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Electron-electron correlations in a dynamical impurity system with a Fermi edge singularity
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We study spatial correlations in the ground state of a one-dimensional electron gas coupled to a dynamic
quantum impurity. The system displays a nontrivial many-body effect known as the Fermi edge singularity:
transitions between discrete internal states of the impurity have a power-law dependence on the internal energies
of the impurity states. We present compact formulas for the static current-current correlator and the pair-correlation
function. These reveal that spatial correlations induced by the impurity decay slowly (as the third inverse power
of distance) and have a power-law energy dependence, characteristic of the Fermi edge singularity.
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I. INTRODUCTION

The situation where a localized scatterer, with discreet
internal quantum-mechanical degrees of freedom, is coupled to
an electron gas is a common occurrence both in bulk condensed
matter systems1 and in nanometer-scale electronic devices.2–4

Many nontrivial features of these systems can be explained
with the aid of simple dynamic quantum impurity models.5

For several such models, nonperturbative results have been
obtained, and these results have played a major role in our
understanding of strongly correlated electron systems.

In this context, a phenomenon known as the Fermi edge
singularity6 has been very influential. Its essential ingredients
are a Fermi gas that is initially in a stationary state and a
local scattering potential that is abruptly switched on at a time
t0. For times larger than t0, the Fermi gas is no longer in a
stationary state. To see just how far from stationary a typical
initial state is, it is useful to consider the overlap between the
ground states of the Hamiltonian before and after t0. It is found
that the overlap is zero, and this is known as the orthogonality
catastrophe.7 Since the initial state is far from stationary, the
Fermi sea is severely shaken up;8 the local scattering potential
creates a multitude of particle-hole excitations.

The original theory9,10 was formulated to account for
singularities in the photoemission and photoabsorption spectra
in some metals. For this problem the natural quantities to inves-
tigate are impurity transition rates. These where found to have a
power-law dependence on the internal energies of the impurity
levels. It was subsequently shown that the same physics applies
to transport through a barrier containing an impurity11 level, or
through a quantum dot.12,13 In recent work, nonequilibrium se-
tups in which the Fermi sphere is replaced by a nonequilibrium
distribution has been investigated.14–20 Complications to the
basic theory, for instance, what happens if the impurity induces
resonant scattering, were also considered.21 Apart from impu-
rity transition rates, current and noise,22 as well as the quench
dynamics of the electron gas,23,24 have been investigated.

These studies clearly indicate that the dynamical impurity
induces significant correlations in the electron gas. A system
that displays the Fermi edge singularity can therefore be
expected to possess a nontrivially correlated ground state. This
is a topic that is receiving significant attention in other impurity
systems, such as the Kondo model.25–27 Ground-state spatial
correlations, however, have not yet been addressed in the

context of the Fermi edge singularity. Correlations in time,
such as current noise,22 have been studied. Perhaps the reason
is that some common realizations of the Fermi edge singularity
rely on explicitly time-dependent Hamiltonians. In this work
we consider a realization with a time-independent Hamilto-
nian. It allows us to investigate ground-state correlations. A
model of the type that we consider has previously been consid-
ered in the literature on atom tunneling in metallic glasses.28,29

As we discuss in Sec. II D, the low-energy physics of our model
is qualitatively different from that of the Kondo model.

We consider a setup in which a localized impurity inter-
acts with one-dimensional electrons with a linear dispersion
relation.30 An example of the type of impurity we have in mind
is the charge qubit formed when a single electron is trapped in
a double quantum dot.31,32 Our model can also be realized with
a Josephson charge qubit.33 In the main text, we derive results
for electrons in a single chiral channel, such as a quantum
Hall edge state. For a two-state impurity, generalization to
situations with both left- and right-moving electrons, or indeed,
to more general multichannel setups, is possible and no
new physics emerge, as we show in Appendix A. Our main
result is a compact formula for the current-current correlator
〈δj (x)δj (y)〉 [Eq. (4.26)], that is valid at large separations. The
impurity induces no additional correlations between electrons
on the same side of the impurity. For electrons on opposite
sides of the impurity, impurity-induced correlations decay as
1/|x − y|3. Owing to the Fermi-edge singularity, the correlator
has a power-law dependence on the internal energies of the
impurity. The correlations persist beyond the range of the
interaction between the electron gas and the impurity. This is in
contrast to the expectation values of single-particle observables
such as the density 〈ρ(x)〉, which is unaffected by the impurity
for x outside the range of the interaction. Because of the linear
dispersion relation, the current-current correlator is essentially
equal to the pair-correlation function 〈ρ(x)ρ(y)〉. This insight
allows for a simple interpretation of our results. If an electron
is detected at x to the left of the impurity, the likelihood of
finding another at y to the right of the impurity is larger than
in the absence of the impurity by an amount ∼ 1/|x − y|3 and
has a power-law dependence on the internal energies of the
impurity, characteristic of the Fermi edge singularity.

We present the work as follows: We define the model by
means of its Hamiltonian (Sec. II A). Since we are dealing with
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one-dimensional electrons with a linear dispersion relation, it
is convenient to bosonize them. In Sec. II B we collect the
relevant bosonization results. We are interested in the model
because it displays a Fermi edge singularity. We start Sec. II C
by reviewing how the conventional theory of the Fermi edge
singularity applies to the transition rates between internal states
of the impurity. We also take the first step towards studying
ground-state properties by considering the probability to find
the impurity in a given internal state, if the system as a whole is
in the ground state. These occupation probabilities turn out to
play a central role in determining spatial correlations between
electrons in the presence of the impurity. We show that the
Fermi edge singularity is also manifested in the occupation
probabilities. In Sec. II D we contrast the system we study
with the Kondo model. As already stated, our main aim is
to investigate spatial correlations among the electrons. But
before doing so, we need to consider the expectation values of
single-particle observables. In Sec. III we therefore investigate
the average density 〈ρ(x)〉. We show that the total number
of particles displaced by the impurity obeys a generalization
of Friedel’s sum rule. (A generalized Friedel sum rule has
previously been shown to hold for another dynamic impurity
system, namely, the Anderson impurity model.) Our results for
the current-current correlator are presented in Sec. IV and for
the pair-correlation function in Sec. V. Section VI contains a
self-contained summary of our main results and conclusions.

II. MODEL

Our model describes a localized impurity with an internal
state space spanned by the orthonormal basis B = {|α〉|α =
1, . . . ,M}. It interacts with a Fermi gas. In the main text
we take this Fermi gas to consist of a single chiral channel.
The model is inspired by experimental setups in which
electrons in a coherent conductor are coupled to a charge
qubit (M = 2).17,30 Since it does not substantially complicate
the analysis for a single channel, we consider arbitrary M .
In Appendix A, we consider the multichannel case. It is
shown that generalization of the results in the main text is
straightforward for M = 2. We have not yet solved the most
general situation, involving multiple channels and arbitrary M .

A. Hamiltonian

The Hamiltonian for our model is H = H0 + HT , where

H0 =
∑

α

Hα ⊗ |α〉〈α|, HT =
∑
αβ

γαβ |α〉〈β|, (2.1)

Hα =
∫ L/2

−L/2
dx ψ†(x)[−i∂x + vα(x)]ψ(x) + εα. (2.2)

Here Hα describes the fermions when the impurity is in
state |α〉 and εα is the internal energy of the impurity state
|α〉.34 The fermion creation and annihilation operators ψ†(x)
and ψ(x) obey periodic boundary conditions on the interval
(−L/2,L/2]. We will eventually send the system size L to
infinity. The electrostatic potential vα(x) depends on the state
of the impurity. Since our aim in this work is to investigate
many-body correlations that persist beyond the range of the
interaction between the impurity and the Fermi gas, it is
convenient to assume that all the potentials vα have bounded

support. We define the scattering region as the shortest interval
l = [x−,x+] such that vα(x) = 0 for all α and all x �∈ l. The
term HT induces tunneling between impurity states. Without
loss of generality, we set γαα = 0.

The ground state |Fα〉 of the fermion Hamiltonian Hα

is a Fermi sea in which all (the infinitely many) negative
energy orbitals associated with the single-particle Hamiltonian
−i∂x + vα(x) are occupied, and all positive energy orbitals are
empty.

The scattering states of −i∂x + vα(x) are of the form
exp[ikx − i

∫ x

−∞ dx ′vα(x ′)]. This leads to an identification of

δα = −1

2

∫ ∞

−∞
dx vα(x) (2.3)

as the scattering phase shift associated with the potential vα(x).
Phase shifts play an important role in impurity physics. The
expression in Eq. (2.3) is exact for a linear dispersion relation,
but only approximate beyond the linear approximation. It
is important to note, however, that small vα and δα , while
sufficient, is not a necessary requirement for the validity of
Eq. (2.3). What is required is that the potential changes slowly
on the scale of the Fermi wavelength.

B. Bosonization

The infinite Fermi sea represented by a state such as |Fα〉
must be handled with care. Finite observable quantities are
often represented as the difference between infinite quantities.
In such calculations, an uncontrolled rearrangement of terms
can lead to incorrect answers.35,36 For one-dimensional Fermi
systems, such as the one we are studying, a standard and
elegant method to treat the infinitely deep Fermi sea correctly is
provided by bosonization.37,38 In fact, one of the pioneering ap-
plications of bosonization was to the Fermi edge singularity.39

Through bosonization, our model is mapped onto a spin-boson
model40 with a bath that is ohmic at low energies.30 For our
purposes the following bosonization results are required. The
Fourier components of the density operator

ρq =
∫ L/2

−L/2
dx e−iqxψ†(x)ψ(x), (2.4)

with q = 2πn/L, n = 0, ±1,±2, . . . , obey bosonic commu-
tation relations

[ρq,ρq ′ ] = Lq

2π
δq,−q ′ . (2.5)

The fermion Hamiltonians Hα can be expressed in terms of ρq

as Hα = hα + E0α , where

hα =
∑
q>0

2π

L

(
ρ−q + vα,−q

2π

)(
ρq + vα,q

2π

)
. (2.6)

Here vα,q = ∫ L/2
−L/2 dx e−iqxvα(x) are the Fourier components

of the potentials vα(x), and

E0α = εα + ρ0vα,0

L
−

∑
q>0

2π

L

∣∣∣∣vα,q

2π

∣∣∣∣
2

(2.7)

is the ground-state energy of Hα as a function of ρ0, the number
of electrons in the system, up to an α-independent constant.
We will work with a fixed number of particles. The number
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operator ρ0, and therefore also E0α , can then be treated as
real numbers instead of operators. Note that E0α can be varied
independently of hα by adjusting the internal energy εα of the
impurity state α. We define the energy differences

ωαβ = E0α − E0β. (2.8)

For q > 0,

ρq |Fα〉 = −vα,q

2π
|Fα〉, (2.9)

i.e., the Fermi sea |Fα〉 is an eigenstate (coherent state) of the
bosonic annihilation operator ρq .

C. Fermi edge singularity

The Fermi edge singularity manifests as power-law sin-
gularities in inelastic transition rates between internal states
of the impurity, as a function the energy differences ωαβ .
Denote the many-body eigenstates of Hβ by |mβ〉, and let Emβ

be the associated energies. Assuming an initial state |Fα〉 ⊗
|α〉, the total transition rate Wβα(ωβα) to configurations with
the impurity in state |β〉, calculated to second order in HT

using Fermi’s golden rule, is given by

Wβα(ωβα) = 2π |γβα|2
∑
m

δ(Emβ − E0α)|〈Fα|mβ〉|2

= |γβα|2
∑
m

∫ ∞

−∞
dt ei(Emβ−E0α )t |〈Fα|mβ〉|2

= |γβα|2
∫ ∞

−∞
dt eiωβαt 〈Fα|eihβ t e−ihαt |Fα〉.

(2.10)

The canonical theory of the Fermi edge singularity provides
an expression (the so-called closed-loop factor)10,12 for the
expectation value 〈Fα|eihβ t e−ihαt |Fα〉. The closed-loop factor
is analytic in the upper half of the complex plain. For large |t |,
its asymptotic behavior is of the form (i�t)−
2

αβ , where


αβ = −(δα − δβ)/π. (2.11)

A branch cut in the lower half of the complex t plane is
understood, and the branch with arg(t) = 0 for real positive
t is implied. � is a large energy scale. In our model, with
an infinitely deep Fermi sea, it is of the order of the inverse
of the range of the interaction of the impurity and the Fermi
gas. The interpretation is that an interaction with range �−1

can excite particle-hole pairs with energies ∼�. In models
where the inverse of the interaction range is larger than the
Fermi energy, measured from the bottom of the Fermi sea, �

is of the order of the Fermi energy. We further note that the
energy difference ωβα plays the role of the x-ray frequency
in the canonical theory. From the asymptotics and analyticity
structure of the closed-loop factor, the asymptotic behavior of
the rates Wβα can be extracted at small energy differences ωβα:

Wαβ(ωβα) = |γαβ |2Cαβ
2
αβθ (ω)

(
ω

�

)
2
αβ 1

ω

∣∣∣∣
ω=−ωβα

. (2.12)

Cαβ is a constant that tends to a value of order 1 when

αβ → 0. The result for the rate breaks down at energies
ωαβ corresponding to excitations with wavelengths ω−1

αβ short

enough to resolve the spatial structure of the interaction
potentials vα(x) and vβ(x). For energies larger than �, the
transition rate becomes exponentially suppressed. There is also
another constraint. For perturbation theory in γαβ to be valid,
the ratio Wβα(ωβα)/ωαβ must be much smaller than one.41 For

2

αβ < 2 this imposes the constraint42 that

ωαβ

�
�

(
Cαβ
2

αβ |γαβ |2
�2

) 1
2−
2

αβ
. (2.13)

The point ωβα = 0 is known as the Fermi edge threshold. More
information regarding the above statements can be found in
Ref. 30, where we analyzed transition rates for essentially the
same model in detail. The fact that for 
βα < 1 the transition
rate Wωβα

becomes large close to the threshold, while for

βα > 1 it becomes small close to the threshold, is an instance
of what is known as a Schmidt transition.41

The transition rate discussed above is a dynamical property
of the model. However, the Fermi edge singularity also
manifests in ground-state properties. Denote the ground state
of the full Hamiltonian by |GS〉. We define nα as the probability
to find the impurity in state |α〉 when the system is in |GS〉

nα = 〈GS|(IF ⊗ |α〉〈α|)|GS〉. (2.14)

Here IF is the identity operator in the many-fermion Hilbert
space. Let λ be the index such that |Fλ〉 ⊗ |λ〉 is the ground state
of H0, the Hamiltonian in the absence of impurity tunneling.
If the ground-state energy difference ωαλ between sectors Hα

and Hλ of H0 is much larger than the large energy scale �, we
can ignore the dynamics of the fermions and nα is obtained
from the ground state of the effective impurity Hamiltonian

Himp =
∑
αβ

(ωαλδαβ + γαβ)|α〉〈β|, (2.15)

which yields nα = |γαλ|2/ω2
αλ for small γαλ. For ωαλ smaller

than �, the fermion dynamics cannot be ignored. The full
ground state |GS〉 contains contributions |ψα〉 ⊗ |α〉 with
α �= λ, where |ψα〉 is a complicated, many-fermion state.
These contributions are still small if γαλ/ωαλ is small, but the
nontrivial many-body correlations contained in |ψα〉 modify
the simple inverse square ωαλ behavior of nα . In the spirit
of the original work on the Fermi edge singularity, we will
perform a calculation of |ψα〉 that is nonperturbative in the
potentials vα , thus including contributions with arbitrarily
many particle-hole excitations.

It is straightforward to show that, to second order in HT , nα

with α �= λ is given by

nα =
∫ 0

−∞

dω

2π

Wαλ(ω)

(ωαλ − ω)2
. (2.16)

(See Appendix B for a derivation.) Note that since λ refers to
the ground state of H0, ωαλ is positive and the denominator of
the integrand is therefore always nonzero. Using the expression
of Eq. (2.11) for Wαλ, one finds

nα(ωαλ) = |γαλ|2D2
αλ�

(
2 − 
2

αλ

)(ωαλ

�

)
2
αλ 1

ω2
αλ

. (2.17)

Here Dαλ is a constant of order 1. The regime of validity of
the above equation is the same as that of Eq. (2.11) for Wαλ.
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In particular, for 
2
αλ < 2, it becomes invalid at sufficiently

small ωαλ due to a breakdown in perturbation theory in HT .
For 
2

αλ > 2 there are additional contributions that are less
singular at small ωαλ that ensure the positivity of nα . For large
ωαλ there is a crossover from the power law of Eq. (2.17) to
the inverse square law nα ∼ (ωαλ)−2, valid for ωαλ > �.

D. Absence of a Kondo effect

Our model is designed to display the physics of the Fermi
edge singularity. It is also, however, reminiscent of the Kondo
model in that it describes electrons scattering off a “spin”—our
impurity. There is a close connection between the Fermi edge
singularity and the Kondo effect,43 and the question should
therefore be asked whether our model displays Kondo physics.

In the Kondo model,1 the interaction between the impurity
and the electron gas contains terms of the form c†c′|α〉〈β|,
where c† and c′ create and annihilate electrons and |α〉〈β|
changes the state of the impurity. We can get the impurity
interaction in our model (2.2) into this form by working in a
basis that diagonalizes the unperturbed impurity Hamiltonian
Himp = ∑

αβ(ωαλδαβ + γαβ)|α〉〈β|. This leads to Kondo-like
terms with a dimensionless coupling strength of order J =
δγ /D, where δ is of the order of the relative phase shifts
induced by the potentials vα − vβ , γ is of the order of the
tunneling amplitudes γαβ , and D is of the order of the level
spacing of the impurity Hamiltonian Himp. If the Kondo-like
terms do give rise to a Kondo effect, the associated Kondo
temperature would then be of order TK = �e−D/γ δ . In the
Kondo model, the smaller the level spacing of the unperturbed
impurity Hamiltonian, the better. In fact, if the unperturbed
level spacing of the Kondo impurity is larger than the Kondo
temperature, the Kondo effect disappears. This is precisely the
fate of any potential Kondo effect in our model. In the small-γ
regime, the level spacing D is of the order ωαλ. For sufficiently
small γ , this is larger than the Kondo temperature.

The perturbative results in γ that we obtain below diverge
when the energy differences ωαλ become small. Could this
divergence signal the onset of a Kondo effect? First, we
note that, even in this case, there is an energy difference
between impurity levels of order γ , and neglecting this
energy difference would make the model trivial. This suggests
that, in contrast to the Kondo model, where the dynamics
of the impurity is entirely due to the interaction with the
Fermi sea, in our model it is the interplay of the impurity’s
unperturbed internal dynamics and the interaction with the
Fermi gas that is important.

However, this does not rule out the possibility that in the
limit where all the ωαλ → 0, the low-energy physics of our
model is governed by the same strong coupling fixed-point
Hamiltonian as the Kondo model. In order to answer the
question definitively, a renormalization group analysis must
be performed. This has been done29 for a two-state impurity,
i.e., M = 2, in the context of atom tunneling in metallic
glasses. Our model corresponds to the so-called “commutative
model.”28 It was found that the commutative model’s low-
energy physics is qualitatively different from that of the
Kondo model. In particular, the renormalized couplings in the
commutative model do not scale into a strong coupling regime
as is the case in the Kondo model.

To summarize, in the small γ and sufficiently large ωαλ

regime that we analyze, no Kondo effect is expected. Our
results diverge when ωαλ → 0, and one may wonder whether
this is due to the onset of the Kondo effect. However, for a
two-state impurity (M = 2), a renormalization group analysis
indicates that this is not the case.

III. CURRENT AND FRIEDEL SUM RULE

Using the commutation relations between Fourier com-
ponents of the density operator, the continuity equation
i[ρ(x),H ] = ∂xj (x) is straightforwardly derived where the
current operator is

j (x) = ρ(x) +
∑

α

vα(x)

2π
|α〉〈α|. (3.1)

As a preliminary to our goal of studying correlation
functions, we consider the average current when the system is
in an arbitrary stationary state. Let D be any density matrix
that describes a stationary state of the system, i.e., [H,D] = 0.
The expectation value of the commutator of any operator A

with the Hamiltonian is zero, i.e.,

〈[A,H ]〉 ≡ tr{D[A,H ]} = 0. (3.2)

From the continuity equation it then follows that ∂x〈j (x)〉 = 0.
Integrating from −∞ to x and using the explicit expression of
Eq. (3.1) for j (x), we obtain

〈ρ(x)〉 = ρ̄ −
∑

α

vα(x)

2π
nα, (3.3)

where nα = 〈|α〉〈α|〉 is the probability to find the impurity in
the state |α〉 and ρ̄ is the density at infinity, which is equal
to the homogeneous density in the absence of the impurity.
The total charge 
N displaced by the impurity is obtained by
subtracting ρ̄ and integrating over x. In terms of the scattering
phase shifts defined in Eq. (2.3), we obtain


N = 1

π

M∑
α=1

nα δα. (3.4)

For the case of a static impurity, i.e., M = 1 and n1 = 1, the
result reduces to Friedel’s well-known sum rule 
N = δ/π .1

Equation (3.4) represents a generalization of Friedel’s sum rule
to our dynamic impurity model. That such a generalization
exists is not unexpected. A classic result in many-body theory
is the proof by Langreth44 that 
N = δ/π holds for another
dynamic impurity system, namely, the Anderson impurity
model.

Before considering correlation functions, we define the
current-fluctuation operator δj (x) through its Fourier trans-
form δjq = ∫ L/2

−L/2 dx e−iqxδj (x), where

δjq =
∑

α

jαq |α〉〈α| − δq0jλ0, jαq = ρq + vαq

2π
. (3.5)

This definition is such that the expectation value of δjq with
respect to the noninteracting ground state |Fλ〉 ⊗ |λ〉 is zero.
From the continuity equation follows that the expectation value
of δjq with respect to the interacting ground state |GS〉 is also
zero, unless q = 0. Using the definition of 
αλ in Eq. (2.11)
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and the fact that
∑

α nα = 1, one furthermore finds

〈GS|δjq |GS〉 = δ0q

∑
α


αλnα. (3.6)

For a finite interaction strength between the impurity and the
Fermi gas, the relative phase shifts 
αλ are finite, and hence
in the thermodynamic limit L → ∞, the Fourier transformed
fluctuations operator δj (x) has a zero expectation with respect
to the full ground state:

〈GS|δj (x)|GS〉 = 1

L

∑
α


αλnα → 0|L→∞. (3.7)

IV. CURRENT-CURRENT CORRELATORS

The similarity of the generalized Friedel sum rule of
Eq. (3.4) to the static impurity result, 
N = δ/π , begs the
following question: Given the probabilities nα , can the effect
of the impurity on the electron gas perhaps be accounted
for by a static effective potential veff = ∑

α nα vα(x) instead
of a dynamic impurity? In this section, we show that the
answer is “No.” We show this by examining the ground-state
current-current correlator 〈GS|δj (x)δj (y)|GS〉, which can, in
principle, be extracted from the statistics of repeated experi-
ments in which the current is measured (see Appendix C).

A. Zeroth order

We write

〈GS|δj (x)δj (y)|GS〉 = c0(x,y) + c2(x,y) + O(γ 4), (4.1)

where cn is of order of n in γ . The zero-order term

c0(x,y) = 〈Fλ|δj (x)δj (y)|Fλ〉 (4.2)

becomes singular when x → y. To deal with this singularity,
it is convenient to define a regularized current operator

δjr (x) = 1

L

∑
q

eiqxe−r|q|δjq



∫ L/2

−L/2

dx ′

π

r

(x − x ′)2 + r2
δj (x), (4.3)

the last line being valid for |x|/L � 1. At the end of the
calculation the limit r → 0+ is taken and results independent
of the regularization are obtained as long as x �= y. From
Eqs. (2.5) and (2.9) it follows that

〈Fλ|δjpδjq |Fλ〉 = θ (p)δp,−q

Lp

2π
. (4.4)

Performing the inverse Fourier transform we then find

〈Fλ|δj (x)δj (y)|Fλ〉 = −i

2πL
∂x

∑
p>0

eip(x−y+2ir)

= −i

2πL
∂x[1 − ei 2π

L
(x−y+2ir)]−1. (4.5)

Taking the limits L → ∞ and r → 0+, we find

c0(x,y) = − 1

(2π )2

1

(y − x)2
. (4.6)

This result is independent of vλ(x) and represents the exact
result for a static impurity.

B. Second order

We obtain the second-order correction c2(x,y) to the
current-current correlator by expanding |GS〉 in Eq. (4.1) to
second order in γ . The perturbation expansion of eigenstates
can be obtained from a perturbation expansion of the interac-
tion picture time evolution operator describing the situation in
which the perturbation is switched on adiabatically [Gell-mann
Low theorem]. Thus to second order in the γ ’s,

|GS〉 = |Fλ〉 ⊗ |λ〉 +
∑

α

|ψα〉 ⊗ |α〉 +
∑
α1α2

∣∣ψα1α2

〉 ⊗ |α2〉,

(4.7)

|ψα〉 = −i
∑

α

γαλ

∫ 0

−∞
dt eηtQαλ(t)|Fλ〉, (4.8)

∣∣ψα1α2

〉 = −
∑
α1α2

γα2α1γα1λ

∫ 0

−∞
dt2

∫ t2

−∞
dt1 eη(t1+t2)Qα2α1 (t2)

×Qα1λ(t1)|Fλ〉 ⊗ |α2〉. (4.9)

Here η is a small positive constant and the limit η → 0+ must
be taken after the expectation value in Eq. (4.1) is evaluated.
The operators Qαβ(t) are defined as

Qαβ(t) = eiHαt e−iHβ t . (4.10)

We also define the expectation value

Pαβ(t) ≡ 〈Fλ|Qαβ(t)|Fλ〉
= ei(ωαλ−ωβλ)t 〈Fλ|eihαt e−ihβ t |Fλ〉. (4.11)

It is convenient to perform a Fourier transform

c2(p,q) =
∫ L/2

−L/2
dx

∫ L/2

−L/2
dy e−ipxe−iqyc2(x,y). (4.12)

Expanding the ground state |GS〉 in γ as in Eq. (4.7), we obtain

c2(p,q) =
∑

α

cα
2 (p,q),

cα
2 (p,q) = 〈ψα|δjαpδjαq |ψα〉 + 〈Fλ|δjλpδjλq |ψαλ〉

+ 〈ψαλ|δjλpδjλq |Fλ〉. (4.13)

We now substitute |ψα〉 and |ψαβ〉 from Eqs. (4.8) and (4.9)
into Eq. (4.13). The individual terms in Eq. (4.13) are eval-
uated by exploiting the bosonic commutators [δjαq,δjβq ′ ] =
Lqδq,−q ′/2π obeyed by the jαq operators [cf. Eq. (2.5)]. For
q > 0, the δjαq correspond to bosonic annihilation operators,
with corresponding creation operators δj

†
αq = δjα−q . The state

|Fλ〉 is a coherent state, i.e., an eigenstate of the annihilation
operators [cf. Eq. (2.9)]:

δjαq |Fλ〉 = 

q

αλ|Fλ〉, 

q

αλ = vαq − vλq

2π
. (4.14)

The commutator of δjαq with Qβγ (t) is easily calculated. The
result is

[δjαq,Qβγ ] = (eiqt − 1)
q

βγ Qβγ (t). (4.15)

165135-5



I. SNYMAN PHYSICAL REVIEW B 87, 165135 (2013)

After some algebra, we obtain the expression cα
2 (p,q) = Cα

2 (p,q) + Cα
2 (−p,−q)∗, where

Cα
2 (p,q) = lim

η→0+
|γαλ|2
p

αλ

q

αλ

∫ 0

−∞
dt1

∫ t1

−∞
dt2 {ei(p+q)t1 + θ (p)eiqt1 [eipt2 − eipt1 ] + θ (q)eipt1 [eiqt2 − eiqt1 ]}eη(t1+t2)Pαλ(t2 − t1).

(4.16)

We change integration variables to t = t1 and τ = t2 − t1 and perform the t integral to obtain

Cα
2 (p,q) = lim

η→0+

|γαλ|2
2η + i(p + q)



p

αλ

q

αλ

∫ 0

−∞
dτ [1 + θ (p)(eipτ − 1) + θ (q)(eiqτ − 1)]eητPαλ(τ ). (4.17)

From Eq. (4.11) it follows that Pαλ(t) is related to the transition rate Wαλ by a Fourier transform,

|γαλ|2Pαλ(t) =
∫ 0

−∞

dω

2π
ei(ωαλ−ω)tWαλ(ω). (4.18)

Substituting for |γαλ|2Pαλ(τ ) from Eq. (4.18), performing the τ integral, and taking the η → 0+ limit, we find

Cα
2 (p,q) = 


p

αλ

q

αλ

p + q

∫ 0

−∞

dω

2π
Wαλ(ω)

{
1

ω − ωαλ

+ θ (p)

[
1

ω − ωαλ − p
− 1

ω − ωαλ

]
+ θ (q)

[
1

ω − ωαλ − q
− 1

ω − ωαλ

]}

(4.19)

and hence

cα
2 (p,q) = 


p

αλ

q

αλ

p + q

∫ 0

−∞

dω

2π
Wαλ(ω)

{
sgn(p)

[
1

ω − ωαλ − |p| − 1

ω − ωαλ

]
+ sgn(q)

[
1

ω − ωαλ − |q| − 1

ω − ωαλ

]}
.

(4.20)

By Fourier transforming back to cα
2 (x,y) we obtain

cα
2 (x,y) =

∫ 0

−∞

dω

2π
Wαλ(ω)

∫ 0

−∞
dz

∫ ∞

0
dz′[
αλ(x + z)
αλ(y + z′) + 
αλ(x + z′)
αλ(y + z)]hα(z′ − z), (4.21)

where


αλ(x) =
∫ ∞

−∞

dq

2π
eiqx


q

αλ = vα(x) − vλ(x)

2π
(4.22)

and

hα(z) =
∫ ∞

0

dq

π
sin(qz)

(
1

ωαλ − ω
− 1

ωαλ − ω + |q|
)

.

(4.23)

For large z (Ref. 45),

hα(z) 
 2

π

1

(ωαλ − ω)3z3
= −1

π
∂ωαλ

1

(ωαλ − ω)2z3
. (4.24)

Since 
αλ(x) is zero for x �∈ l, i.e., outside the scattering
region, the first term in the square brackets in Eq. (4.21) gives
a nonzero contribution only when x > x− and y < x+. The
second term in the square brackets, on the other hand, only
gives a nonzero contribution when x < x+ and y > x−. Thus
for x and y both to the left (<x−) or both to the right (>x+)
of the scattering region, cα

2 (x,y) is zero. It can be shown that
this statement is true to all orders in HT .

For x and y on opposite sides of the scattering region, and
such that |x − y| � x+ − x−, we can use the large z expansion
of hα(z) [cf. Eq. (4.24)]. For |z| � x+ − x−, hα(z) is a slowly
varying function on the scale of x+ − x−. The leading-order
behavior in |x − y| of cα

2 (x,y) can be obtained by evaluating

hα(z′ − z) at |x − y|:

cα
2 (x,y) 
 − 1

π
(
αλ)2 1

|x − y|3 ∂ωαλ

∫ 0

−∞

dω

2π

Wαλ(ω)

(ωαλ − ω)2
,

(4.25)

where 
αλ ≡ ∫ l

−l
dx 
αλ(x). Substituting into the above the

result of Eq. (2.16), where the rate Wαλ was related to
the occupation probability nα of impurity level α, we obtain
the simple final result

cα
2 (x,y) 
 − 1

π
(
αλ)2 1

|x − y|3 ∂ωαλ
nα(ωαλ) (4.26)

for min{x,y} � x− and max{x,y} � x+.
For ωαλ not too large, i.e., not too far from the Fermi

edge threshold, the energy dependence of the correlator can
be obtained from the expression [Eq. (2.17)] for nα that we
discussed in the section on the Fermi edge singularity. This
leads to

cα
2 (x,y) ∼ (ωαλ)


2
αλ−3. (4.27)

For 
2
αλ < 3 the result diverges close to the Fermi edge

threshold. As with the rate Wαλ and the occupation probability
nα , the divergence signals a breakdown of our expansion in
γ . Understanding this regime is an open problem that we are
currently working on.
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V. PAIR-CORRELATION FUNCTION

Although it can be measured directly (see Appendix C),
the current-current correlator that we studied in the previous
section is a rather abstract quantity. In this section we therefore
relate it to another correlator, the pair-correlation function, that
has an appealingly straightforward interpretation. The pair-
correlation function is defined as

g(x,y) = 〈GS|ψ†(y)ψ†(x)ψ(x)ψ(y)|GS〉. (5.1)

It measures the likelihood of finding an electron at x together
with another electron at y. For x �= y it can also be written
as g(x,y) = 〈GS|ρ(x)ρ(y)|GS〉. Since we have j (x) = ρ(x)
outside the scattering region [see Eq. (3.1)], our result for the
current-current correlator can be used to obtain a formula for
g(x,y) away from the scatterer, namely,

g(x,y) = ρ̄2 − 1

(2π )2

1

(x − y)2
+

∑
α

cα
2 (x,y) + O(γ 4).

(5.2)

The negative sign in front of the second term is due to Fermi
statistics: Given that there is an electron at x, the likelihood of
finding another electron at nearby position y is less than for un-
correlated distinguishable particles. The term c2(x,y), as well
as the higher-order corrections, is zero if x and y refer to points
on the same side of the scatterer, i.e., if x, y < x− or x, y > x+.

For max{x; y} � x+ and min{x; y} � x−, the approximate
result of Eq. (4.26) may be used for cα

2 . The sign of cα
2 (x,y)

is determined by −∂ωnα(ω)|ω=ωαλ
. It is intuitively plausible

that the probability nα is a decreasing function of ωαλ: the
higher the excitation energy, the less likely it is to find the state
|α〉 occupied. Referring back to Eq. (2.17) in our discussion
of the Fermi edge singularity, we see that this is indeed the
case not too far from the Fermi edge threshold, provided

2

αλ < 2. Exact results for specific model interactions indicate
that nα remains a decreasing function of ωαλ also when ωαλ

is further away from the threshold or 
αλ > 2. This leads
to the conclusion that cα

2 (x,y) is always positive. Thus in
the presence of the impurity, the pair-correlation function
is larger than in the absence of the impurity. This a truly
two-particle correlation effect. It cannot be accounted for by
an increase in density around the impurity for the following
reasons. The increase in pair correlations occurs outside the
scattering region, where 〈GS|ρ(x)|GS〉 is unaffected by the
presence of the impurity. Also, the pair-correlation function
increases regardless of whether the impurity attracts or repel
electrons. Finally, for x and y on opposite sides of the scatterer
and |x − y| sufficiently larger than the size of the scattering
region, the increase in the pair-correlation function depends
on distance |x − y| rather than on the distance from x or y to
the impurity.

VI. CONCLUSIONS

We studied a model in which a dynamical quantum impurity
is coupled to a degenerate electron gas. The probability nα to
find the impurity in excited state |α〉 if the system as a whole is
in the ground state has an energy dependence [cf. Eq. (2.17)]

nα ∼ (ωαλ)

2
αλ−2, (6.1)

where ωαλ is the internal energy of impurity state |α〉 minus
the threshold energy of the Fermi edge singularity, and 
αλ

is the relative scattering phase shift that measures the strength
of the interaction between impurity state |α〉 and the Fermi gas.
The power law in Eq. (6.1) is due to the Fermi edge singularity,
a phenomenon that is usually discussed in the context of
impurity transition rates. We note that the divergence of nα

at the Fermi edge threshold for 
αλ < 2 signals a breakdown
in perturbation theory in the tunneling matrix elements γαβ of
the impurity.

Equation (6.1) establishes that the Fermi edge singularity
manifests itself in ground-state properties of the impurity. How
does it manifest itself in properties of the electron gas? We
found that, for any stationary state, the average density of the
electron gas is [cf. Eq. (3.3)]

〈ρ(x)〉 = ρ̄ −
∑

α

vα(x)

2π
nα, (6.2)

where ρ̄ is the homogeneous density in the absence of the
impurity, and vα(x) is the electrostatic potential that the
electron gas is subjected to when the impurity is in state |α〉.
This leads to a generalized Friedel sum rule [cf. Eq. (3.4)]

N = ∑

α nαδα/π for the number of particles displaced by
the impurity, where δα is the scattering phase shift associated
with vα(x). Two important points about these results are that
(1) the effect of the Fermi edge singularity is contained in
the occupation probabilities nα; and (2) the average density
is unaffected by the impurity in regions where the potentials
vα(x) are zero, i.e., outside the scattering region.

Having investigated the expectation values of single-
particle observables, the next logical step is to look at cor-
relation functions. We therefore calculated the static current-
current correlator 〈GS|δj (x)δj (y)|GS〉 to second order in the
impurity tunneling amplitudes γαβ . The zero-order result,
which is also the full answer in the case of a static impurity, is
[cf. Eq. (4.6)]

c0(x,y) = − 1

(2π )2(x − y)2
. (6.3)

We obtained an expression for the second-order correction
c2(x,y) to this result [Eq. (4.21)] that is valid for all x and
y. It is zero for x and y both to the left or both to the right
of the scattering region. Taking x and y on different sides of
the scattering region and the distance |x − y| large compared
to the size of the scattering region, we obtained the compact
formula

c2(x,y) 
 − 1

π |x − y|3
∑

α

(
αλ)2∂ωαλ
nα(ωαλ). (6.4)

Thus, current-current correlations induced by the impurity
show a slow (power-law) decay as a function of distance. These
correlations are sub-leading: at large distances, correlations
that are present also in the absence of the impurity decay
more slowly (second vs third inverse power of distance).
However, the impurity-induced correlations can be detected
by varying the impurity parameters, as this leaves the leading-
order correlations unaffected. Due to the appearance of nα in
Eq. (6.4), the impurity-induced correlations have a power-law
energy dependence ∼(ωαλ)


2
αλ−3. Thus correlations are also
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sensitive to the Fermi edge singularity. The divergence at the
Fermi edge threshold for 
2

αλ < 3 again signals the breakdown
of perturbation theory in γαλ. Understanding correlations in the
regime (
αλ)2 < 3 and ωαλ → 0 is an open problem we are
currently working on. In the regime where the Fermi edge
singularity result for nα [Eq. (6.1)] is valid, the correction
c2(x,y) is positive. We have argued that nα is always a
decreasing function of ωαλ. Thus we always expect a positive
correction c2(x,y).

Outside the scattering region, the current-current correlator
is simply related to the pair-correlation function g(x,y) =
〈GS|ρ(x)ρ(y)|GS〉 as

g(x,y) = ρ̄2 − 〈GS|δj (x)δj (y)|GS〉. (6.5)

The pair-correlation function measures the likelihood to find an
electron at x together with another electron at y. The positivity
of c2(x,y) implies that given an electron at x, the likelihood
of finding another one at y in the presence of the impurity
increases by an amount proportional to 1/|x − y|3, for x and
y on opposite sides of the scattering region, compared to when
the impurity is absent. It is important to note that the increase
occurs outside the scattering region, where the average density
of electrons is unaffected by the impurity.
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APPENDIX A: GENERALIZATION TO MANY CHANNELS
FOR A TWO-LEVEL IMPURITY

For a two-level impurity, i.e., (M = 2), the results derived
in the main text can be generalized to conductors with
an arbitrary number of chiral channels. Since a nonchiral
n-channel conductor can be thought of as a 2n-channel chiral
conductor with interchannel scattering at the impurity, this is
simultaneously a generalization to nonchiral conductors.

We generalize Hα of Eq. (2.2) to

Hα =
∫ L/2

−L/2
dx �†(x)[−i∂x + Vα(x)]�(x) + εα, (A1)

where �(x) is now a vector of annihilation operators ψa(x),
with a enumerating the channels of the multichannel conduc-
tor. We emphasize that in what is to follow, we will assume a
two-state impurity, and hence α takes on values 1 and 2. Vα(x)
is a matrix in channel space.

Note that the results we derived in the main text only depend
on the impurity potentials vα(x) through nα(ωαλ). As long as
the energy ωαλ corresponds to particle-hole excitations with
wavelengths much larger than the region in which vα(x) is
nonzero, the precise position dependence of vα(x) does not
matter. Outside the scattering region the same correlators are
obtained for all potentials that produce the same phase shift δα

and large energy scale � [cf. Eq. (2.12)]. In the multichannel
problem, we therefore assume that Vα(x) has the form

Vα(x) = Aαv(x), (A2)

where v(x) is normalized such that∫
dx v(x) = 1 (A3)

and represents a δ function, regularized to give the correct
large energy scale � in power laws associated with the Fermi
edge singularity. We note that the replacement of the actual
potential by a δ-like potential is implicit in recent work on the
Fermi edge singularity,12–17 where time-evolution operators
are replaced by scattering matrices.

The next step is to perform a unitary transformation

�(x) = U †eiA1
∫ x

−L/2 dx ′v(x ′)
�(x). (A4)

Here U is the unitary matrix in channel space that diagonalizes
A2 − A1, i.e.,∑

b

[A2 − A1]abUbc = 2π
cUac, (A5)

where 2π
c are the eigenvalues of A2 − A1. The components
of �(x) are denoted φa(x). In terms of the φ operators, the
Hamiltonians H1 and H2 are given by

Hα =
∑

a

∫ L/2

−L/2
dx φ†

a(x)[−i∂x + vaα(x)]φa(x) + εα, (A6)

with va1(x) = 0 and va2(x) = 2π
av(x). Thus we have nearly
succeeded in transforming the problem of n coupled channels
into a problem of n decoupled channels. We say “nearly”
because, strictly speaking, if �(x) obeys periodic boundary
conditions, then �(x) obeys a complicated boundary condition
that couples channels. However, this change in boundary
conditions is irrelevant in the limit L → ∞: The dynamics
of an excitation generated by the impurity is only affected
after it has had time ∼L to travel to the boundary. Thus the
expectation values of time evolution operators such as Pαβ (t)
in Eq. (4.11) are modified only for times larger than L. This
affects transition rates and ground-state correlations only for
energies ωαλ < 1/L. The only subtlety concerns the many-
particle ground-state energies of H1 and H2. These change
by a finite amount, since an infinite number of single-particle
energies contribute to them. As a result, the energy difference
ω12 between the ground state of H1 and H2 is offset from
the value it assumes for periodic boundary conditions. How-
ever, since we view ω12 as an experimentally tunable parameter
(it can be varied by varying the energy difference ε1 − ε2

between impurity levels), in terms of which our results are
stated, we do not calculate the offset explicitly. Thus, for
L → ∞, the coupled many-channel problem

H =
∑

α=1,2

Hα|α〉〈α| + γ |1〉〈2| + γ ∗|2〉〈1|, (A7)

with Hα given by Eq. (A1), is equivalent to the decoupled
problem defined by Hα given by Eq. (A6). For the latter
problem, the calculation of correlators proceeds as in the main
text, with a species of boson for each channel. The probability
n to find the impurity in the excited state (since there is only
one excited state, the index α is dropped) is

n(ω) ∼ ω
∑

a 
2
a−2 + less singular terms, (A8)
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where ω = ω21 or ω = ω12 depending on whether the ground
state of H0 has the impurity in the state |1〉 or |2〉. Current and
density operators acquire a channel index a:

ρa(x) = φ†
a(x)φa(x), (A9)

ja(x) = ρa(x) + 
av(x)|2〉〈2|. (A10)

The current-current correlator now also has channel indices

〈GS|δja(x)δjb(x)|GS〉 = δabc0(x,y) + c2ab(x,y). (A11)

Here c0(x,y) is still given by Eq. (4.6). The second order in γ

correction c2ab(x,y) is now asymptotically given by

c2ab(x,y) = − 1

π

a
b

1

|x − y|3 ∂ωn(ω). (A12)

We note that 
a
b can in principle be positive or negative for
a �= b so that interchannel correlations can occur with either
sign, in contrast to correlations in the same channel.

APPENDIX B: THE RELATION BETWEEN IMPURITY
TRANSITION RATES AND GROUND-STATE OCCUPATION

PROBABILITIES

In this Appendix we derive a relation [Eq. (2.12)] between
the ground-state occupation probability nα and the transition
rate Wαλ of the impurity. The starting point is the perturbation
expansion of Eqs. (4.7) and (4.8) for the ground state. From
these equations follow that, to second order in the γ ’s, nα , with
α �= λ, is given by

nα = lim
η→0+

|γαλ|2
∫ 0

−∞
dt

∫ 0

−∞
dt ′ eη(t+t ′)Pαλ(t − t ′). (B1)

By changing integration variables to T = (t + t ′)/2 and τ =
t − t ′, performing the T integral we then obtain

nα = lim
η→0+

|γαλ|2
2η

∫ ∞

−∞
dτ e−η|τ |Pαλ(τ ). (B2)

Substituting for |γαλ|2Pαλ(t) from Eq. (4.18) allows us to
perform the τ integral. Taking the η → 0+ limit, we obtain

nα =
∫ 0

−∞

dω

2π

Wαλ(ω)

(ωαλ − ω)2
. (B3)

APPENDIX C: MEASURABILITY OF THE
CURRENT-CURRENT CORRELATOR

We present here what we find to be conceptually the
simplest scheme to measure the current-current correlator.
Other schemes may be more general or more practical. The
Hamiltonian of Eq. (2.2) describes right-moving electrons
propagating along the real line. A straightforward realization
of such a conductor is a quantum Hall edge state. However,
another realization is a semi-infinite wire running from
x = −∞ to x = 0, containing both left- and right-moving
electrons. In this realization, the fermion creation operators

ψ†(x) and ψ†(−x) both create an electron at a position −|x|,
while the sign of x determines whether a left mover (positive
sign) or a right mover (negative sign) is created. The physically
measurable current at −|x| corresponds to the operator

J (−|x|) = j (−|x|) − j (|x|), (C1)

where j (x) is the current operator defined in Eq. (3.1). In other
words, the physically measured current equals the current of
right movers minus the current of left movers.

In spectral representation, we write J (−|x|) as

J (−|x|) =
∑
m

Jm|m〉〈m|, (C2)

where Jm and |m〉 are the many-body eigenvalues and
eigenstates of J (−|x|).

By performing current measurements at −|x| on a sufficient
number of identical systems prepared in the ground state, the
probability density

P (J ) ≡
∑
m

δ(Jm − J )|〈GS|m〉|2 (C3)

for an outcome J can approximately be determined. Given
P (J ), its second moment

M2(−|x|) ≡
∫ ∞

−∞
dJ J 2P (J ) (C4)

can be extracted. From the definitions of J (−|x|) and P (J ) it
follows that

M2(−|x|) = 〈j (|x|)2〉 + 〈j (−|x|)2〉
− 〈j (−|x|)j (|x|)〉 − 〈j (|x|)j (−|x|)〉. (C5)

In the above expression, expectation values are with respect to
the ground state.

The expectation value 〈j (x)2〉 turns out to be position
independent for x outside the range of the impurity interaction,
i.e., x �∈ l. The proof is as follows:

∂x〈j (x)2〉 = 〈∂xj (x)j (x)〉 + 〈j (x)∂xj (x)〉
= i〈[ρ(x),H ]j (x)〉 + i〈j (x)[ρ(x),H ]〉
= i〈[j (x),H ]j (x)〉 + i〈j (x)[j (x),H ]〉
= 0. (C6)

In the second line we exploited the continuity equation, while
in the third line we used the fact that ρ(x) = j (x) [cf. Eq. (3.1)]
for x �∈ l. The last line is obtained by noting that the expectation
value is with respect to |GS〉, which is an eigenstate of H .

Thus M2(−|x|) can be measured and is given by

M2(−|x|) = M + 〈j (−|x|)j (|x|)〉 + 〈j (|x|)j (−|x|)〉, (C7)

where M is independent of x. Our main result [Eq. (4.26)] then
translates into a prediction for the x-dependent part of M2:

M2(−|x|) − M = − 1

4π |x|3
∑

α

(
αλ)2∂ωαλ
nα(ωαλ). (C8)
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