electromagnetic field for which we can access
the full solution directly from the vNL equation.

In Fig. 8, the dynamical behavior after pulsed excitation is
compared for correlated and uncorrelated excitation. The first
is realized by using Eq. (28), while independent capture of
electrons and holes into the QD p-states is accomplished by
the Lindblad term:34,40

Lcaptρ = γ in

2
(2c†pρcp − cpc†pρ − ρcpc†p

+ 2vpρv†
p − v†

pvpρ − ρv†
pvp). (37)

We use a set of parameters that approximately describes the sit-
uation in current state-of-the-art single-QD laser devices:34,60

light-matter coupling strength g = 0.1/ps, and a cavity loss
rate of κ = 0.2/ps (Q ≈ 10 000). The cavity mode is resonant
with the 1Xs exciton transition. The area of the pump pulse is
Ptotal = 0.5.

The time-resolved photoluminescence (PL) at the cavity
mode frequency is shown in the top row. Also added are
the results of a calculation using the FSH method up to the
Mtrunc = 2 level (dashed line) to enable a direct comparison.
For the chosen parameter regime, which represents a QD-
cavity system with a high coupling strength, the exact results
(symbols) are very well reproduced. Results after correlated
(left) and uncorrelated (right) excitation are qualitatively very
similar. The PL intensity is, however, reduced in the latter case
due to the build-up of configurations that are optically dark or
inefficient. In case of pairwise excitation, the recombination
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FIG. 8. (Color online) Comparison between the system behavior after correlated (pairwise) excitation (left) and uncorrelated (independent)
carrier capture (right). (Top) Time-resolved PL on a time scale of 0.5 ns. In case of correlated excitation, the result of the vNL equation
(symbols) is compared to that of the FSH method (dashed line). The dotted line corresponds to a calculation where an additional Lindblad term
is used to account for leaky-mode losses at a rate of 1/ns. (Middle) Realization probabilities for selected configurations. In case of uncorrelated
carrier capture, 16 configurations are possible instead of six. Therefore the “rest” encompasses different configurations on the left and right.
(Bottom) Real part of the interband carrier correlation function. The interpretation of these quantities is explained in the text.

dynamics is driven by the decay of the 1Xs exciton during
the first 180 ps. Subsequently, the photoluminescence quickly
takes on a constant value. The combination of p-shell carrier
generation and QD relaxation leads to the build-up of several
configurations. For the considered spin-polarized excitation,
we find the s and p excitons as well as the sp biexciton.
The dynamical behavior of realization probabilities for these
configurations is depicted in the middle row in Fig. 8.
Fast carrier relaxation and recombination strongly favor the
1Xs and ground-state configurations in the beginning of
the evolution, but the 2Xsp-biexciton configuration is also
generated. The latter is, however, detuned from the cavity
mode due to the Coulomb interaction, which leads to a
strong suppression of the 2Xsp → 1Xp emission channel. As
a consequence, excitations remain ‘trapped’ in the biexciton

configuration after the recombination from the exciton-to-
ground-state emission channel has come to an end. Other
recombination channels, like leaky modes, could cause a
depletion of the biexciton configuration. This is demonstrated
in the top left panel (dotted line), where an additional Lindblad
term has been added that describes nonradiative carrier losses
from the s shell at a rate of 1/ns.

Uncorrelated excitation allows for a much larger number
of optically inactive configurations, in which excitations are
“trapped” and do not contribute to the photon production
(labeled as “rest” in Fig. 8). From the realization probabilities
shown in the middle row, we can infer that the formation
probability of a biexciton is reduced in case of uncorrelated
excitation in favor of additional configurations that cannot
form in case of pairwise excitation, like the charged exciton
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configurations, or configurations containing one or three
electrons in arbitrary single-particle states.

The two different excitation methods do not only generate
different configurations, but also have a strong impact on the
interband carrier correlations. Their real parts are shown in
the bottom row of Fig. 8 and yield indirect information
about the prominence of various configurations. Consider for
instance the interband correlation function Cx

ssss , which can be
written as

Cx
ssss = f c

s f v
s − 〈c†s csv

†
s vs 〉. (38)

Both contributions on the right-hand side can take on values
between zero and one, so that Cx

ssss ∈ [−1,1]. Its positivity is
an indicator for the prominence of configurations, allowing
for an optical recombination process at the s shell. This
can be understood the following way: An evaluation of the
configuration average 〈·〉 of the correlated part 〈c†s csv

†
s vs 〉

yields a contribution for all configurations that contain an
electron both in the conduction- and valence-band s states.
Due to the blocked lower level these configurations do not
allow for an optical recombination process. In the calcu-
lation of the factorized part f c

s f v
s , on the other hand, the

configuration average is performed separately, so that for f c
s

(f v
s ) all configurations contribute that contain an electron

in the conduction-(valence-)band s shell, irrespective of the
occupation of the valence-(conduction-)band s shell. The
magnitude of both contributions in Eq. (38) depends on the
relative realization probabilities of the configurations with
electrons in the QD s states. An overall positive value implies
f c

s f v
s > 〈c†s csv

†
s vs 〉, in which case the realization probabilities

of the 1Xs and 2Xsp configurations exceed those of the dark
0Xs configuration. Coming back to the two different excitation
mechanisms, the larger number of possible configurations
that contain two carriers in the two s states causes a greater
weight of the correlated contribution, leading in total to a
negative correlation Cx

ssss , as can be seen in the bottom right
picture in Fig. 8. A similar argument is valid for the Cx

spsp

contribution, which is shown together with the other possible
index combinations of Cx

ijkl for completeness.
In this discussion, a particular point must be kept in

mind: the presence of a cavity singles out a particular
transition of the QD. If emission into free space is considered,
contributions from charged and multiexciton configurations
appear with equal likelihood, which enables a much greater
variety of intraband scattering processes. The associated mode
continuum prevents a solution of the vNL equation and might
justify and extension of the FSH set of equations to include
correlation functions with up to eight carrier operators.

VIII. CONCLUSION

In this paper, we have presented a new approach to the
treatment of electronic correlations in a nanostructure coupled
to continuous electronic states, phonons, and photons. For such
a system, the direct solution of the von Neumann-Lindblad
(vNL) equation is only possible if the electronic Hilbert space
is small, which is the case for a single or few emitters. On
the other hand, Heisenberg’s equation-of-motion approach, in
connection with the cluster expansion method to truncate the
infinite hierarchy of equations, has been used in the past as a

valuable method to describe luminescence-related phenomena,
laser emission, and photon correlations for systems with many
quantum dots or other active materials with a continuous
density of states. In the current work, we have addressed the
situation in finite-sized systems in which the small number
of electronic degrees of freedom plays an important role.
This is, for example, the case in QDs with few confined
states. We have demonstrated that boundary conditions play
an important role and lead to an enhancement of correlations.
For this, we have devised a formalism that combines the exact
representation of the electronic degrees of freedom of the vNL
approach, with the truncation of the photonic hierarchy from
the cluster expansion method, resulting in the FSH (“finite-size
hierarchy”) method.

The second major point addressed in our work is the
inclusion of scattering and dephasing by using the Lindblad
formalism in the equation-of-motion-based approaches. This
regards scattering and dephasing in a consistent manner and on
equal footing with the Hamiltonian contributions to the time
evolution of the system. A correct treatment of dissipative pro-
cesses is a key requirement for making quantitative predictions
in correlated systems. In earlier attempts, simpler models for
the dephasing have been used to obtain an estimate for the
impact of correlations, such as adding an estimated constant
dephasing term to the equations of motion. Such an approach is
subject to artifacts that are overcome by the presented theory.

The FSH method allows for a description of much larger
systems than it is possible by means of the vNL equation, such
as QD ensembles or the emission into free space via a mode
continuum. For a single QD, we have presented free-space
emission spectra comprising multiexcitonic effects, as well
as time-resolved photoluminescence for a QD coupled to a
microcavity mode. The latter case allows for a comparison
with the vNL equation to benchmark the theory. The outcome
is that the FSH method provides an accurate description of the
dynamics predicted by the vNL equation.
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APPENDIX A: HAMILTONIAN

The microscopic Hamiltonian that describes the carrier
dynamics and the quantized electromagnetic field contains the
following contributions:

H = H0
carr + H0

ph + HLM + HCoul. (A1)

The first part of the Hamiltonian includes the noninteracting
single-particle spectrum ε

c/v

i of the conduction- and valence-
band carriers:

H0
carr =

∑
i

εc
i c

†
i ci +

∑
i

εv
i v

†
i vi , (A2)

which are annihilated (created) by the fermionic operator ci

(c†i ) and vi (v†
i ), respectively. Carrier-carrier interaction arises
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from the two-particle Coulomb Hamiltonian

HCoul = 1

2

∑
ijkl

Vijkl c
†
i c

†
j ckcl

+ 1

2

∑
ijkl

Vijkl v
†
i v

†
j vkvl +

∑
ijkl

Vijkl c
†
i v

†
j vkcl

+ 1

2

∑
ijkl

Vijkl (v†
i vkδjl + v

†
j vlδik − v

†
i vlδjk − v

†
j vkδil)

−
∑
ijkl

Vijkl c
†
i clδjk, (A3)

that contains direct (Hartree) terms Vijji and exchange (Fock)
terms Vijij , resulting in energy renormalizations and a mixing
between single-particle configurations. The last two lines
ensure that the contribution of the full valence band, which is
already included in the single particle properties, is not double
counted. The explicit form of the single-particle states enters
the calculation of the Coulomb-matrix elements Vijkl and is
discussed in Refs. 15 and 61 for a cylindrical, lens-shaped
QD. Throughout the paper we consider the single-particle
wave functions in envelope-function approximation62 as well
as equal envelopes for the conduction- and valence-band elec-
trons. However, more sophisticated methods, like tight-binding
calculations,63 can be used. For the material parameters, we
have chosen those of Ref. 64 for an InGaAs/GaAs QD.

We consider the fully quantized electromagnetic field of
which the free part is given by

H0
ph =

∑
ξ

ωξ

(
b
†
ξ bξ + 1

2

)
. (A4)

Here, the bosonic operators bξ (b†ξ ) annihilate (create) a
photon with the energy ωξ in the photon mode ξ . The index
ξ represents both, the wave vector q and the polarization
vector of the electromagnetic field e±(q). The nonperturbative
light-matter interaction HLM in dipole and rotating-wave
approximation reads11,15

HLM = −i
∑
ξ,i

(gξbξ c
†
i vi − g∗

ξ b
†
ξ v

†
i ci), (A5)

where the light-matter coupling strength gξ is proportional
to the interband dipole matrix element dcv. Note that within
the envelope-function approximation, optical transitions occur
only between s or the p shell of the conduction and valence
bands.

In the case when the QD is resonant with a single cavity
mode, the influence of all other modes can be treated via
Lindblad terms, so that HLM reduces to the Jaynes-Cummings
(JC) interaction Hamiltonian.65

APPENDIX B: EQUATIONS OF MOTION

In this Appendix, we provide a detailed account of all
contributions to the equations of motion up to the Mtrunc = 1,
Nmax = 2 level of the FSH method that were omitted for the
sake of transparency in Sec. IV. This includes contributions
from the light-matter, Coulomb and system-bath interactions,
which has been used for calculations shown in Secs. V and VI.

To derive the equations, we follow the same line as presented in
Sec. IV. Especially the Coulomb contributions add significant
complexity to the equations, thus we have checked them by
utilizing the symbolic manipulation system FORM.52

1. Light-matter interaction

Writing down the contribution of the light-matter interac-
tion to the equations of motion for the populations, we obtain

d

dt
f c

i

∣∣∣∣
HLM

= − d

dt
f v

i

∣∣∣∣
HLM

= −2Re
∑

ξ

g∗
ξ �ξ,i , (B1)

which is coupled to the photon-assisted polarization �ξ,i . The
corresponding dynamical equations read

d

dt
�ξ,i

∣∣∣∣
HLM

= gξf
c
i

(
1 − f v

i

) +
∑

μ

gξC
x
μiiμ (B2)

and contain the interband carrier correlation functions Cx
ijkl .

In contrast to Eq. (17), the photon population Nξ and carrier-
photon correlations N c

ξ,i and N v
ξ,i have been omitted as the

maximum order with respect to the photons is restricted to the
Mtrunc = 1 level in this Appendix.

The equations of motion for the interband carrier correlation
functions,

d

dt
Cx

ijkl

∣∣∣∣
HLM

=
∑

ξ

[
gξ

(
f c

j − f v
j

)
�∗

ξ,i + g∗
ξ

(
f c

i − f v
i

)
�ξ,j

]
δilδjk

+
∑

ξ

(
gξ�

c∗
ξ,ijkl + g∗

ξ �
c
ξ,ijkl

− gξ�
v∗
ξ,ijkl − g∗

ξ �
v
ξ,ijkl

)
, (B3)

and for the conduction band carrier-carrier correlations,

d

dt
Cc

ijkl

∣∣∣∣
HLM

=
∑

ξ

(
gξ�

c∗
ξ,ij lk − gξ�

c∗
ξ,ijkl

+ g∗
ξ �

c
ξ,jikl − g∗

ξ �
c
ξ,ijkl

)
, (B4)

contain the higher-order contributions �c
ξ,ijkl and �v

ξ,ijkl ,
which obey their own dynamics. A similar expression can
be found for the valence-band carrier-carrier correlations Cv

ijkl

by exploiting the symmetry properties of the Hamiltonian.
Due to the limited number of considered single-particle

states (see the beginning of Sec. IV), in conjunction with scat-
tering processes that conserve the total number of excitations in
the electronic system, the electronic hierarchy automatically
truncates at the Nmax = 2 level. Therefore by including the
equations of motion for �c

ξ,ijkl and �v
ξ,ijkl ,

d

dt
�c

ξ,ijkl

∣∣∣∣
HLM

= gξC
c
ijkl +

(
g∗

ξ �ξ,i�ξ,j − gξf
c
i f c

j f v
j

+ f c
i

∑
μ

gξC
x
μjjμ

)
(δikδjl − δilδjk) (B5)
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and

d

dt
�v

ξ,ijkl

∣∣∣∣
HLM

= gξC
x
ijkl − gξC

x
jikl

+
(

g∗
ξ �ξ,l�ξ,k + gξf

c
k f v

k f v
l

− f v
l

∑
μ

gξC
x
μkkμ

)
(δilδjk − δikδjl), (B6)

we obtain a closed set of equations at the Mtrunc = 1, Nmax =
2 level by neglecting the contributions from the correlation
functions δ〈b†ξ bξ c

†
i c

†
j ckcl〉, δ〈b†ξ bξ v

†
i v

†
j vkvl〉, δ〈b†ξ bξ c

†
i v

†
j ckvl〉

and δ〈b†ξ b†ξ v†
i v

†
j ckcl〉, which are second order in the photon

hierarchy.
At this point, we have written down equations for all

occurring correlation functions. Coulomb and Lindblad con-
tributions are discussed subsequently and only add to the
quantities we have introduced.

2. Coulomb interaction

The inclusion of the Coulomb interaction is of central
importance for the physical behavior of semiconductor nanos-
tructures. In contrast to atomic systems, here Coulomb effects
can be of similar magnitude as the energetic separation
between the localized electronic states. Thus energetic shifts
introduced by the Coulomb interaction can have a severe
impact on dynamical and spectral properties in a system of
contributing multiexciton configurations.

Starting with the contributions of the Coulomb Hamiltonian
(A3) to the equations of motion for the carrier populations, we
obtain

d

dt
f c

i

∣∣∣∣
HCoul

= −2Im
∑
μνα

ViμναCx+c
iμαν. (B7)

Here, we have introduced the abbreviation Cx+c
ijkl = Cx

ijkl +
Cc

ijkl . For the higher-order correlation functions, a straightfor-
ward interpretation of the contributions is obscured by their
complexity, and we restrain ourselves to a mere listing of
equations:

d

dt
�ξ,i

∣∣∣∣
HCoul

= i
∑

μ

{
Viμiμ

[(
1 + f c

μ − f v
μ

)
�ξ,i − (

f c
i − f v

i

)
�ξ,μ

] +
∑
να

Viμνα

(
�c

ξ,μiνα + �v
ξ,iμαν

)

+
∑
να

V ∗
iμνα

(
�c

ξ,ναiμ + �v
ξ,ναiμ

)}
, (B8)

d

dt
Cx

ijkl

∣∣∣∣
HCoul

= iV ∗
ij lk

(
f c

i f v
j − f c

k f v
l

) + i
∑
μν

[
V ∗

ijμνC
x
νμkl − VklμνC

x
ijνμ + VkμμνC

x
ijνl − V ∗

iμμνC
x
νjkl

]
+ i

∑
μν

[
(Vlμμν − Vlμνμ)Cx

ijkν + (V ∗
jμνμ − V ∗

jμμν)Cx
iνkl

] − i
∑

μ

[
V ∗

iμμk

(
f c

i − f c
k

)
f v

j δjl

+ (V ∗
jμlμ − V ∗

jμμl)f
c
i

(
f v

l − f v
j

)
δik

] − 2Im

{ ∑
μνα

[
f v

j ViμναCx+c
iμαν + f c

i VjμναCx+v
μjνα

]}
δikδjl, (B9)

d

dt
Cc

ijkl

∣∣∣∣
HCoul

= i(V ∗
ijkl − V ∗

ij lk)
(
f c

k f c
l − f c

i f c
j

) + i
∑
μν

[
VlμμνC

c
ijkν − VkμμνC

c
ij lν + VklμνC

c
ijμν

+V ∗
iμμνC

c
jνkl − V ∗

jμμνC
c
iνkl − V ∗

ijμνC
c
μνkl

] + i
∑

μ

[
V ∗

iμμkf
c
j

(
f c

k − f c
i

)
δjl − V ∗

iμμlf
c
j

(
f c

l − f c
i

)
δjk

]

− i
∑

μ

[
V ∗

jμμkf
c
i

(
f c

k − f c
j

)
δil − V ∗

jμμlf
c
i

(
f c

l − f c
j

)
δik

] − 2Im

{∑
μνα

[
f c

j

(
ViμναCx+c

iμαν

)

+ f c
i

(
VjμναCx+c

jμαν

)]}
(δikδjl − δilδjk), (B10)

d

dt
�c

ξ,ijkl

∣∣∣∣
HCoul

= i
∑
μν

[
Vlμμν�

c
ξ,ijkν − Vkμμν�

c
ξ,ij lν + Vklμν�

c
ξ,ijμν − V ∗

iμμν�
c
ξ,νjkl + V ∗

ijμν�
c
ξ,νμkl

+ (V ∗
jμνμ − V ∗

jμμν)�c
ξ,iνkl

] + i
[
V ∗

ijkl

(
f c

l �ξ,k − f c
i �ξ,j

) − V ∗
ij lk

(
f c

k �ξ,l − f c
i �ξ,j

)]
+ if c

i

∑
μ

{[V ∗
jμμk(�ξ,j − �ξ,k) + V ∗

jμkμ�ξ,k]δil − [V ∗
jμμl(�ξ,j − �ξ,l) + V ∗

jμlμ�ξ,l]δik}

+ i�ξ,j

∑
μ

[
V ∗

iμμk

(
f c

k − f c
i

)
δjl − V ∗

iμμl

(
f c

l − f c
i

)
δjk

] − 2�ξ,j Im

(∑
μνα

ViμναCx+c
iμαν

)
(δikδjl − δilδjk)

+ if c
i

∑
μνα

[
Vjμνα

(
�c

ξ,μjνα + �v
ξ,jμαν

) + V ∗
jμνα

(
�c

ξ,ναjμ + �v
ξ,ναjμ

)]
(δikδjl − δilδjk)

+ if c
i

∑
μ

Vjμjμ

[
�ξ,j

(
1 − f v

μ + f c
μ

) − �ξ,μ

(
f c

j − f v
j

) ]
(δikδjl − δilδjk), (B11)
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d

dt
�v

ξ,ijkl

∣∣∣∣
HCoul

= −iV ∗
ijkl

(
�ξ,jf

v
i − �ξ,kf

v
l

) + iV ∗
ij lk

(
�ξ,if

v
j − �ξ,kf

v
l

) − i
∑

μ

{
Vkμkμ

[
�ξ,μ

(
f c

k − f v
k

)
−�ξ,k

(
f c

μ + f h
μ

)]}
f v

l (δikδjl − δilδjk) + i
∑
μνα

[
Vkμνα

(
�c

ξ,μkνα + �v
ξ,kμαν

)

+V ∗
kμνα

(
�c

ξ,ναkμ + �v
ξ,ναkμ

)]
f v

l (δikδjl − δilδjk) − 2�ξ,kIm

( ∑
μνα

VlμναCx+v
μlνα

)
(δikδjl − δilδjk)

+ i
∑
μν

[
Vkμμν�

v
ξ,ijνl − Vklμν�

v
ξ,ijνμ + (Vlμμν − Vlμνμ)�v

ξ,ijkν

]
+ i

∑
μν

[
(V ∗

iμμν − V ∗
iμνμ)�v

ξ,jνkl − V ∗
ijμν�

v
ξ,μνkl + (V ∗

jμνμ − V ∗
jμμν)�v

ξ,iνkl

]
− i�ξ,k

∑
μ

[
(V ∗

iμkμ − V ∗
iμμk)δjl − (V ∗

jμkμ − V ∗
jμμk)δil

]
f v

l − i�ξ,k

∑
μ

[
(V ∗

iμlμ − V ∗
iμμl)

(
f v

i − f v
l

)
δjk

− (V ∗
jμlμ − V ∗

jμμl)
(
f v

j − f v
l

)
δik

] − if v
l

∑
μ

[V ∗
iμμk�ξ,iδjl − V ∗

jμμk�ξ,j δil]. (B12)

3. System-bath interaction

The evaluation of the system-bath contributions follows from Eq. (14). Cavity losses have already been included in the discussion
in Sec. IV.

a. Scattering

The physical effects of the intraband scattering processes listed in the following include carrier redistribution, dephasing, and
redistribution of correlation strength in compliance with the sum rule (27) as well as effects on higher-order correlation functions.
Note that the evaluation of the sum for μ �= ν in Eq. (23) formally requires setting γ cc

μμ = 0.

d

dt
f c

i

∣∣∣∣
scatt

=
∑

μ

γ cc
iμ

[
f c

μ

(
1 − f c

i

) + Cc
iμiμ

] −
∑

μ

γ cc
μi

[
f c

i

(
1 − f c

μ

) + Cc
iμiμ

]
, (B13)

d

dt
�ξ,i

∣∣∣∣
scatt

= −1

2

∑
μ

γ cc
μi �ξ,i + 1

2

∑
μ

(
γ cc

μi − γ cc
iμ

)
(f c

μ�ξ,i + �c
ξ,μiiμ), (B14)

d

dt
Cx

ijkl

∣∣∣∣
scatt

=
∑

μ

[
γ cc

iμCx
μjμlδik − 1

2

(
γ cc

μi + γ cc
μk

)
Cx

ijkl

]
−

∑
μ

(
γ cc

iμ − γ cc
μi

) (
f c

i f c
μ − Cc

iμiμ

)
f v

j δikδjl, (B15)

d

dt
Cc

ijkl

∣∣∣∣
scatt

= 1

2

(
γ cc

ij + γ cc
ji + γ cc

kl + γ cc
lk

)
Cc

ijkl + [
γ cc

ij f c
j

(
f c

j − f c
i

) − γ cc
ji f c

i

(
f c

j − f c
i

)]
(δikδjl − δilδjk)

− 1

2

∑
μ

(
γ cc

μi + γ cc
μj + γ cc

μk + γ cc
μl

)
Cc

ijkl +
∑

μ

(
γ cc

μi − γ cc
iμ + γ cc

μj − γ cc
jμ

)
f c

i f c
j f c

μ(δikδjl − δilδjk)

+
∑

μ

γ cc
iμ

(
Cc

jμlμδik − Cc
jμkμδil

) +
∑

μ

γ cc
jμ

(
Cc

iμkμδjl − Cc
iμlμδjk

) +
∑

μ

[(
γ cc

iμ − γ cc
μi

)
f c

j Cc
iμiμ

+ (
γ cc

jμ − γ cc
μj

)
f c

i Cc
jμjμ

]
(δikδjl − δilδjk), (B16)

d

dt
�c

ξ,ijkl

∣∣∣∣
scatt

= 1

2

(
γ cc

kl + γ cc
lk

)
�c

ξ,ijkl +
[
γ cc

ij

(
f c

j − 1

2
f c

i

)
− 1

2
γ cc

ji f c
i

]
�ξ,j (δikδjl − δilδjk)

− 1

2

∑
μ

(
γ cc

μi + γ cc
μk + γ cc

μl

)
�c

ξ,ijkl +
∑

μ

γ cc
iμ

(
�c

ξ,μjkμδil − �c
ξ,μjlμδik

)

+
∑

μ

[ (
γ cc

μi − γ cc
iμ

) (
f c

i f c
μ − Cc

iμiμ

)
�ξ,j + 1

2

(
γ cc

μj − γ cc
jμ

) (
f c

μ�ξ,j + �c
ξ,μjjμ

)
f c

i

]
(δikδjl − δilδjk), (B17)

d

dt
�v

ξ,ijkl

∣∣∣∣
scatt

= −1

2

∑
μ

γ cc
μk�

v
ξ,ijkl − 1

2

∑
μ

(
γ cc

kμ − γ cc
μk

)
f v

l

(
f c

μ�ξ,k + �c
ξ,μkkμ

)
(δikδjl − δilδjk). (B18)

A similar set of equations can be given for the intraband scattering in the valence band.
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b. Pumping

In Eq. (28), we have formulated the Lindblad contribution for pairwise carrier capture into the QD p states. For a general capture
into the state |μ〉 at a rate Pμ(t), this equation reads

d

dt
〈A〉

∣∣∣∣
pump

= Pμ(t)

2
(〈[v†

μcμ,A]c†μvμ〉 + 〈v†
μcμ[A,c†μvμ]〉) (B19)

and leads to the following contributions in the set of equations of motion:

d

dt
f c

i

∣∣∣∣
pump

= Pi(t)
[(

1 − f c
i

)
f v

i + Cx
iiii

]
, (B20)

d

dt
�ξ,i

∣∣∣∣
pump

= −1

2
Pi(t)�ξ,i, (B21)

d

dt
Cx

ijkl

∣∣∣∣
pump

= −1

2
[Pj (t) + Pl(t)]C

x
ijkl + Pi(t)C

v
ijilδik + 1

2

[
Pi(t)C

x
iiklδij + Pk(t)Cx

ijkkδkl

]
+Pi(t)

(
Cx

iiii − f c
i f v

i

)
f v

j δikδjl + Pj (t)
(
f c

j f v
j − Cx

jjjj

)
f c

i δikδjl + Pi(t)
(
f v

i f v
i − f c

i f v
i

)
δij δikδil, (B22)

d

dt
Cc

ijkl

∣∣∣∣
pump

= +Pi(t)
(
Cx

jiliδik − Cx
jikiδil

) + Pj (t)
(
Cx

ijkj δjl − Cx
ijlj δjk

)
+Pi(t)f

c
j

(
Cx

iiii − f v
i f c

i

)
(δikδjl − δilδjk) + Pj (t)f c

i

(
Cx

jjjj − f v
j f c

j

)
(δikδjl − δilδjk), (B23)

d

dt
�c

ξ,ijkl

∣∣∣∣
pump

= −1

2
Pj (t)�c

ξ,ijkl + 1

2
Pi(t)

(
�c

ξ,iiklδij + 2�v
ξ,ijkiδil − 2�v

ξ,ij liδik

) + Pi(t)�ξ,j

(
Cx

iiii − f v
i f c

i

)
(δikδjl − δilδjk),

(B24)
d

dt
�v

ξ,ijkl

∣∣∣∣
pump

= −1

2
[Pi(t) + Pj (t) + Pl(t)]�

v
ξ,ijkl + 1

2
Pk(t)�v

ξ,ijkkδkl + Pl(t)�ξ,k

(
f v

l f c
l − Cx

llll

)
(δikδjl − δilδjk). (B25)

1Z. I. Alferov, Rev. Mod. Phys. 73, 767 (2001).
2D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot
Heterostructures, 1st ed. (John Wiley and Sons, Chichester, UK,
1998).

3S. Strauf and F. Jahnke, Laser Photon. Rev. 5, 607 (2011).
4W. W. Chow, M. Lorke, and F. Jahnke, IEEE J. Sel. Top. Quantum
Electron. 17, 1349 (2011).

5J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson,
D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer et al.,
Phys. Rev. B 72, 193303 (2005).

6S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato,
L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, Phys.
Rev. Lett. 96, 127404 (2006).

7S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann,
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