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Analytical study of spin-dependent transition rates within pairs of dipolar and strongly exchange
coupled spins with s = 1

2 during magnetic resonant excitation
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We study theoretically the spectrum F(s) of spin-dependent transition rates within dipolar D and exchange
J coupled pairs of two spins with S = 1

2 undergoing Rabi oscillations due to a coherent magnetic-resonant
excitation. We show that the Rabi oscillation controlled rates exhibit a spectrum with three frequency components.
When exchange J is stronger than the driving field �R (in the frequency units), the frequency components of the
Rabi oscillation do not depend on J , rather they are determined by the relation between the �R and D. We derive
analytical expressions for the frequencies and the intensities of all three Rabi oscillation components as functions
of �R/D and δ/D, where δ is detuning of the driving ac field from the Larmor frequency. When �R � D, the
two lower frequencies approach s = �R , while the upper line approaches s = 2�R . Disorder of the local Larmor
frequencies leads to a Gaussian broadening of the spectral lines. We calculate corresponding widths for different
�R/D and δ/D. Unexpectedly, we find that one of the frequency components exhibits an unusual evolution with
�R: its frequency decreases with �R at �R < D. Upon further increase of �R , this frequency then passes through
a minimum and, eventually, approaches s = �R . Nonmonotonic behavior of the frequencies is accompanied by
nonmonotonic behavior of the respective oscillation intensity.
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I. INTRODUCTION

In recent years, various experimental1–5 studies focusing
on the nature of spin-dependent charge carrier transport and
recombination processes have been conducted by using a co-
herent magnetic resonant spin manipulation. The idea of these
pulsed electrically and optically detected magnetic resonance
experiments (pEDMR and pODMR, respectively) is to identify
an induced coherent spin propagation by observables that
are directly controlled by coherent spin motion. Typically,
for pEDMR and pODMR, a powerful oscillating driving
field is applied in magnetic resonance to the explored spin
system, and the resulting Rabi oscillation is then observed
electrically or optically. From the Rabi oscillation components,
information about the Hamiltonian of the propagating system
and, therefore, about its physical nature can be obtained. The
theory of pEDMR has been developed and advanced in a
number of theoretical studies6–10 in recent years.

Most experimental and theoretical studies have focused
on spin-selection rules induced by the Pauli blockade. Pauli
blockade exists when a transition between two localized
paramagnetic, singly occupied electron states into one doubly
occupied singlet state is controlled by the pair state of the two
S = 1

2 spins before the transition. This so-called intermediate-
pair model was first described by Kaplan, Solomon, and
Mott11 in 1978. Based thereon, successful descriptions of
spin-dependent processes observed with EDMR and ODMR
and in particular for pEDMR and pODMR experiments have
been possible. Most of these theoretical studies used numerical
methods in order to scrutinize experimental insights. This
approach, however, does not allow the derivation of analytical
expressions needed for the fit of experimental data and which
can also limit fundamental qualitative understanding. Only
recently, first analytical descriptions of coherently controlled
spin-dependent intermediate-pair transition rates have been de-
rived in Ref. 10; this work, however, applies only to intermedi-
ate pairs with negligible exchange and spin-dipolar interaction.

FIG. 1. (Color online) Schematic illustration of Rabi oscillations
in a S = 1

2 pair for J = 0 (a) and for strong exchange (b); T−, T0, T+
are the triplet states of the pair.

When intermediate spin S = 1
2 pairs, consisting of two pair

partners a and b, are weakly coupled, then the Rabi oscillations
in each partner take place independently as illustrated in
Fig. 1(a). The spin-Rabi oscillation frequencies of the pair
partners will then become

sa = (
δ2
a + �2

R

)1/2
, sb = (

δ2
b + �2

R

)1/2
, (1)

where �R = γB1 is the driving ac field B1 in the frequency
units, and γ is gyromagnetic ratio; δa = ωa − ω and δb =
ωb − ω are the differences (the so-called detuning) of the pair
partners Larmor frequencies ωa and ωb from the excitation
frequency ω [see Fig. 1(a)]. For independent oscillations,
the Rabi spectrum F(s) of electrically detected magnetic
resonance will contain the lines

s0 = |sa − sb|, sa
1 = sa, sb

1 = sb, s2 = sa + sb. (2)

The lines sa
1 and sb

1 correspond to precession of one of the two
pair partners, whereas the s2 line4,6,7 (and also the s0 line10)
originates from coherent precession of both pair partners
around B1 in the rotating frame, they are beat Rabi-beat com-
ponents due to the relative spin motion of the two pair partners.

In this paper, we address the question of how the process
in Fig. 1(a) gets modified when the pair partners are coupled
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by strong exchange J � �R,δa,δb and non-negligible spin-
dipolar interaction. We demonstrate that, in the limit of strong
exchange, the Rabi oscillations are intrinsically collective and
proceed according to the following scheme:

↓↓⇔ 1√
2

(↓↑ + ↑↓) ⇔↑↑ . (3)

Figure 1(b) shows an illustration of this scheme which does
not involve the singlet state 1√

2
(↓↑ − ↑↓), which, as we

demonstrate in the following, gets decoupled in the domain
J � �R,δa,δb.

We will show that, in the limit of large J , the spectrum
of the Rabi oscillations is governed by the interplay of the
driving field �R , dipole-dipole interaction magnitude D, and
the average detuning δ. As anticipated for a two S = 1

2 system
which gradually turns into one S = 1 system with increasing
J , the magnitude J of the exchange coupling drops out
from the theory and the spectrum is governed by a single
dimensionless combination of parameters �R , D, and δ. From
previous numerical studies of exchange coupled intermediate
pairs,8 it is known that due to the change of the two S = 1

2
system into one S = 1 system, EDMR and ODMR induced
rate changes become negligibly small. Qualitatively, this can
be understood by the realization that in presence of large J ,
magnetic resonance will always change triplet states into triplet
states and the singlet-to-triplet ratio is therefore not changed.
However, the results presented here can still be of significance
as long as J is large but not many orders of magnitude larger
than dipolar or the driving field frequency.

Our main finding is that, upon the change of this parameter,
the spectrum F(s) exhibits a nontrivial evolution. Peculiarity
of F(s) manifests itself in the behavior of the Rabi spectral
lines at small �R � D. For two-level systems, the frequencies
of oscillations always grow with increasing �R . We find
that, for the dipole-dipole coupled system in Fig. 1(b), the
Rabi spectrum contains three frequencies, one of which
decreases with �R . Upon subsequent increase of �R , this
frequency passes through a minimum and grows as s ≈ �R

at large �R � D. In addition, we find that the behavior of
this spectral line with detuning δ also exhibits a minimum.
Moreover, we find that a minimum in the position of the Rabi
spectral line is accompanied by a maximum in its intensity.
The definition of the line intensity pertinent to electrically
detected magnetic-resonance experiments1–5,12–15 is given in
the following. Finally, we demonstrate that the disorder with
rms � in Larmor frequencies of the pair partners leads to a
Gaussian broadening of the Rabi spectral lines, and express
the corresponding widths in terms of �, �R , D, and δ.

In the previous numerical studies of the of the Rabi
oscillation Fourier spectra,7–9 the frequencies of oscillations
were found for various sets of parameters and different
relations between J , �R , δa , and δb. Here, we restrict our
consideration to the domain of large J , but within this domain
our treatment is fully analytical.

The paper is organized as follows: In Sec. II, we relate the
time-dependent populations of different spin states involved
in the Rabi oscillations of pairs to the observable quantity,
namely, photoconductivity measured during pEDMR experi-
ments. In Sec. III, we analyze the quasienergies of a resonantly

driven spin pair in the limit of strong exchange. In Sec. IV,
general expressions for positions and intensities of the Rabi
spectral lines are derived. These expressions are analyzed in
Sec. V. We also demonstrate in Sec. V that in the domain of
large J , our analytical results are in excellent agreement with
numerical results of Ref. 16. These numerical results obtained
in parallel with our analytical study cover the entire domain of
the exchange strengths. In Sec. VI, we discuss the relation of
spin-Rabi oscillations in a coupled pair to the excitonic Rabi
oscillations in quantum dot molecules.

II. PULSED EDMR TECHNIQUES AND THE INTENSITIES
OF THE RABI SPECTRAL LINES

For pEDMR experiments, a samples’ conductivity change
�σ is measured upon application of a short resonant magnetic-
resonant pulse.6 More specifically, the dynamics �σ (t) of the
return of conductivity to the steady state after the pulse ends is
measured as a function of the pulse duration τ . This duration
is much shorter than all intrinsic times, so that the change of
conductivity during the interval τ is negligible. Dependence
of �σ (t) on τ originates from the fact that the pulse rotates the
spins of the pair partners. On the other hand, the spin state of
the pair serves as initial condition for the process of the con-
ductivity recovery. In this way, PEDMR measurements provide
information about the Rabi oscillations within the pair of spins.

A very important observation made in Ref. 6 is that the
contribution to photoconductivity �σ comes from specific
spin configurations both in initial and in final states. More
specifically, when thermal polarization is negligibly small and
the system is in a steady state, the initial state of the pair at the
moment t = 0 of application of the microwave pulse is either
↓↓ or ↑↑, with equal probability. If the system was initially in
↓↓, the contribution to �σ is proportional to |A↓↓

↓↓(τ )|2 +
|A↓↓

↑↑(τ )|2, where A
↓↓
↓↓(τ ) and A

↓↓
↑↑(τ ) are the amplitudes

to find the system, respectively, in ↓↓ and ↑↑ at time τ ,
which is the duration of the pulse. The upper indices indicate
that the amplitudes are calculated with initial condition that
at t = 0 the system is in ↓↓. Correspondingly, if at t = 0 the
system was in ↑↑, the contribution to �σ is proportional to
|A↑↑

↓↓(τ )|2 + |A↑↑
↑↑(τ )|2. Therefore, the quantity �σ measured

by PEDMR techniques should be identified with the following
combination of quantum-mechanical probabilities:

�σ (τ ) ∝ [|A↓↓
↓↓(τ )|2 + |A↓↓

↑↑(τ )|2 + |A↑↑
↓↓(τ )|2 + |A↑↑

↑↑(τ )|2].

(4)

Each of the probabilities contains three oscillating components
of the form cos sτ . Thus, the Fourier analysis of measured
�σ (τ ) should reveal three peaks. We define the intensity of
the Rabi spectral line as a magnitude of the corresponding
oscillating component in the sum Eq. (4).

III. QUASIENERGIES OF THE DRIVEN SYSTEM

We start from the Hamiltonian of the pair

Ĥ = ωaS
z
a + ωbS

z
b + 2�R

(
Sx

a + Sx
b

)
cos ωt

− J Ŝa · Ŝb − D
(
3Sz

aS
z
b − Ŝa · Ŝb

)
, (5)
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where the first three terms represent the Hamiltonian of the
ac driven pair partners and the last two terms describe the
intrapair exchange and dipole-dipole interactions.

To study the time evolution of the spin-pair, one has to
solve the Schrödinger equation i ∂

∂t

(t) = Ĥ
(t) for the four-

component wave function


(t) = {A↑↑(t), A↓↓(t), A↓↑(t), A↑↓(t)} (6)

of the amplitudes of different spin states. These amplitudes
satisfy the following system of equations:

i
∂A↓↓
∂t

= −1

2
(J + D + ωa + ωb)A↓↓

+ �R cos ωt(A↑↓ + A↓↑),

i
∂A↑↑
∂t

= −1

2
(J + D − ωa − ωb)A↑↑

+ �R cos ωt(A↑↓ + A↓↑),

i
∂A↓↑
∂t

=
(

D

2
− δ0

)
A↓↑ − 1

2
(J − D)A↑↓

+ �R cos ωt(A↓↓ + A↑↑),

i
∂A↑↓
∂t

=
(

D

2
+ δ0

)
A↑↓ − 1

2
(J − D)A↓↑

+ �R cos ωt(A↓↓ + A↑↑), (7)

where the asymmetry parameter δ0 is defined as

δ0 = δa − δb

2
= ωa − ωb

2
. (8)

The quasienergies χ of the system of equations (7) are
introduced in a standard way, by using the substitutions

A↓↓ = a↓↓e−i(χ−ω)t , A↑↑ = a↑↑e−i(χ+ω)t ,
(9)

A↑↓ = a↑↓e−iχt , A↓↑ = a↓↑e−iχt ,

and employing the rotating-wave approximation. Then, the
system (7) reduces to the following system of algebraic
equations: (

χ − δ + J + D

2

)
a↓↓ = �R

2
(a↑↓ + a↓↑),(

χ + δ + J + D

2

)
a↑↑ = �R

2
(a↑↓ + a↓↑),

(10)(
χ + δ0 − D

2

)
a↑↓ + 1

2
(J − D)a↓↑ = �R

2
(a↑↑ + a↓↓),(

χ − δ0 − D

2

)
a↓↑ + 1

2
(J − D)a↑↓ = �R

2
(a↑↑ + a↓↓),

where we introduced the detuning parameter

δ = δa + δb

2
= ωa + ωb

2
− ω. (11)

The system (10) can be reduced to two coupled equations for
the amplitudes a↑↓ and a↓↑, which read as[

χ̃ − D + δ0 − J

2
− �2

R

2

(
χ̃

χ̃2 − δ2

)]
a↑↓

= 1

2

[
D − J + �2

R

(
χ̃

χ̃2 − δ2

)]
a↓↑, (12)

[
χ̃ − D − δ0 − J

2
− �2

R

2

(
χ̃

χ̃2 − δ2

)]
a↓↑

= 1

2

[
D − J + �2

R

(
χ̃

χ̃2 − δ2

)]
a↑↓, (13)

where χ̃ = χ + 1
2 (J + D). Multiplying Eqs. (12) and (13)

gives the following quartic equation for the quasienergies[
χ̃ − 3

2
D −

(
δ2

0

χ̃ − J − D
2

)]
(χ̃2 − δ2) = �2

Rχ̃ . (14)

The form (14) of the characteristic equation explains on the
quantitative level the statement made in the Introduction that, at
large J , the magnitude of exchange drops out from the theory.
Indeed, for large J , the term in the square brackets containing
J in the denominator can be neglected. Then, Eq. (14) reduces
to a cubic equation

(χ̃2 − δ2)
(
χ̃ − 3

2D
) = �2

Rχ̃ . (15)

Obviously, for D 	 �R , δ, we recover the conventional Rabi
oscillations

χ1 = 0, χ2,3 = ±
√

δ2 + �2
R. (16)

In the opposite limit, when D � �R, δ, we have

χ1 = 3

2
D, χ2,3 = �2

R

3D
±

√
δ2 +

(
�2

R

3D

)2

, (17)

so the difference χ2 − χ3, which is the position of the lowest
spectral line, behaves as s = 2

3D
�2

R . The positions of other
two lines are close to s = 3

2D.
Now, we can go back to Eq. (14) and quantify the criterion

under which the exchange drops out from the theory. At
large J , the term containing J in the denominator can be
simplified to δ2

0/J . This term should be smaller than both other
terms χ̃ and 3

2D. As it follows from Eq. (16), for D 	 �R ,
the corresponding criterion reads as δ0 	 (J�R)1/2. In the
opposite limit D 	 �R , Eq. (17) suggests that δ2

0/J should be
compared to D and can be neglected when δ0 	 (JD)1/2. Two
conditions obtained in the limiting cases can be formulated as
one, namely, that δ0 is smaller than the largest of (J�R)1/2

and (JD)1/2.
To assess the intermediate regime δ ∼ D, we rewrite the

cubic equation (15) by using the dimensionless variable

χ̃ = υη + D

2
, (18)

where

υ =
√

3
4D2 + �2

R + δ2. (19)

Then, it assumes the form

η3 − η + f = 0. (20)

We see that quasienergies χ̃i are determined by a single
dimensionless combination of parameters �R , D, and δ,
defined as

f = −
1
2D2 − 2δ2 + �2

R

2
(

3
4D2 + δ2 + �2

R

)3/2 D. (21)
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FIG. 2. (Color online) Graphic solution of the cubic
equation (20); η1, η2, η3 are the roots of a given f .

It is easy to check that for any D, δ, and �R the parameter
f resides within the interval − 2

3
√

3
, 2

3
√

3
, which ensures that

all three roots ηi are real. Graphic solution of Eq. (20) is
illustrated in Fig. 2. Analytic expressions for the roots ηi are
the following:

η1 = −sgn(f )
2√
3

cos

(
ψ

3

)
,

η2 = −sgn(f )
2√
3

cos

(
ψ

3
+ 2π

3

)
, (22)

η3 = −sgn(f )
2√
3

cos

(
ψ

3
− 2π

3

)
,

where the phase ψ is determined as

ψ = arctan

(
1

f

√
4

27
− f 2

)
. (23)

To find the quasienergies χ̃i for given values of D, δ, and �R ,
one has to calculate parameter f from Eq. (21), substitute it
into Eq. (22) for ηi , and, finally, substitute ηi into Eq. (18). The
evolution of χ̃i with �R and δ is governed by the dependence of
f on these parameters, which can be tuned externally. Figure 3
illustrates that this evolution is quite nontrivial, namely, f

exhibits extrema both as a function of �R and as a function of δ.

IV. POSITIONS AND INTENSITIES OF SPECTRAL LINES

The eigenvectors of the system (10) corresponding to the
roots can be conveniently cast in the form

Xi =

⎛
⎜⎜⎜⎜⎜⎝

�R√
2
(
υηi+ 1

2 D−δ

)
1
�R√

2
(
υηi+ 1

2 D+δ

)

⎞
⎟⎟⎟⎟⎟⎠. (24)

We are now in position to calculate the population of the state
1√
2
(A↑↓ + A↓↑) as a function of time. The general expression

for |A↑↓ + A↓↑|2 can be written as

|A↑↓ + A↓↑|2
= C2

1 + C2
2 + C2

3 + 2C1C2 cos[υ(η1 − η2)t]

+ 2C1C3 cos[υ(η1 − η3)t] + 2C2C3 cos[υ(η2 − η3)t],

(25)

f
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δ /D=1.5

f

0 2 4 6 8 10 12

0.3

0.2

0.1

0.0

0.1

0.2

0.3
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R/D=2.3
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δ

δ

FIG. 3. (Color online) Dimensionless parameter f is plotted from
Eq. (21) as a function of dimensionless driving field �R/D (a) and
dimensionless detuning δ/D (b). In (a), the minimum moves to the
right with increasing δ/D. Whereas, in (b), the maximum moves to
the right with increasing �R/D.

where the three constants C1, C2, and C3 are determined from
three initial conditions. Assuming that at t = 0 the pair of
spins is in ↓↓ state, so that A↓↓(0) = 1, A↑↑(0) = 0, [A↑↓(0) +
A↓↑(0)] = 0, and solving the system of three linear equations
we find

C1 = �R

(
υη1 − δ + D

2

)
√

2υ2
(
1 − 3η2

1

) , C2 = �R

(
υη2 − δ + D

2

)
√

2υ2
(
1 − 3η2

2

) ,

C3 = �R

(
υη3 − δ + D

2

)
√

2υ2
(
1 − 3η2

3

) . (26)

At this point, we note that the population [Eq. (25)] is
directly related to the photoconductivity �σ [Eq. (4)]. Indeed,
1 − |A↑↓ + A↓↑|2 is a probability to find the system either in
↓↓ state or in ↑↑ state after the time t .

The second contribution to �σ comes from realizations in
which the system is initially in the ↑↑ state. It is easy to see
that this contribution can be obtained by simply changing δ by
−δ in Eq. (26). In terms of the Fourier transform, as it follows
from Eqs. (4) and (25), �σ will contain the three peaks: upper,
lower, and middle, with positions

su = υ|η1 − η2|, sm = υ|η1 − η3|, sl = υ|η2 − η3|, (27)

and corresponding intensities

F(su) = 2C1(δ)C2(δ) + 2C1(−δ)C2(−δ),

F(sm) = 2C1(δ)C3(δ) + 2C1(−δ)C3(−δ), (28)

F(sl) = 2C2(δ)C3(δ) + 2C2(−δ)C3(−δ).
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In the next section, we analyze how the peak positions and
magnitudes evolve with �R .

V. ANALYSIS AND DISCUSSION

In the previous section, we derived analytical expressions
for the positions of the Rabi spectral lines and their intensities
[see Eqs. (27) and (28)]. Following, we analyze the evolution of
the spectrum with increasing the amplitude �R of the driving
ac field and with detuning δ.

A. Peak positions

The positions of peaks in F(s) as a function of �R are plotted
from Eqs. (19), (21), and (22) in Fig. 4 for representative values
of δ. The most interesting feature of F(s) dependencies is the
behavior of the sl peak shown with yellow. At large �R , this
peak is located below two other peaks. However, at small
�R , while the su and sm peaks grow monotonically with �R ,
this peak either stays horizontal or even decreases with �R .
Also the position of this peak at small �R depends strongly
on relation between δ and D. This can be understood from
Eq. (15). At small �R , we have χ̃1 ≈ 3

2D and χ̃2,3 = ±δ, so
that

sm = ∣∣ 3
2D − δ

∣∣, su = 3
2D + δ, sl = 2δ. (29)

We see that for δ 	 D or δ � D, the peaks sm and su

are degenerate, while for δ ≈ 3
2D, the peaks su and sl are

degenerate.
To understand the origin of a minimum in sl(�R) behavior

we recall that sl(�R) is a product of the functions υ(�R)
and |η2(�R) − η3(�R)|. In general, there are two reasons
for a minimum in the product of two functions: (i) the first
function monotonously grows, while the second monotonously
decreases, and (ii) the first function monotonously grows,
while the second has a minimum.

In the latter case, the minimum of the product, if it exists,
will be shifted to the left with respect to the minimum
of the second function. To establish which of the two
scenarios applies for sl(�R), we first note that υ(�R) increases
monotonously with �R . It is less obvious that the second
function |η2(�R) − η3(�R)| also increases at large enough
�R . This can be seen from Figs. 2 and 3(a). First, the difference
η2 − η3 increases monotonously with parameter f (Fig. 2).
Second, parameter f increases with �R at large enough �R

[Fig. 3(a)]. If (η2 − η3) increased with �R at all �R , there
would be no minimum in sl(�R).

This leaves room only for the scenario (ii). Indeed, the
difference |η2(�R) − η3(�R)| has a minimum at small enough
�R . This minimum is a consequence of a minimum in the
dependence f (�R), which is seen in Fig. 3(a). The minimum
position in f (�R), and, thus, in |η2(�R) − η3(�R)|, shifts to
the right with increasing δ. As it was mentioned above, the
difference in positions of minima in |η2(�R) − η3(�R)| and
in sl(�R) is explained by the fact that multiplying |η2(�R) −
η3(�R)| by the monotonic function υ(�R) leads to the shift of
a minimum position towards smaller �R .

Analytically, for large enough δ, the value of f at small �R

is positive. Then, upon increasing �R , the dashed line in Fig. 2
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FIG. 4. (Color online) Spectra of the Rabi oscillations in the
limit of strong exchange are plotted from Eqs. (26) and (27) versus
dimensionless driving field �R/D for three values of dimensionless
detuning δ/D = 0.5 (a), δ/D = 0.75 (b), and δ/D = 1.5 (c). The
thickness of each line represents the corresponding peak intensity.
Upon increasing �R , two lower peaks approach s = �R (lower
dashed line), while the upper peak approaches s = 2�R (upper dashed
line).

moves from f > 0 to the left and crosses f = 0. Upon further
increasing �R , parameter f passes through a minimum at

�R = 2
√

2δ, (30)

and returns back to f = 0.
This behavior of parameter f explains also the behavior

of the Rabi frequencies at large �R . Indeed, it follows from
Eq. (21) that parameter f approaches zero at large �R � δ,D.
Then, from Fig. 2 we conclude that the roots of Eq. (20)
approach 0 and ±1 at large �R . This translates into the
following evolution of the peaks at large �R . Since in this
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FIG. 5. (Color online) Spectra of the Rabi oscillations in the
limit of strong exchange are plotted from Eqs. (26) and (27)
versus dimensionless detuning δ/D for three values of dimensionless
driving field �R/D = 0.5 (a), �R/D = 1.75 (b), and �R/D = 4.0
(c). Similar to Fig. 4, the thickness of each line represents the
corresponding peak intensity. Upon increasing δ, two lower peaks
approach s = δ (lower dashed line), while the upper peak approaches
s = 2δ (upper dashed line).

regime υ ≈ �R , we find from Eq. (27)

su ≈ 2�R, sm ≈ sl ≈ �R. (31)

Note that, for large enough δ, the peaks s = sl(�R) and
s = sm(�R) cross each other. This crossing finds its natural
explanation in the fact that for large enough δ, parameter f

turns to zero at finite �R , namely, at �R = (2δ2 − 1
2D2)1/2.

The evolution of the Rabi spectral lines with detuning
δ is illustrated in Fig. 5. We see that, similarly to the �R

dependence, the peak positions also evolve in a nonmonotonic
fashion. Such a behavior can be readily accounted for by a
nonmonotonic dependence of parameter f on δ. Indeed, as
shown in Fig. 3(b), the dependencies f (δ/D) pass through

maximum at

δ =
(

9

4
D2 + 7�2

R

2

)1/2

(32)

for all values of �R .

B. Peak magnitudes

It is convenient to analyze the evolution of the peak
magnitudes with �R by contrasting it to the corresponding
evolution in the absence of exchange. For J = 0, there are
two distinct regimes of the Rabi oscillations: weak driving,
when �R is smaller than either D or δ, and strong driving,
when �R exceeds both D and δ. In the first regime, the Rabi
spectrum is dominated by a “central” peak4 at s = sa,sb [see
Eq. (1)] when only one of the pair partners participates in
the Rabi oscillations. In the second regime, the spectrum is
dominated by peaks at “large” s = s2 = sa + sb and “small”
s = s0 = |sa − sb|. Most importantly, the redistribution of
intensities between the peaks happens monotonically10 as �R

increases.
Compared to J = 0, not only the positions of the peaks

evolve with �R in a nontrivial fashion, but the redistribution
of the peak intensities with �R is nonmonotonic. These
intensities are represented by thicknesses of the spectral lines
in Fig. 4. The magnitude of the su peak shown with red
grows with �R . This peak dominates the spectrum when its
position approaches s = 2�R. The magnitudes of other two
peaks sm and sl vanish as they approach s = �R . However, the
intensities of these two peaks exhibit maxima for intermediate
�R ∼ D. Maximum in intensity of the sl peak, shown with
yellow, is achieved when the position of this peak passes
through a minimum.

In general, the intensities of all peaks turn to zero at small
�R , which is obvious on general grounds. A notable exception
is the sm peak in Fig. 4(c), which corresponds to δ = 3

2D. It
is seen from Eq. (29) that for δ = 3

2D, the position of the
sm peak turns to s = 0 in the limit �R → 0. Also, from this
relation we find from Eq. (21) that the parameter f is equal to

2
3
√

3
. Then, two roots of Eq. (20) are equal to 1√

3
. Next, from

Eq. (26), we see that the factors 1/(1 − 3η2
1) and 1/(1 − 3η2

2)
in the coefficients C1 and C2, which determine the peak
intensities, diverge. While this divergence is compensated by
�R in numerators of C1, C2 going to zero, it explains why the
corresponding spectral line is anomalously “responsive” to a
weak driving.

The evolution of the peak intensities with δ is also non-
monotonic, as illustrated in Fig. 5. Naturally, the magnitudes
of all peaks approach zero at large enough detuning. The su

peak, which grew in intensity monotonically with �R , now
falls off monotonically with δ. Two other peaks, sm and sl ,
again have maxima at intermediate δ. The maximum of the sl

peak again corresponds to the minimum in its position.

C. Comparison to the simulation results of Ref. 16

A conventional way to study the Rabi spectra of coupled
S = 1

2 system adopted in Refs. 7–9 is based on direct
numerical solution of the Liouville equation for a 4 × 4 density
matrix. The quantity �σ (τ ) is then expressed through the

165205-6



ANALYTICAL STUDY OF SPIN-DEPENDENT TRANSITION . . . PHYSICAL REVIEW B 87, 165205 (2013)

FIG. 6. (Color online) Spectrum of the Rabi oscillations obtained
from numerical simulations for �R/D = 0.5 as a function of dimen-
sionless detuning δ/D. The actual parameters used in simulations are
J = 30 MHz, �R = 1 MHz, D = 2 MHz. The line intensities are
encoded in the brightness of the curves.

diagonal elements of the density matrix and is, subsequently,
Fourier transformed. The focus of Refs. 7–9 is the effect of
detuning,7 exchange,8 and disorder9 caused by randomness of
hyperfine field on the Rabi spectra. Dipole-dipole interaction
was neglected in Refs. 7–9. A comprehensive study which
incorporates the competition between the exchange and dipole-
dipole interactions was carried out recently in Ref. 16. It
is natural to compare the analytical results of this paper
obtained in the large-J limit to the numerical results of
Ref. 16. For this reason, the simulations were run for the
same ratio �R/D = 0.5 as in Fig. 5(a). Similar to Fig. 5(a),
the spectra were calculated versus the dimensionless detuning
δ/D. In simulations, the value of the exchange constant J

was chosen to be 30 MHz, which for chosen D = 2 MHz
ensures the large-J limit since J/D = 15. The Rabi spectrum
obtained from the numerical simulations is shown in Fig. 6.
The intensities of the spectral lines are encoded in brightness
of the curves. We see that the agreement of the analytical and
numerical results is excellent: not only the positions of the
lines agree perfectly with Fig. 5(a), but also the evolution of
line intensities with δ exhibits the same features, the most
prominent being the maximum of intensity at δ where the
position of the line passes through a minimum.

D. Peak widths

Note that, unlike for Rabi oscillations in the absence of
coupling, the difference δ0 between the Larmor frequencies
of the pair partners [see Eq. (8)] does not enter either into
the positions of the spectral lines or into their intensities. The
relevant quantity is the sum ωa + ωb, which enters into the
detuning parameter δ [Eq. (11)]. In the ensemble of pairs,
the value of δ can fluctuate from pair to pair due to, e.g., the
randomness in nuclear environment creating random hyperfine
fields. Weak disorder can be easily incorporated into the theory
since it transforms δ peaks into Gaussians.

Suppose that Larmor frequencies ωa and ωb are randomly
distributed around a central frequency ω0 with width � 	 δ.
To calculate the width w of each Gaussian, we use Eq. (15).
Suppose that environment shifts detuning from δ to δ + δ1,
where δ1 = 1

2 (ωa + ωb − 2ω0). Then, the quasienergy χ̃i

acquires a shift δ1
∂χ̃i

∂δ
. This leads to three shifts of the peak
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FIG. 7. (Color online) Broadening the Rabi spectral lines due to
the spread � in the local Larmour frequencies. Dimensionless widths
w/� of the Gaussian peaks are plotted from Eq. (33) versus �R/D

for three values of dimensionless detuning, δ/D = 0.5 (a), δ/D =
0.75 (b), and δ/D = 1.5 (c). For convenience, the insets reproduce
Figs. 4(a), 4(b), and 4(c), with corresponding positions of the centers
of spectral lines.

positions of the form δ1[ ∂χ̃i

∂δ
− ∂χ̃j

∂δ
]. Thus, the width of the

peak at s = |χ̃i − χ̃j |, resulting from quasienergies i and j , is
equal to

w = �√
2

∣∣∣∣∂χ̃i

∂δ
−∂χ̃j

∂δ

∣∣∣∣ =
√

2�

[
υδ(ηj − ηi)

3
4

(
4υ2η2

i − D2
) − (

δ2 + �2
R

)
× 3(υηi − D)(υηj − D) − 9

4D2 + δ2 + �2
R

3
4

(
4υ2η2

j − D2
) − (

δ2 + �2
R

)
]

. (33)

In the last identity, we expressed ∂χ̃i

∂δ
through χ̃i using Eq. (15).

The widths of three peaks calculated from Eq. (33) are
plotted in Fig. 7. It can be seen that all three widths fall
off with increasing �R . This is a quite natural behavior.
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For convenience, the insets in Fig. 7 show the positions and
intensities of the peaks in the absence of broadening. There is
certain correlation between intensities and the widths, namely,
the middle peak, having maximal intensity at small �R has
also the maximal width. Overall, the ratio w

�
, characterizing

how disorder � translates into the peak width, lies within the
range 0.2–1.2.

VI. CONCLUDING REMARKS

We have developed an analytical description of spin-
dependent electronic transition rates within strongly exchange
coupled intermediate pairs during a coherent spin excitation
which revealed the influence of several spin-Rabi oscillation
components whose intensities and frequencies depend on the
dipolar coupling within the pair, the strength of the driving
field, and the detuning. As long as the exchange coupling is
strong, the oscillations controlling spin-dependent rates neither
depend on the value of the exchange coupling nor on the
spin-orbit or hyperfine field induced Larmor separation (the
difference of the pair partners Larmor frequencies). It must
be emphasized that “strong exchange” in the context of this
work means that J is larger than all other relevant parameters
(dipolar strength, Larmor separation, driving field strength,
and detuning) but not by many orders of magnitude. While the
conclusions of the work presented here remain unchanged by
the magnitude of J , very large J will lead to rapidly decaying
rate changes which will render the results irrelevant for their
experimental application.

It should be noted that the condition δ0 	 √
JD is very

strict. In fact, many experimentally investigated intermediate-
pair systems (Refs. 1–5) do not satisfy this condition.
However, there are some examples where this condition
is met. These are, for instance, intermediate pairs found
in amorphous silicon,12,17 silicon-rich silicon nitride thin
films,13 and charge carrier (polaron) pairs in phtalocyanine
metal-organic complexes.18 We also note that even if the
condition δ0 	 √

JD is not met, the anomalous behavior of
the Rabi frequencies with detuning can still be enforced by
choosing large enough driving fields. It will be, however, less
pronounced. For example, in Fig. 5(c), the minimum in the
Rabi spectrum is present for �R/D = 4, but it is shallow.
Concerning other domains of J and D, they were explored
in full detail numerically in Ref. 16. Figure 6 illustrates that
analytical and numerical results agree perfectly in the large-J
domain.

The other issue to be discussed in relation to applicability
of our results to realistic systems is that, realistically, the
strength of the dipole-dipole interaction varies from one pair
to the other. We do not expect qualitative change of our

predictions due to this variation. The reason is that anomalous
behavior of the Rabi frequencies predicted above originates
from nonmonotonic behavior of parameter f [Eq. (21)]. This
behavior persists for all D values. Moreover, the position
of minimum in f versus �R does not depend on D at all
[see Eq. (30)].

Obtaining the solutions analytically has been possible
because in the limit of strong exchange, only three out of
four spin states of the pair participate in the Rabi oscillations.
Note that there exists another prominent object in which Rabi
oscillations take place within a system of three levels. This
object is a quantum dot molecule19–25 in which the excitation
energy lies in the optical range. The analog of spin is played by
a two-level system consisting of size-quantized electron and
hole levels in a self-assembled quantum dot. Experimentally,
Rabi oscillations between these two levels are studied by
optical26,27 and electrical28 techniques. The quantum dot
molecule represents two vertically aligned quantum dots, so
that an electron excited in one dot can tunnel into another
dot and vice versa. This tunneling is a source of coupling
between the dots which has no analog in spin pair considered
in this paper. The other mechanism by which different dots
“communicate” with each other is the Coulomb attraction of
excited electron to the hole left behind. If the hole resides
in one dot, the energy of attraction of electron to this
hole is different depending on whether the electron resides
in the same dot or in the neighboring dot. This difference
mimics the dipole-dipole interaction in the spin system we
considered. The most important difference between the two
systems lies in the structure of three levels participating in the
Rabi oscillations. In the spin pair, these levels are shown in
Fig. 1(b) and are almost evenly spaced in energy. In quantum
dot molecules, the relevant levels are the ground state with
no exciton, excited state with one exciton in the left dot, and
excited state with one exciton in the right dot, so that two
excited states are close in energy.

As a final remark, note that Rabi oscillations in quantum
dot molecules recently reported in Ref. 29 correspond to
simultaneous Rabi nutations of two electrons. This is sim-
ilar to the Rabi oscillations under the conditions of half-
field magnetic resonance which were also recently observed
experimentally.15
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