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Effect of band anisotropy on phonon-drag thermopower in AlAs quantum wells:
Strong enhancement of phonon drag
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We present a detailed theoretical framework for the calculation of thermopower, S, in two-dimensional electron
gases confined in (001) AlAs quantum wells (QWs) taking into account the band anisotropy. Particular emphasis
is given on the phonon-drag contribution Sg that is related to the momentum exchange between acoustic phonons
and electrons in the presence of a weak in-plane temperature gradient via the electron-phonon coupling. Our
model is based on the semiclassical Boltzmann formalism and is a generalization of previous models that are
applicable only for an isotropic energy spectrum. We find that the electron anisotropy in AlAs affects strongly the
electron-acoustic phonon coupling and Sg . Considerable enhancement of Sg is reported in relation to isotropic
GaAs QWs. More interestingly, we find that strong anisotropy in phonon-drag thermopower occurs by tuning the
valley occupancy. Namely, the predicted Sg

xx and Sg
yy can differ by over a factor of 5 while a giant magnitude for

Sg can be achieved in a particular direction exceeding 10 mV/K at T = 5 K. The diffusion thermopower is also
calculated for comparison.
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I. INTRODUCTION

During the last decade there has been an increasing interest
in the study of the transport properties of two-dimensional
electron gases (2DEGs) in AlAs quantum wells (QWs). In
AlAs electrons occupy multiple valleys in the conduction band,
each with a large (compared to GaAs) and anisotropic effective
mass. The valley occupation can be tuned by varying the width
of the well1 or by applying in-plane strain1–5 or a parallel
magnetic field.6 This offers the possibility of modulating the
electrical properties and monitoring the effect of the valley
anisotropy on electron transport.

AlAs QWs are composed of an AlAs layer sandwiched
by modulation doped AlGaAs barriers where the electrons
are confined to the AlAs layer.1,7–13 The confined 2DEG
is emerging as a high mobility system (with mobilities
exceeding 30 m2/V s at low temperatures)10,14 with properties
different from those in GaAs QWs.1 Due to their high
mobility, AlAs QWs exhibit integer and fractional quantum
Hall effect1,9,10,12,15 and ballistic transport.11 A considerable
amount of both experimental10,12,15 and theoretical16–18 work
is focused on the mobility of AlAs QWs. Also, 2DEGs
in AlAs QWs are ideal systems for studying many-body
effects.13,14,19–23 This is because the interaction parameter
rs at a given density is considerably enhanced in AlAs
QWs in relation to GaAs QWs due to the larger electron
effective mass in AlAs. The transport and magnetotransport
properties of AlAs QWs are reviewed in Ref. 1. However, what
have remained unexplored until now are the thermoelectric
properties of AlAs QWs. In this paper we focus on the effect
of electron-phonon (e-ph) coupling on the thermopower which
gives rise to the phonon-drag contribution.

In bulk AlAs, electrons occupy three equivalent ellipsoidal
conduction band valleys at the X points of the Brillouin zone,

and electrons have highly anisotropic effective masses. The
longitudinal and the transverse effective masses are about
ml = 1.1me and mt = 0.19me, respectively. These valleys are
indicated by the directions of their major axes X, Y , and
Z, respectively, for the [100], [010], and [001] valleys. In
contrast to bulk AlAs, in AlAs QWs the valley degeneracy
is lifted. Which of the valleys is occupied depends on the
growth direction and on the width of the QW. This is due to
a balance between strain and confinement. For (001) QWs the
X and Y valleys are pushed down in energy, by about 23 meV
compared to the Z valley, caused by the strain from the lattice
mismatch between the AlAs layer and the AlGaAs barriers.
For wide (001) AlAs QWs with well width L > 5 nm the effect
of confinement on the energy shift between the valleys is less
important, and the X and Y valleys become occupied.5,7–11,19–21

This results in an elliptical Fermi surface with a heavy
density-of-states effective mass

√
mtml ≈ 0.46me. However,

for narrow QWs with L < 5 nm the effect of lattice mismatch is
superimposed by a thickness-dependent energy shift following
from the confinement of the electrons perpendicular to the
AlAs layer. The increase in energy is inversely proportional
to the square of the well width and to the effective mass in
the confinement direction. In this case the Z valley has the
lowest energy and electrons occupy only the Z valleys (along
±[001]) with an isotropic effective mass mt = 0.19me.12,13,23

Early studies have shown that the band anisotropy
strongly influences the electronic transport coefficients in
bulk semiconductors.24,25 Later the effect of an anisotropic
scattering potential on the conductivity of a semiclassical
2DEG26 was calculated, while a very recent study examines
the effect of anisotropy on elastic intervalley scattering such
as interface roughness and alloy disorder scattering.27 Also
the effect of electron and phonon anisotropy on phonon-drag
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thermopower has been examined theoretically in the past.28,29

In AlAs QWs grown along the [110] direction a significant
degree of anisotropy in mobility is expected, mainly due to the
anisotropic mass tensor.15,17,18

The anisotropy of the conduction band affects also the e-ph
interaction. In contrast to GaAs, where in the context of the
common acoustic isotropic approximation only longitudinal
acoustic phonons are coupled to electrons via a deformation
potential coupling, in AlAs the transverse acoustic phonons
also participate in this kind of coupling. The interaction of
the electrons with the phonons has been studied in AlAs QWs
with the help of phonon-drag imaging taking account of the
anisotropy of the electron-acoustic phonon coupling and the
conduction band anisotropy.30,31 The change of phonon-drag
patterns is shown as a function of well width and valley
occupancy, and a very good agreement with the experimental
image has been found.32

Phonon-drag thermopower Sg , which is the topic of the
present study, is a powerful tool for probing the electron-
acoustic phonon coupling and the relevant physical parameters
in a system because, unlike the mobility, it does not depend
on the elastic scattering. It arises due to the interchange of
momentum between acoustic phonons and electrons via the
e-ph interaction, in the presence of a weak temperature gradient
∇T . Namely, when a weak ∇T is applied in the plane of
the 2DEG, phonons acquire a net flux from the hot to the
cold end and drag electrons in the same direction, creating a
phonon-drag contribution to the thermoelectric current. The
electric field that is required to stop the produced current
is E = Sg∇T . (In anisotropic 2DEGs Sg becomes a tensor.)
Sg is directly related to the momentum relaxation time asso-
ciated with e-ph scattering and the acoustic-phonon-limited
mobility.33,34 Early experimental studies on thermopower
in AlGaAs/GaAs heterostructures35–38 and Si MOSFETs
(metal-oxide-semiconductor field-effect transistors)39,40 pro-
vided clear evidence for the existence of phonon drag at low
temperatures. Subsequently extensive theoretical and experi-
mental work on Sg was carried out in 2DEGs confined in GaAs
QWs, Si MOSFETs, and Si/SiGe heterostructures41–44 while
a giant magnitude of thermopower (reaching approximately
1.5 mV/K) associated with phonon drag has been reported
in TiO2/SrTiO3 heterointerfaces.45 Recently the phonon-drag
effect has been investigated in nanoscale carbon-related
materials such as carbon nanotubes,46–49 graphene,50,51 and
graphene nanoribbons.52

The existing theoretical models for Sg in zero magnetic field
are applicable only in the case of isotropic 2DEGs. In this paper
we develop a generalized theory for phonon-drag thermopower
for a highly anisotropic 2DEG confined in AlAs QWs. The
proposed model is based on the solution of the coupled
Boltzmann equations for electrons and phonons following
the work of Cantrell and Butcher.53 The e-ph coupling is
described via a deformation potential and a piezoelectric
coupling. Explicit expressions for the matrix elements are
given. Screening effects54,55 are taken into account and it is
shown that they decrease severely the strength of the e-ph
coupling. We present numerical simulations of Sg as a function
of temperature for the cases where (i) both the X and Y valleys
are occupied, (ii) only the X or Y valley is occupied (e.g., this
case can emerge by the application of symmetry breaking

in-plane strain),2–5,27 and (iii) only the Z valley is occupied.
In case (ii) we report a significant degree of anisotropy for Sg

measured in the x and y directions. Comparison is made with
the case of an isotropic 2DEG confined in a GaAs QW, and we
find a large increase of phonon drag in the case of AlAs QWs.
We also calculate the diffusion thermopower which becomes
dominant at low T.

II. THEORY

A. X and Y valleys are occupied

We assume that the 2DEG lies in the xy plane. In the
presence of a weak electric field E and temperature gradient
∇T the system responds by producing an electric current
density

J = σ̂E + L̂∇T , (1)

where σ̂ is the conductivity tensor. The thermoelectric tensor
L̂ is related to thermopower tensor Ŝ by Ŝ = −σ̂−1L̂. In
the absence of magnetic field and for isotropic 2DEGs the
transport coefficients become scalars.

Here we are interested in finding the phonon-drag contri-
bution, Ŝg , to Ŝ arising when 2D electrons with wave vector
k = (kx,ky) interact with 3D acoustic phonons of wave vector
Q = (q,qz) in the presence of a weak ∇T . However, for the
sake of completeness, in what follows we calculate also the
elements of the diffusion thermopower tensor.

In wide (001) AlAs QWs (L > 5 nm) both the X and the
Y valleys are occupied and the valley degeneracy is gv = 2.
Throughout this study we consider the quantum limit (e.g.,
only the ground subband is occupied). Assuming that the
bottom of the ground subband is at the zero energy point,
the electron kinetic energy has the elliptic form

Ek = h̄2k2
x

2mx

+ h̄2k2
y

2my

, (2)

where mx and my are the electron masses along the x and
y directions, respectively. We apply a Herring-Vogt type
transformation24 by changing the scale of kx and ky in the
x and y directions. We write

kx = k̃x

√
mx

me

(3)

and

ky = k̃y

√
my

me

, (4)

where me is the free-electron mass. We see by inspection that

Ek = h̄2k̃2
x

2me

+ h̄2k̃2
y

2me

= h̄2k̃2

2me

= Ek̃ (5)

with k̃ = (k̃x,k̃y).

1. Diffusion thermopower

In the presence of a weak temperature gradient ∇T

and assuming that phonons are frozen, the electric current
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density is

J = −2|e|
A

∑
v

∑
k

f
1,d
k vk, (6)

where the superscript v = (X,Y ) denotes the valley, e is the
electron charge, A is the area of the 2DEG, f

1,d
k is the first-

order perturbation of the electron distribution function, and
vk is the electron group velocity. (The superscript d denotes
the diffusion contribution.) We note that the product f

1,d
k vk

is valley dependent. f
1,d
k is obtained by the linearized 2D

Boltzmann equation in the relaxation-time approximation and
has the well known form

f
1,d
k = τ (Ek)

df 0
k

dEk

Ek − EF

T
vk · ∇T , (7)

where f 0
k is the Fermi-Dirac distribution function and τ (Ek)

is the electron relaxation time.
The combination of Eqs. (1), (6), and (7) yields

Ld,v
xx = −2|e|

A

∑
k

τ (Ek)
df 0

k

dEk
v2

x

Ek − EF

T
, (8)

where vx = h̄kx/mv
x is the x component of the electron group

velocity. (Similarly the y component is vy = h̄ky/mv
y .) The

values for the electron effective masses are mX
x = ml , mX

y =
mt , and mY

x = mt , mY
y = ml .

The sum over k in Eq. (8) is transformed to the following
integral:

∑
k

→ A

4π2

∫ ∫
dkxdky = A

4π2

√
mv

xm
v
y

me

∫ ∫
dk̃xdk̃y

= A

4π2

√
mv

xm
v
y

me

∫ ∫
k̃ dk̃ dθ̃ . (9)

In the second equality of the above equation we made use of
Eqs. (3) and (4) while in the third equality the wave vector k̃
is expressed in polar coordinates (k̃,θ̃ ).

Now Eq. (8) is readily written as

Ld,v
xx = − |e|

πh̄2

√
mv

y

mv
x

∫
dEk̃Ek̃τ (Ek̃)

df 0
k̃

dEk̃

Ek̃ − EF

T
. (10)

Similarly for the Ld,v
yy component we obtain

Ld,v
yy = − |e|

πh̄2

√
mv

x

mv
y

∫
dEk̃Ek̃τ (Ek̃)

df 0
k̃

dEk̃

Ek̃ − EF

T
. (11)

By introducing the conventional assumption τ (Ek̃) ∝
(Ek̃)p,41 where the parameter p depends on the scattering
mechanisms, we expand up to the first order the quantity
Ek̃τ (Ek̃) about the Fermi level. Then by utilizing the standard
formulas for evaluating integrals involving the derivative of
the Fermi-Dirac function we get

Ld,v
xx = (p + 1)τF

eπ

3h̄2

√
mv

y

mv
x

k2
BT , (12)

where τF is the momentum relaxation time at the Fermi level.

To proceed we write the contributions of the X and Y valleys
to diffusion thermopower as

Sd = Sd
xx = −Ld,X

xx + Ld,Y
xx

σX
xx + σY

xx

= −Ld,X
yy + Ld,Y

yy

σX
yy + σY

yy

= Sd
yy, (13)

where σv
xx and σv

yy are the diagonal components of the
conductivity tensor that have the forms56

σv
xx = ne2τF

gvmv
x

and σv
yy = ne2τF

gvmv
y

, (14)

where n is the sheet density.
Inspection of the above equation shows that the total

contribution to σ̂ when the X and the Y valleys are occupied
reads as

σX
xx + σY

xx = σX
yy + σY

yy = n

gv

e2τF

(
1

mt

+ 1

ml

)
. (15)

Finally, by inserting Eq. (12) into (13) we obtain Mott’s
law41 as in the case of isotropic and parabolic energy bands,

Sd = −(p + 1)
π2k2

B

3|e|EF

T , (16)

where the Fermi level is given by

EF = n

gv

πh̄2

√
mtml

. (17)

We note that when only the X or the Y valley is occupied
(e.g., by applying a in-plane strain) the diffusion thermopower
along the x and y directions is the same as that given by
Eq. (16), where the Fermi level is obtained from the following
equation due to the lift of the valley degeneracy (gv = 1):

EF = n
πh̄2

√
mtml

. (18)

2. Phonon-drag thermopower

In the presence of a weak ∇T in the plane of the 2DEG,
nonequilibrium acoustic phonons drag electrons from the hot
to the cold end. By linearizing and solving the Boltzmann
equations for electrons and phonons it is found that the
perturbation of the electron distribution function has a phonon-
drag term of the form43,53

f
1,g

k = τ (Ek)D(k) (19)

that incorporates the details of e-ph coupling. The superscript
g denotes the phonon-drag contribution. D(k) is written as

D(k) = 1

kBT 2

∑
k′

∑
Q,s

h̄ωQ,sτp(Q,s)
(
�v

k′,k − �v
k,k′

)
×vp(Q,s) · ∇T , (20)

where h̄ωQ,s is the energy of a phonon with wave vector Q
in the s mode (s labels one longitudinal and two transverse
modes), τp(Q,s) is the phonon relaxation time, and vp(Q,s) =
vsQ/Q is the phonon group velocity in the acoustic isotropic
approximation with vs being the sound velocity. For simplicity
in what follows we drop the mode index from the phonon
properties. �v

k′,k is the average rate of absorption of phonons
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of wave vector Q due to electron transitions from a state k to
a state k′ in equilibrium. It is given by

�v
k′,k = f 0

k

(
1 − f 0

k′
)
P v

Q,s(k,k′), (21)

where P v
Q,s(k,k′) is the intrinsic rate at which an electron in a

state k is transferred to k′ by absorbing one phonon of wave
vector Q in equilibrium. P v

Q,s(k,k′) is valley dependent and
is calculated by using Fermi’s golden rule. It has the standard
form (see, for example, Ref. 43)

P v
Q,s(k,k′) = 2π

h̄
N0

Q
|Uv(Q)|2s

ε2(q)
Z(qz)δ(Ek′ − Ek − h̄ωQ)

×δk′,k+q, (22)

where N0
Q = [exp(h̄ωQ/kBT ) − 1]−1 is the phonon distribu-

tion function in equilibrium, |Uv(Q)|2s is the square of the e-ph
matrix elements that depends on valley (explicit expressions
are given below), and ε(q) is the 2D static dielectric function
calculated within the random-phase approximation including
anisotropy of the electron energy. The latter has the form

ε(q) = 1 + gve
2√mv

xm
v
y

2πh̄2ε0εrq
F (q)ξ (q̃), (23)

where ε0 is the permittivity of vacuum, εr is the relative
permittivity of AlAs, q̃ is the transformation of q given
by Eqs. (31) and (32), ξ (q̃) = 1 when q̃/2k̃F < 1, and
ξ (q̃) = 1 −

√
1 − (2k̃F /q̃)2 when q̃/2k̃F � 1. To evaluate the

screening form factor F (q) (Ref. 56) we assume that the
carriers are confined in an infinite square well. Then F (q)
is written as

F (q) =
(

π2

π2 + (qL/2)2

)2 {
2(e−qL − 1)

(qL)2
+ 2

qL

+ qL

4π2

[
5 + 3

(qL)2

4π2

]}
. (24)

Finally, in Eq. (22) Z(qz) is the form factor that accounts for
the finite extension of the 2DEG in the z direction given by the
standard expression

Z(qz) =
∣∣∣∣
∫

φ∗
0 (z) exp (iqzz)φ0(z)dz

∣∣∣∣
2

, (25)

where φ0(z) is the electron envelope function for the ground
state. For an infinite square well Z(qz) has the analytical form

Z(qz) = 2[1 − cos(qzL)]

(qzL)2[(qzL/2π )2 − 1]2
. (26)

The phonon-drag contribution to the electric current
density is

Jg = −2|e|
A

∑
v

∑
k

f
1,g

k vk =
∑

v

L̂g,v∇T . (27)

By substituting Eq. (19) into (27) and interchanging k and k′
in the term τ (Ek)�v

k,k′ we take

Lg,v
xx = − 2|e|

AkBT 2

∑
k

∑
k′

∑
Q,s

h̄ωQf 0
k

(
1 − f 0

k′
)
P v

Q,s(k,k′)

× τq(Q)vpx[τ (Ek)vx(k) − τ (Ek′)vx(k′)], (28)

where vpx = vsqx/Q is the x component of the phonon
group velocity. We note that the above equation is equivalent
to Eq. (39) in Ref. 53. The summation over k′ is carried
out straightforwardly by replacing k′ with k + q due to the
momentum conservation imposed by the δ-Kronecker symbol
in the transition rate P v

Q,s(k,k′). We also make the following
convenient approximations. We assume that the electron relax-
ation time has a weak energy dependence and we replace τ (Ek)
and τ (Ek′) by τF . This is a good approximation when h̄ωQ 	
EF .28,33,43 In addition, we eliminate the Q dependence of the
phonon relaxation time. The latter assumption is sound at low
temperatures where phonon boundary scattering dominates
and the phonon mean-free path lp = vsτp is determined by the
dimensions of the sample. Now, Eq. (28) can be written as

Lg,v
xx = 2|e|h̄lpτF

AkBT 2mv
x

∑
k

∑
Q,s

h̄ωQ
q2

x

Q
f 0

k

(
1 − f 0

k+q

)
×P v

Q,s(k,k + q), (29)

where in deriving Eq. (29) we have used the equality

vpx[vx(k) − vx(k + q)] = −h̄vs

mv
x

q2
x

Q
. (30)

To handle the energy conservation for the e-ph coupling in
the xy plane that is imposed by the δ-function in Eq. (22), we
apply the following transformation for the components of the
q vector:

qx = q̃x

√
mx

me

(31)

and

qy = q̃y

√
my

me

. (32)

Now, under the transformations (3)–(4) and (31)–(32), Eq. (22)
takes the form

P v
Q,s(k̃,k̃ + q̃) = 2π

h̄
N0

Q
|Uv(Q)|2s

ε2(q)
Z(qz)

× δ

(
Eq̃ + h̄2k̃q̃ cos θ̃

me

− h̄ωQ

)
, (33)

where q̃ =
√

q̃2
x + q̃2

y , Eq̃ = h̄2q̃2/2me, and θ̃ is the angle

between k̃ and q̃.
To carry out the sum over k in Eq. (29) we use Eq. (9). Then

we take

Lg,v
xx = |e|lpτF

2π2kBT 2

√
mv

y√
mv

x

∑
Q,s

vsq
2
x

∫
dEk̃

∫ π

−π

dθ̃

× f 0(Ek̃)[1 − f 0(Ek̃ + h̄ωQ)]P v
Q,s(k̃,k̃ + q̃). (34)

The integration over θ̃ in the above equation is carried out
straightforwardly due to the presence of θ̃ in the argument of
the δ function in (33). It can been shown that∫ π

−π

dθ̃ δ

(
Eq̃ + h̄2k̃q̃ cos θ̃

me

− h̄ωQ

)
= E

−1/2
q̃

1√
Ek̃ − γ̃

,

(35)
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where

γ̃ = (Eq̃ − h̄ωQ)2

4Eq̃

. (36)

Now Eq. (34) takes the form

Lg,v
xx = |e|lpτF

√
2me

πh̄2kBT 2

√
mv

y√
mv

x

∑
Q,s

vs

q2
x

q̃
N0

Q
|Uv(Q)|2s

ε2(q)
Z(qz)

×
∫ ∞

γ̃

dEk̃
f 0(Ek̃)[1 − f 0(Ek̃ + h̄ωQ)]√

Ek̃ − γ̃
. (37)

To obtain L
g,v
yy we reverse the ratio mv

y/mv
x and we replace q2

x

by q2
y in Eq. (37). Now, by using cylindrical coordinates the

sum over Q is transformed to the integral

∑
Q

→ V

(2π )3

∫ ∞

0

∫ ∞

−∞

∫ π

−π

q dq dqzdφ. (38)

What is left to be determined is the square of the matrix
elements for the e-ph coupling |Uv(Q)|2s . AlAs is a polar
material and in addition to deformation potential coupling
piezoelectric e-ph coupling should be considered. We can write

|Uv(Q)|2s = |Uv(Q)|2s,DP + |Uv(Q)|2s,PE, (39)

where the first and the second terms of the right-hand side of
the above equation are the contributions due to deformation
potential (DP) and piezoelectric (PE) coupling, respectively.
We note that in AlAs both the longitudinal (LA) and the
transverse (TA) acoustic phonons contribute to deformation
potential coupling, and each contribution depends on the valley
occupancy. For the case where the X valley is occupied,
|Uv(Q)|2s,DP for the LA and for the sum of the TA modes
takes the forms

|UX(Q)|2LA,DP = h̄Q

2ρV vLA

(
�d + �u

q2
x

Q2

)2

(40)

and

|UX(Q)|2TA,DP = h̄Q

2ρV vTA

(
�uqx

Q

)2 (
1 − q2

x

Q2

)
, (41)

where ρ is the material density, V is the volume containing
the 3D phonons, and vLA, vTA are, respectively, the sound
velocities for the longitudinal and the averaged transverse
modes.

Similarly for the Y valley we can write

|UY (Q)|2LA,DP = h̄Q

2ρV vLA

(
�d + �u

q2
y

Q2

)2

(42)

and

|UY (Q)|2TA,DP = h̄Q

2ρV vTA

(
�uqy

Q

)2 (
1 − q2

y

Q2

)
. (43)

The matrix elements for the PE coupling are valley
independent and have the standard form57

|U (Q)|2LA,PE = h̄e2h2
14

2ρV vLA

(
ALA

Q

)
(44)

for the LA modes and

|U (Q)|2TA,PE = h̄e2h2
14

2ρV vTA

(
ATA

Q

)
(45)

for the sum of the two TA modes. In the above equations h14 is
the piezoelectric coefficient and ALA, ATA are the anisotropic
factors

ALA = 36q2
xq

2
yq

2
z

/
Q6 (46)

and

ATA = 4
[
Q2

(
q2

xq
2
y + q2

xq
2
z + q2

yq
2
z

) − 9q2
xq

2
yq

2
z

]/
Q6. (47)

We note that symmetry arguments impose the equalities
L

g,X
xx = L

g,Y
yy and L

g,X
yy = L

g,Y
xx . Then the phonon-drag contri-

bution to thermopower is written as

Sg = Sg
xx = −L

g,X
xx + L

g,Y
xx

σX
xx + σY

xx

= −L
g,X
yy + L

g,Y
yy

σX
yy + σY

yy

= Sg
yy. (48)

Applying an in-plane symmetry breaking strain2–5 we can
modulate the valley occupancy having only the X or the Y

valley occupied. In this case the phonon-drag thermopower
components along the x and the y directions are given by

Sg,v
xx = −L

g,v
xx

σ v
xx

(49)

and

Sg,v
yy = −L

g,v
yy

σ v
yy

(50)

with S
g,X
xx = S

g,Y
yy and S

g,Y
xx = S

g,X
yy . The x and the y com-

ponents of the conductivity tensor are given by Eq. (14) for
gv = 1.

We show in Sec. III that the anisotropy of the Fermi surface
results in a strong anisotropy on the phonon-drag thermopower
along the x and y directions when only one valley becomes
occupied. In contrast, the diffusion component of thermopower
is isotropic.

B. Only the Z valley is occupied

In narrow (001) AlAs QWs only the Z valley becomes
occupied with mZ

x = mZ
y = mt . For the case of an isotropic

energy surface the diffusion thermopower is readily given
by Eq. (16) with EF = nπh̄2/mt . Also for the phonon-drag
thermopower the combination of Eqs. (37), (48), and (15) gives
for the isotropic case (see also Ref. 43)

Sg = − gvlp(2mt )3/2

4πh̄2n|e|kBT 2

∑
Q,s

vsqN0
Q

|UZ(Q)|2s
ε2(q)

Z(qz)

×
∫ ∞

γ

dEk
f 0(Ek)[1 − f 0(Ek + h̄ωQ)]√

Ek − γ
, (51)

where gv = 1, ε(q) is the static dielectric function for an
isotropic 2DEG,56 Ek = h̄2k2/2mt , Eq = h̄2q2/2mt , and

γ = (Eq − h̄ωQ)2

4Eq

. (52)
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We note that Eq. (51) is the outcome of the Cantrell-
Butcher formula53 when screening and nondegeneracy effects
are incorporated.54,55 It has been successful in explaining
experimental data for Sg in AlGaAs/GaAs heterostructures
and QWs,42,43,58–62 in Si MOSFETs,43,63 and in Si/SiGe
heterostructures43,64,65 at zero magnetic fields, in most of the
cases without adjustable parameters.

The contribution of the PE scattering to the matrix elements
|UZ(Q)|2 is given by Eqs. (44) and (45). For the DP coupling
contribution we get

|UZ(Q)|2LA,DP = h̄Q

2ρV vLA

(
�d + �u

q2
z

Q2

)2

(53)

and

|UZ(Q)|2TA,DP = h̄Q

2ρV vTA

(
�uqzq

Q2

)2

. (54)

for the longitudinal and the sum of the two transverse modes,
respectively.

III. NUMERICAL SIMULATIONS AND DISCUSSION

We are primarily interested on the effect of the band
anisotropy of AlAs on Sg . Although the valley occupancy
depends on the width of the QW, in what follows we assume
a constant width L = 8 nm. In this way the dependence of Sg

on L imposed by the form factors F (q) [Eq. (24)] and Z(qz)
[Eq. (26)] is eliminated. (However, the effect of the well width
on Sg is depicted in Fig. 7). The sheet density is taken to
be n = 1016 m−2. This value ensures that the 2DEG remains
degenerate at the highest temperature examined, T = 5 K.
Namely, the Fermi temperature is 30.4 K when both the X and
the Y valleys are occupied and 146.2 K when the Z valley is
occupied. The values for the material parameters used in the
calculations are mt = 0.19me, ml = 1.1me, vLA = 5980 m/s,
vTA = 3600 m/s (the latter is an average of the fast and
slow transverse acoustic phonon velocities), �d = −1.1 eV,
�u = 6.9 eV, εr = 10.06, and h14 = 2.58 × 109 V/m.66 The
phonon mean-free path is taken to be lp = 1 mm throughout
the rest of the paper.

The temperature dependence of Sg when the X and the
Y valleys are occupied is shown in Fig. 1. Sg is obtained
from Eq. (48). We find that at low T Sg follows a T 4 law
which is characteristic for piezoelectric e-ph coupling.43 For
comparison the diffusion component for p = 0 is shown as the
dashed line.

Experimentally it is convenient to measure the ratio Sg/κ

where κ is the thermal conductivity. The reason is that the
above ratio does not involve lp at low T where boundary
scattering for phonons dominates. In the Debye approxima-
tion the thermal conductivity in the low-T regime can be
written as

κ = 2π2

15

k4
B

h̄3v̄2
s

lpT 3, (55)

where 1/v̄3
s is the average inverse cubed speed of sound for

the three acoustic modes. In the case of AlAs v̄s = 3992 m/s.
Then we get

κ = 2560T 3lp. (56)
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-S
 (

μ V
/K

)
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T (K)

-S
(

V
/K

)

T (K)

FIG. 1. The phonon-drag, Sg , and diffusion, Sd , contributions to
thermopower for an AlAs QW of width 8 nm when both the X and
the Y valleys are occupied. The sheet density is n = 1016 m−2. The
value for the p parameter is set to be zero. The inset shows the low-T
regime. Sg overwhelms Sd at T > 0.75 K.

The numerical simulations for the ratio Sg/κ when the X

and the Y valleys are occupied are shown in Fig. 2. The two
contributions L

g,X
xx /σ and L

g,Y
xx /σ to Sg given by Eq. (37) are

shown as dashed-dotted and dashed lines, respectively.
The contributions of the PE and the DP coupling are shown

in Fig. 3. Piezoelectric coupling dominates for all temperatures
up to 5 K. The dominance of the PE coupling becomes more
evident as sheet density decreases. This can be understood by
the fact that the PE contribution to the matrix elements of the
e-ph interaction varies as 1/Q, and the upper cutoff of q̃ at
low T is 2k̃F (where k̃2

F = πnme/
√

mtml for the case where
both X and Y valleys are occupied). We note that in GaAs
QWs the crossover between PE and DP coupling occurs at
approximately 2 K due to the smaller piezoelectric coefficient
h14.

The large density-of-states effective mass
√

mv
xm

v
y and the

valley degeneracy lead to a huge effect of screening when the
X and the Y valleys are occupied [see Eq. (23)]. In Fig. 4
the solid line represents the numerical simulation of Sg when
screening is taken into account, while the unscreened results

0 1 2 3 4 5 6

0

2

4

6

8

10
 - Sg/

Lg,X
xx /

Lg,Y
xx /

-S
g /

(μ
V

m
/W

)

T (K)

σ

σ

FIG. 2. The ratio of the phonon-drag thermopower over the
thermal conductivity, Sg/κ , as a function of temperature. The
parameters are the same as in Fig. 1 (n = 1016 m−2 and L = 8 nm).
Sg/κ does not depend on lp . The contributions Lg,X

xx /σ and Lg,Y
xx /σ

to Sg are shown as dashed-dotted and dashed lines, respectively.
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11 0
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0,1

1

10

T (K)

-S
g /

(μ
V

m
/W

)

 Total
 PE
 DP

L=8 nm

n=1016 m-2

FIG. 3. The piezoelectric (PE) and the deformation potential (DP)
contributions to the ratio Sg/κ for an AlAs QW when both the X and
the Y valleys are occupied.

are shown as a dashed line. At low T screening reduces the
magnitude of phonon-drag thermopower by 3 to 4 orders
of magnitude. At higher T the effect of screening becomes
weaker. Namely, at the highest temperature examined the ratio
r of the unscreened over the screened results is close to 40. The
unscreened results show the standard T 2 behavior at low T .55

For the case where the Z valley is occupied, the screening
effect is less pronounced. The ratio r is close to 100 and
5 respectively for T = 0.6 K and T = 5.2 K for the same
sheet density and width of the QW. The corresponding ratio
is much smaller for a GaAs QW with the same characteristics
varying between 10 to 2 as the temperature increases from
T = 0.6 K to 5.2 K.

As we have already mentioned, an intriguing characteristic
of the AlAs QWs is the possibility of tuning the valley
occupancy by varying the width or by applying an in-plane
strain. In Fig. 5 we show the behavior of phonon-drag
thermopower in a wide AlAs QW when only the X valley
becomes populated (e.g., in the presence of external strain).
We find that phonon-drag thermopower is highly anisotropic.
The dashed line represents the theoretical estimates of the ratio

11 0

10-1

100

101

102
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104

105

 Screened
 Unscreened

~T4

-S
g

(μ
V

/K
)

T (K)

~T2

L=8nm

n=1016m-2

FIG. 4. The effect of screening on Sg as a function of T when
both the X and the Y valleys are occupied. The calculated Sg when
screening is ignored is shown as the dashed line. The solid line shows
Sg when screening is taken into account. The low-T dependence
follows the standard T 2 and T 4 laws for the unscreened and screened
piezoelectric couplings, respectively.
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0
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 -Sg,X
yy /

-S
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 (μ
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m
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)
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FIG. 5. The calculated phonon-drag thermopower over the ther-
mal conductivity as a function of T when only the X valley is
occupied. The dashed and the dashed-dotted lines show the results
for phonon drag along the x and the y directions, respectively. For
comparison Sg/κ is shown when both the X and the Y valleys are
occupied (solid line). A giant phonon-drag thermopower is predicted
along the x direction with magnitude above 10 mV/K at T = 5 K.

of the phonon-drag thermopower in the x direction over the
thermal conductivity, S

g,X
xx /κ . The corresponding ratio for the

y direction, S
g,X
yy /κ , is shown by the dashed-dotted line. At

higher T we predict a large increase of the magnitude of S
g,X
xx

that reaches 13 mV/K. The solid line refers to the case where
both the X and the Y valleys are occupied and is shown for
comparison. The ratio S

g,X
xx /S

g,X
yy at T > 1 K increases with

temperature, exceeding a factor of 5 at T = 5 K. We recall that
in contrast to Sg the diffusion thermopower remains isotropic.

In Fig. 6 we compare the magnitude of Sg of an AlAs
QW when only the Z valley is occupied (solid line) with the
case where both the X and Y valleys are occupied (dashed
line). We recall that the well width in both cases is taken to
be 8 nm in order to eliminate the L dependence introduced
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 GaAs
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g /
 (μ

V
m
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)
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FIG. 6. The ratio Sg/κ as a function of T for an AlAs QW
when only the Z valley is occupied (solid line). For comparison
the theoretical values of Sg/κ when both the X and the Y valleys
are occupied are shown by the dashed line. In all the calculations
the values n = 1016 m−2 and L = 8 nm have been used. The
dashed-dotted line refers to a GaAs QW with the same width and
sheet density. The inset shows Sg/κ as a function of temperature for
an AlAs QW when the Z valley is occupied for L = 8 nm (solid line)
and L = 4 nm (dotted line). The sheet density is 1016 m−2.
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FIG. 7. The effect of the well width on phonon-drag thermopower.

to Sg through the form factors F (q) and Z(qz). However, it
has been confirmed experimentally that the occupation of the
Z valley occurs for L less than about 4.5–5.5 nm. In order to
be consistent with the experiment, in the inset of Fig. 6 we
present a comparison of Sg/κ for L = 4 nm (dotted line) and
L = 8 nm (solid line) when only the Z valley is occupied.
The maximum deviation between the two calculations in the
temperature region T � 6 K is about 20%. In Fig. 6 we also
present results for a GaAs QW (dashed-dotted line) with
the same n and L = 8 nm. We note that the values of κ in
the ratio Sg/κ for GaAs are larger by a factor of 1.40 than the
corresponding ones in AlAs. It is found that the magnitude of
Sg is significantly enhanced in the case of AlAs QWs compared
to GaAs QWs, reaching a factor of 5 at approximately 1.5 K.

So far our calculations are referred to a QW of L = 8 nm
in order to focus on the effect of band anisotropy on phonon
drag. In order to give an estimate of the effect of the well width
on Sg due to the form factors Z(qz) and F (q), in Fig. 7 we
present our calculations for a 2DEG with n = 5 × 1015 m−2

as a function of L at T = 3.5 K. As mentioned above for
L < 5 nm only the Z valley is occupied. The drop in the values
of −Sg for L � 7 nm occurs due to the occupancy of both the
X and Y valleys. This change in valley occupancy follows
from the calculation of the X conduction band edges based

on the semiconductor heterostructure simulation software
NEXTNANO.27,67 In the intermediate range (between 4 and
7 nm) depending on the electron density all three valleys can be
occupied. However, this mixed situation is beyond the scope
of the present study and no data are shown for clarity reasons.

IV. CONCLUSIONS

In conclusion we have proposed a detailed theoretical model
for the calculation of Sg in (001) AlAs QWs. This model is
an extension of the Cantrell-Butcher theory53 introducing the
band anisotropy. Explicit expressions for Sg are provided when
(i) both the X and Y valleys are occupied, (ii) only the X or the
Y valley is occupied, and (iii) only the Z valley is occupied.
In cases (i) and (ii) we have introduced a Herring-Vogt type
transformation24 in the electron and phonon momentum space.
Detailed expressions for the e-ph matrix elements are given
both for the deformation and the piezoelectric coupling. Based
on the theory developed in Sec. II we present numerical
simulations of Sg and we examine the effect of temperature,
anisotropy, well width, screening, and also the strength of the
two different contributions to e-ph coupling. The piezoelectric
contribution was found to be dominant up to 5 K. The
screening effect is severe, particularly when the X and Y

valleys are occupied. Comparison is made with the case of
an isotropic 2DEG confined in a GaAs QW and we find that
Sg is significantly enhanced in the case of AlAs QWs. An
interesting outcome of our study is that when only the X or the
Y valley is occupied the phonon-drag thermopower becomes
very anisotropic along the x and y directions. A large increase
is observed in a particular direction (namely, for −SX

xx or −SY
yy)

with magnitude larger than 10 mV/K at T = 5 K. The giant
magnitude of Sg in combination with the large mobility of
AlAs QWs suggests that these systems could be useful for
thermoelectric applications at low temperatures.
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