
PHYSICAL REVIEW B 87, 165305 (2013)

Non-Markovian nature of exciton-exciton scattering in a GaAs single quantum well observed
by phase-locked laser pulses
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We report the non-Markovian nature of heavy hole-heavy hole and heavy hole-light hole exciton scattering in
a GaAs single quantum well. The homogeneous width depends on the exciton population, which is controlled by
the delay time of phase-locked pulses. This effect is explained on the basis of excitation-induced dephasing in
Markovian approximation. For short times, the homogeneous width decreases and deviates from the Markovian
behavior, due to the non-Markovian behavior of the exciton-exciton scattering. We analyze the homogeneous
width by using a weakly interacting boson model including the non-Markovian effect. The correlation time of
the exciton-exciton scattering is estimated as 0.43 ps.
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An ideal model system for the investigation of many-
body physics is an optically excited semiconductor whose
optical properties are governed by excitonic resonances.1 The
many-body interaction of photoexcited carriers leads to rich
phenomena such as the formation of the excitonic molecule,2

exciton-Mott transition,3 and Bose-Einstein condensation.4

Theoretical approaches to analyze the many-body interaction,
e.g., nonequilibrium Green’s function method5 and the dy-
namics controlled truncation approach,6 have been developed
in step with the progress of the experiment.

In general, the many-body interaction does not occur
instantaneously but depends on the past history of scattering.
The time scale that reflects the duration for which the past
interaction influences the present dynamics is referred to as
the correlation time of the interaction, and such dynamics
are considered to be non-Markovian. When the time scale
of measurement corresponds to the correlation time of inter-
actions, the non-Markovian dynamics can be observed. The
non-Markovian effect is an important topic for the study of
many-body interactions.

Many-body interactions of excitons in semiconductors are
commonly probed by nonlinear optical spectroscopy. Transient
four-wave mixing (FWM) has been employed for investigating
the non-Markovian effects that mainly originate from exciton-
optical phonon interaction7–11 and exciton-acoustic phonon
interaction.12–18 In contrast, there are only a few reports
on the non-Markovian behavior induced by exciton-exciton
scattering.15,19 The reason for the scarcity of research is that
the correlation time of exciton-exciton scattering is short
as compared to that of exciton-phonon scattering, and the
method for the measurement of the non-Markovian behavior
of exciton-exciton scattering is not well established.

In this paper we show that coherent control is a versatile
tool to observe the non-Markovian effect of the exciton-exciton
scattering and we discuss the correlation time in a GaAs single
quantum well (SQW) by using FWM measurements. First, we
introduce the sample that shows a clear excitation density
dependence of the peak energy and linewidth of the FWM
spectrum. Next, we show the results of the coherent control
of the FWM signal by using a phase-locked pulse pair. A
heavy hole (hh)-light hole (lh) quantum beat disappears with
the changing of the delay time of phase-locked pulses because

of polarization interference. The offset of the diffracted signal
oscillates due to the quantum beat of a fifth-order nonlinear
signal. Finally, we demonstrate that the dephasing time is
controlled by changing the delay time of phase-locked pulses,
which is the result of the modulation of exciton population.
We observe the non-Markovian behavior of the exciton-exciton
scattering. The correlation time is estimated by using a weakly
interacting boson model.

A mode-locked Ti:sapphire laser (100 fs, 76 MHz) was
used as the light source. An actively stabilized Michelson
interferometer produced two phase-locked pulses k1′ and k1,
with a temporal separation of t1′1 as shown in Fig. 1. The length
of one arm of the Michelson interferometer was controlled
in order to maintain a constructive (in-phase) interference at
the hh exciton energy. Another pulse k2, with delay time t12,
interacts with the phase-locked pulses k1′ and k1. We observed
diffracted signals in the 2k2-k1 direction. In the χ (3) regime,
the diffracted signal is the linear addition of the FWM signals
in the 2k2-k1 and 2k2-k1′ directions. In the χ (5) regime, the
diffracted signal contains the six-wave mixing (SWM) signal
in the same diffracted direction 2k2-2k1 + k1′ . All beams had
the same intensity (0.08–3.2 mW), and the polarization was
controlled by wave plates and polarizers. The polarization of
the detected signal was not selected. All measurements were
performed on a GaAs SQW with a well thickness of 15 nm at
4 K. The photon energy of the laser light was resonant with
the hh and lh excitons.

Excitation density dependencies of the time-integrated (TI)
and spectrally resolved (SR) FWM signal intensity at t1′1 = 0
ps are shown in Figs. 2(a) and 2(b), respectively. The dephasing
time decreases with the increase in the excitation density as a
result of the excitation-induced dephasing (EID) process.20

Because the inhomogeneous width of the sample is much
smaller than the width obtained at the high excitation density,
EID is observed in the SR-FWM. At the lowest excitation
density, a sharp spectrum of the hh exciton resonance with
a full width at half maximum of 0.446 meV was observed.
The spectral width asymmetrically broadens with the increase
in the excitation density. Figure 2(c) indicates the excitation
density dependence of the homogeneous width of the hh
exciton peak estimated from the decay rate and spectral width.
In this estimation we assumed no inhomogeneous broadening.
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FIG. 1. Schematic of the experimental setup. Pulses k1 and k1′ of
the temporal separation t1′1 are phase-locked constructively at a heavy
hole exciton energy. The diffracted signals in the 2k2-k1 direction are
detected. Mono: monochromator, PMT: photomultiplier tube, PZT:
piezo-electric actuator.

The homogeneous width increases linearly at low excitation
density.

The peak energy of the hh exciton indicates a blue shift with
the increase in the excitation density, as shown in Fig. 2(d).
The excitation-induced shift (EIS) is determined by the conflict
between the band-gap renormalization and the reduction of the
exciton binding energy due to the screening of the Coulomb
potential. There is no shift in the bulk samples due to this
compensation.5 As the reduction in dimensionality leads to a
reduction of the Coulomb interaction, a blue shift occurs at
resonant excitation and under a low temperature condition in
quantum wells.21,22

Figures 3(a)–3(d) show the FWM intensity as a function
of t12 and t1′1 measured at several experimental conditions.
Here “RRR” refers to the configuration where k1′ , k1, and
k2 pulses are co-circular polarized and “RLV” where k1′

and k1 pulses are cross-circular polarized and k2 pulse is
linear polarized. “High” and “low” denote high and low
excitation densities, respectively. The FWM intensities at
t1′1 = 0, 0.33, and 0.66 ps are shown in Figs. 3(e) and
3(f). A conventional two-pulse FWM signal is observed at
t1′1 = 0 ps, which shows the hh-lh quantum beat with a period
of 0.66 ps. The hh-lh quantum beat disappears at t1′1 = 0.33,
0.99, 1.66, and 2.33 ps due to the interference in antiphase
between the third-order nonlinear polarizations in 2k2-k1′

and 2k2-k1 directions: P
(3)
2k2−k1′ and P

(3)
2k2−k1

. The condition of
the disappearance is t1′1 = 2π (n + 1/2)/�ω, where n is an
integer and h̄�ω is the energy difference between hh and lh
excitons. The period of the disappearance is equal to that of
the hh-lh quantum beat 2π/�ω, which corresponds to the
experimental results. The hh-lh quantum beat disappears in
both RRR and RLV configurations due to the polarization
interference.

The offset of the diffracted signal increases at t1′1 = 0.33,
0.99, 1.66, and 2.33 ps only for the RRR configuration.
In the χ (5) regime, the diffracted signal contains the SWM
signal in the same diffracted direction 2k2-2k1 + k1′ for the
RRR configuration. Note that there is no SWM signal in
the 2k2-2k1′ + k1 direction due to the time order of the
excitation light. The diffracted signal intensity is proportional
to |P (3)

2k2−k1′ + P
(3)
2k2−k1

+ P
(5)
2k2−2k1+k1′ |2. The increase in the

offset is due to the cross terms of the third- and fifth-
order nonlinear polarizations, i.e., P

(3)
2k2−k1′ × P

(5)
2k2−2k1+k1′ and

FIG. 2. (Color online) (a) Time-integrated and (b) spectrally
resolved four-wave mixing intensity in co-circular configuration as
a function of excitation density. The spectrum of excitation light is
also presented. (c) Homogeneous width and (d) peak energy shift as a
function of excitation density. Homogeneous width is estimated from
decay rate [(a) solid circles] and spectral width [(b) open boxes].

P
(3)
2k2−k1

× P
(5)
2k2−2k1+k1′ , which are proportional to the fourth

power of the excitation density.23 Because the sign of the fifth-
order nonlinear polarization is opposite to that of the third-
order one, the oscillation of the offset is the reverse of the
hh-lh quantum beat. On the other hand, there is no fifth-order
signal in the RLV configuration because of the cross-circular
polarization between the k1′ and k1 pulses. Therefore, the signal
intensity is proportional to |P (3)

2k2−k1′ + P
(3)
2k2−k1

|2; the offset does
not oscillate for the RLV configuration.

Although a change in decay rate is difficult to identify in
Figs. 3(a) and 3(e), the decay rate changes depend on t1′1 in
the co-circular configuration. We estimated the homogeneous
widths at various t1′1 values from the exponential fittings of the
decay curves; the homogeneous widths as a function of t1′1 are
shown in Fig. 4(a). As t1′1 increases, the homogeneous width
decays with the oscillation and has minima at t1′1 = 0.33, 0.99,
1.66, and 2.33 ps. It is expected that the homogeneous width
decreases when the population of the hh (lh) exciton reduces
and this population reduction leads to a suppression of the hh-
hh (hh-lh) exciton scattering. We note that the homogeneous
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FIG. 3. (Color online) (a)–(d) Four-wave mixing intensity as a function of t12 and t1′1 for co-circular (RRR) and cross-circular (RLV)
configurations at low (0.12 mW) and high (1.2 mW) excitation densities. (e) and (f) Time-integrated FWM intensity at t1′1 = 0, 0.33, and
0.66 ps as a function of t12.

width decreases around t1′1 = 0 ps, which is the result of the
non-Markovian effect, as described below.

For simplicity we assume that the exciton polarization is
driven in a homogeneous system by phase-locked pulses and
that the k2 pulse probes the created polarization. The scattering
rates due to hh-hh and hh-lh exciton scatterings are calculated
by using a weakly interacting boson model including the
non-Markovian effect. Hereafter, the hh and lh excitons are
abbreviated to Xh and Xl, respectively.

The origin of the scattering between excitons is Coulomb
interaction that works instantaneously. The exciton-exciton
interaction provides the energy shift of the exciton. The scatter-
ing occurs one after another and the exciton energy changes for
each scattering. When the time scale of measurement is long
enough, the power broadening is terminated at the moment
when the excitation pulse disappears.

When the time scale of measurement is short enough, the
energy shift is not random but depends on the history of the
scattering. There is a correlation between energy shifts of
exciton at different times due to the non-Markovian nature.
The Hamiltonian of the Xh-Xh and Xh-Xl scatterings is written
as

Ĥ
h,j
scat = 1

2

∑
q �=0,k′,k′′

∫ ∞

0
dτCh,j

q (τ )b̂†k′′+q,h(t)

× b̂
†
k′−q,j(t)b̂k′′,h(t − τ )b̂k′,j(t − τ ) (1)

by extending the Hamiltonian of the Markovian process.19,24

Where b̂k,j is the annihilation operator for Xh (j = h) and Xl

(j = l) with the wave vector k. The commutation relations
for the exciton operators have the form [b̂k′,j′ (t − τ ),b̂†k,j(t)] =
δk′kδj′j exp[iωjτ ], where h̄ωj is the energy of Xh (j = h) and Xl

(j = l). Ch,j
q (τ ) is the correlation function of the Xh-Xh (j = h)

and Xh-Xl (j = l) scatterings. The correlation function of the

non-Markovian scattering is phenomenologically represented
by an exponential function similar to a linear Brownian motion,
which is the result of the assumption that the fluctuation of
exciton energy is linearly driven by the stochastic random force
due to the exciton-exciton scattering.25 On the other hand, the
correlation function can be represented by a δ function in
Markovian dynamics.

The scattering term due to the Xh-Xh scattering is expressed
as

∂

∂t
〈b̂k,h(t)〉

∣∣∣∣
h,h

scat

= i

h̄

〈[
Ĥ

h,h
scat,b̂k,h(t)

]〉
. (2)

From Eqs. (1) and (2) we obtained

∂

∂t
〈b̂k,h(t)〉

∣∣∣∣
h,h

scat

= − i

h̄

∑
q �=0

∫ ∞

0
dτCh,h

q (τ )

×〈b̂†k+q,h(t)b̂k+q,h(t − τ )b̂k,h(t − τ )〉. (3)

We decoupled the three-operator expectation value
〈b̂†k+q,h(t)b̂k+q,h(t − τ )b̂k,h(t − τ )〉 by splitting it into a produc-

tion of two-operator 〈b̂†k+q,h(t)b̂k+q,h(t − τ )〉 and one-operator

〈b̂k,h(t − τ )〉 terms. The two-operator term is approximated as
〈b̂†k,h(t)b̂k,h(t − τ )〉. The Heisenberg equations are written as

∂

∂t
〈b̂k,h(t)〉 = i

h̄
〈[Ĥ ,b̂k,h(t)]〉 − 	2〈b̂k,h(t)〉, (4)

∂

∂t
〈b̂†k,h(t)b̂k,h(t − τ )〉 = i

h̄
〈[Ĥ ,b̂

†
k,h(t)b̂k,h(t − τ )]〉, (5)

Ĥ = Ĥ0 + ĤI + Ĥscat, (6)

where Ĥ0 = ∑
k,j h̄ωjb̂

†
k,j(t)b̂k,j(t) is the nonperturbed

Hamiltonian, ĤI = −∑
k,j μj{E(t)b̂†k,j(t) + E∗(t)b̂k,j(t)}

is the interaction Hamiltonian between light and matter,
and μj is the dipole moment of Xh (j = h) and Xl
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τ

FIG. 4. (Color online) (a) Homogeneous widths as a function
of t1′1 obtained from the exponential fitting of the decay curves
of the FWM signals for co-circular (RRR: solid circles) and cross-
circular (RLV: open circles) configurations at low and high excitation
densities. The solid line represents the calculated homogeneous width
based on a weakly interacting boson model. (b) Calculated scattering
rates as a function of t1′1 for a co-circular configuration at low
excitation density. The dashed line is the hh-hh exciton scattering
term in the Markovian approximation. Details of the calculation are
described in text. Correlation time of the hh-hh exciton scattering τc

is 0.43 and 0.41 ps at low and high excitation densities, respectively.

(j = l). We added the intrinsic decay term 	2 at the
zero-excitation density in Eq. (4). The driving electric field is
expressed as E(t) = h̄θ1′ exp[−iω(t − t1′) + ik1′r]δk,k1′ δ(t −
t1′ ) + h̄θ1 exp[−iω(t − t1) + ik1r]δk,k1δ(t − t1), where
exp[−iωht1′1] = 1 because of the phase locking at the energy
of Xh. Note that the excitation pulse is approximated by a
δ function because the spectrum of the excitation pulse is
much broader than the linewidth of excitons as shown in
Fig. 2(b). To calculate Eqs. (4) and (5), we neglected the
higher-order terms, i.e., the phase space filling term which
leads to nonlinearity24 and the scattering term Ĥscat. That is,
the calculation is restricted to first order.

The scattering term is finally obtained as

∂

∂t
〈b̂k,h(t)〉

∣∣∣∣
h,h

scat

= −μ2
h

i

h̄

∑
q �=0

[∫ ∞

0
dτCh,h

q (τ )

× (
θ2

1′ + θ2
1 + θ1′θ1e

−	2t1′1
)
e2iωhτ+2	2τ

+
∫ t1′1

0
dτCh,h

q (τ )θ1′θ1e
−	2t1′1

× e2iωhτ+2	2τ

]
〈b̂k,h(t)〉, (7)

for a sufficiently large t . The real part of the coefficient
of 〈b̂k,h(t)〉 in the RHS is the decay rate due to the Xh-Xh

scattering. The θ2
1′ and θ2

1 terms indicate the power broadening
by the k1′ and k1 pulses, respectively, and are proportional to
the excitation density. The two θ1′θ1 terms in the second and
third lines represent the cross correlation after and before the
arrival of the second pulse, respectively. The cross-correlation
terms disappear in the cross-circular configuration. Therefore,
the homogeneous width does not depend on t1′1 in the RLV

configuration, as shown in Fig. 4(a). Although exciton-free
carrier scattering is one of the main decoherence channels,26

we omit the contribution of the exciton-free carrier scattering
because the free carrier is not controlled by the irradiation of
the phase-locked pulses. If the relative phase of the phase-
locked pulses is δ, then −	2t1′1 is replaced by −	2t1′1 + iδ.
The relative phase dependence of the decay rate has been
reported for a ZnSe SQW.27

The scattering term due to the Xh-Xl scattering is calculated
by the same procedure:

∂

∂t
〈b̂k,h(t)〉

∣∣∣∣
h,l

scat

= −μ2
l

i

2h̄

∑
q �=0

[∫ ∞

0
dτCh,l

q (τ )
(
θ2

1′ + θ2
1

+ θ1′θ1e
i�ωt1′1−	2t1′1

)
ei(2ωh+�ω)τ+2	2τ

+
∫ t1′1

0
dτCh,l

q (τ )θ1′θ1e
−i�ωt1′1−	2t1′1

× ei(2ωh+�ω)τ+2	2τ

]
〈b̂k,h(t)〉, (8)

where h̄�ω is the energy difference between Xh and Xl.
The total decay rate is determined by the Xh-Xh and Xh-Xl

scattering, and the intrinsic decay rate 	2.
In the Markovian approximation, the correlation func-

tion is given by the δ function as described above, for
example,

∑
q �=0 Ch,h

q (τ ) = Ch,h(0)δ(τ ). Therefore, the de-
cay rates due to the Xh-Xh and Xh-Xl scatterings are
proportional, respectively, to the population of Xh and
Xl, i.e., μ2

h(θ2
1′ + θ2

1 + 2θ1′θ1 exp[−	2t1′1]) and μ2
l (θ2

1′ + θ2
1 +

2θ1′θ1 cos[�ωt1′1] exp[−	2t1′1]). The population of Xh is
constructively generated by the phase-locked pulses when the
delay time is smaller than the dephasing time. The population
of Xl oscillates with the period of 2π/�ω, due to the phase
locking at the energy of Xh.28

In the non-Markovian dynamics, the correlation function is
written as

∑
q �=0 C

h,j
q (τ ) = Ch,j(0) exp[−	cτ ], where j = h, l,

and 	c is the inverse of the correlation time τc. The t1′1
dependence of the homogeneous width is well reproduced by
the above model, as denoted by the solid line in Fig. 4(a). We
neglected the non-Markovian effect of the Xh-Xl scattering
because its contribution to the decay rate is small. The
excitation density θ1′ is equal to θ1, from the experimental
condition. The calculated scattering terms due to the Xh-Xh and
Xh-Xl scatterings, and the intrinsic decay rate are described
in Fig. 4(b). The Xh-Xl scattering term oscillates with t1′1
depending on the population of Xl. The dashed line in Fig. 4(b)
is the Xh-Xh scattering term in the Markovian approximation,
which is proportional to the population of Xh.

The decrease in the Xh-Xh scattering around t1′1 = 0 ps is
caused by the non-Markovian effect. As mentioned above,
there is a correlation between energy shifts of exciton at
different times during the correlation time. That is, the past
energy shifts influence the present dynamics. When a pulse pair
is incident, there is no distinction between excitons generated
by first and second pulses. Thus, the power broadening
due to the cross correlation exists within the correlation
time before and after the arrival of the second pulse. If
the temporal separation of the pulse pair is shorter than the
correlation time, the power broadening decreases because the
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cross-correlated scattering does not occur before the arrival
of the first pulse because of the causality. This effect is
represented by the upper limit of the integral of the third line
of Eq. (7). Therefore, the Xh-Xh scattering decreases around
t1′1 = 0 ps; the correlation time τc is estimated as 0.43 ps. We
note that the cross-correlated power broadening also exits after
the arrival of the second pulse; it shows the exponential decay
with decay rate 	2 as described in the θ1′θ1 term of the second
line of Eq. (7).

Even with a tenfold increase in the excitation density,
the correlation time varies only within the margin of error
[see Fig. 4(a)], despite the decrease in dephasing time.
In a dense potassium vapor, the correlation time due to
dipole-dipole interaction between excited and unexcited atoms
decreases with increasing the density.29 The weak excitation
density dependence in the GaAs SQW is expected to be
because of the screening of the Coulomb interaction due to
the large dielectric constant in condensed matter.

The correlation time of the exciton-exciton scattering has
been reported for a ZnSe SQW.19 The correlation time has been
experimentally obtained as 0.54 ps by monitoring the shape
change of the FWM spectra; this estimated value is close to
our results. In addition, the presence of a long time tail in the
correlation function has been demonstrated by microscopic
calculations. However, we cannot discuss the presence of the
long time tail in the GaAs SQW, because the change of the
FWM spectra shape had not been observed in our experiment.

From the amplitude of the hh-lh quantum beat at a low
excitation density [Fig. 3(a)], the ratio of the population of
Xl and Xh, μ2

l θ
2
l /μ2

hθ
2
h , is estimated as 0.12, where θ2

l and θ2
h

are the excitation densities at the resonance of Xl and Xh.
In addition, from the fitting results in Fig. 4(b), the ratio
of the decay rate due to the Xh-Xl and Xh-Xh scatterings,
μ2

l θ
2
l Re[Ch,l(0)]/2μ2

hθ
2
h Re[Ch,h(0)], is 0.062. Consequently,

we can find that Re[Ch,l(0)] ∼ Re[Ch,h(0)]. Due to the same
charge structure of Xh and Xl, the dipole-dipole interaction
between Xh and Xh is corresponding to that between Xh

and Xl.
In conclusion, we have shown that the exciton-exciton

scattering can be controlled by the irradiation of phase-locked
pulses. The non-Markovian effect of the scattering is well
reproduced by the theoretical model calculation. In this
work we have discussed the two-particle correlation and the
correlation time. By applying the coherent control technique to
higher-order nonlinear optical spectroscopy, such as six-wave
mixing,30 and by using two-dimensional Fourier transform
spectroscopy,31 the non-Markovian effect of higher-order
correlation among excitons can be investigated.
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