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The low-temperature electrical conductance through correlated quantum dots provides a sensitive probe of the
physics (e.g., of Fermi-liquid versus non-Fermi-liquid behavior) of such systems. Here, we investigate the role
of level asymmetry (gate voltage) and local Coulomb repulsion (charging energy) on the low-temperature and
low-field scaling properties of the linear conductance of a quantum dot described by the single-level Anderson
impurity model. We use the numerical renormalization group to quantify the regime of gate voltages and charging
energies where universal Kondo scaling may be observed and also quantify the deviations from this universal
behavior with increasing gate voltage away from the Kondo regime and with decreasing charging energy. We
also compare our results with those from a recently developed method for linear and nonlinear transport, which
is based on renormalized perturbation theory using dual fermions, finding excellent agreement at particle-hole
symmetry and for all charging energies and reasonable agreement at small finite level asymmetry. Our results
could be a useful guide for detailed experiments on conductance scaling in semiconductor and molecular quantum
dots exhibiting the Kondo effect.
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I. INTRODUCTION

Artificial nanostructures, such as semiconductor quan-
tum dots,1–4 magnetic atoms adsorbed on surfaces,5–7 and
molecules attached to leads,8–12 provide new realizations
of the Kondo effect of a local spin interacting antiferro-
magnetically with conduction electrons. In contrast to their
bulk counterparts,13 these systems are also highly tunable,
for example, via application of gate voltages to modify the
energy levels of the quantum dot or molecule, or to tune the
tunnel couplings between the leads and the dot. In addition,
application of a finite transport voltage allows an experimental
investigation of the effects of strong correlations on nonequi-
librium transport through these model nanosystems, thereby
motivating also the development of new theoretical approaches
for nonequilibrium.14–26

Motivated by recent experiments on conductance scaling in
correlated quantum dots exhibiting the Kondo effect,4,12,27 we
present in this paper a detailed study of the low-temperature
and low-field scaling properties of the linear conductance
of a quantum dot described by the single-level Anderson
impurity model. Scaling in physical properties is a hallmark
of the Kondo effect.13 Thus, a Kondo model description
of a quantum dot implies that the conductance G(T ,B)
is a universal function of T/T0 and gμBB/kBT0 over all
temperatures T and magnetic fields B, with microscopic
parameters (such as the Kondo exchange J ) only entering
through the dynamically generated low-energy scale T0 (to
be defined explicitly in Sec. III), with g, μB , kB denoting
the g factor, Bohr magneton, and Boltzmann’s constant,
respectively. In particular, for T � T0 or gμBB � kBT0, the
functions G(T ,B = 0) = G(0,0)[1 − cT (T/T0)2] and G(T =
0,B) = G(0,0)[1 − cB(gμBB/kBT0)2] exhibit Fermi-liquid
corrections about the unitary conductance G(0,0) with de-

viations which are universal in the sense that the coefficients
cT = π4/16 and cB = π2/16 are independent of microscopic
details. Actual quantum dot devices, however, have a finite
charging energy, and they are more realistically described
by an Anderson model. The finite charging energy, and the
ability to change the level energy of the quantum dot with
a gate voltage, allow for charge fluctuations (even in the
“Kondo regime” of the quantum dot) and can give rise to
deviations from the expected Kondo scaling. It is therefore
of some interest to quantify the effect of increasing charge
fluctuations on the values of cT and cB . Recently, this issue
has also been addressed in Ref. 25 by using a renormalized
perturbation theory on the Keldysh contour16,28 formulated
using dual fermions.29–31 This approach, denoted henceforth
as superperturbation theory (SPT), yields both the linear and
nonlinear conductance. In this paper, we shall compare the
predictions of this theory for the linear conductance with
results obtained within the numerical renormalization group
(NRG) approach.32–34

The outline of the paper is as follows. Section II describes
the quantum dot model. Section III gives a brief description
of the calculation of the finite-temperature linear conductance
G(T ,B) of the Anderson model within the NRG following
the procedure in Ref. 35. In Sec. IV, some Fermi-liquid
results for cT and cB are given, and in Sec. V we outline
the SPT calculations of cT and cB , with which we shall
compare. In Sec. VI, we present results for the dependence
of the coefficients cT and cB on charging energy and gate
voltage (local level energy). The latter are compared with the
corresponding results from SPT. We conclude in Sec. VII with
a discussion of the relevance of our results for experiments on
quantum dots. In Appendix A, we give an alternative derivation
of the discretization scheme of Campo et al. in Ref. 36,
which we have used in the NRG calculations reported in this

165132-11098-0121/2013/87(16)/165132(13) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.165132
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paper. This derivation is carried out for an energy-dependent
hybridization function following the procedure in Refs. 34
and 37. In Appendix B, we provide details of the SPT
calculation of cB in terms of renormalized parameters. The
relation between bare and renormalized parameters, required
for comparing SPT results for cB and cT with the NRG results,
is also described in Appendix B.

II. MODEL

We consider the simplest model of a correlated quantum
dot, the single-level Anderson model given by the Hamiltonian

H =
∑

σ

εdσ ndσ − gμBB sd
z + Und↑nd↓

+
∑
kασ

εkαc
†
kασ ckασ +

∑
kασ

(tαc
†
kασ dσ + H.c.). (1)

Here, εd is the level energy, related to the gate voltage Vg in
quantum dot via εd ∼ eVg (see Fig. 1), B is a local magnetic
field acting on the quantum dot with sd

z = 1
2 (nd↑ − nd↓),

U > 0 is the Coulomb charging energy, σ labels the spin, and
α = L,R labels left and right electron lead states with kinetic
energies εkα . The couplings of the dot to the leads are denoted
by �α(ω) = πρα(ω)|tα|2, where ρα(ω) = ∑

k δ(ω − εkα) is
the density of states of lead α. For simplicity, we assume
a constant density of states ρα = NF = 1/2D with half-
bandwidth D = 1 so that �α = πNFt

2
α . By using even- and

odd-parity combinations of left and right lead states, model (1)
is reduced to a single-channel Anderson model with a resonant

FIG. 1. (Color online) A strongly correlated quantum dot with
charging energy U � � and level energy εd connected to leads via
tunnel barriers. The gate voltage Vg ∼ εd allows changing occupation
of the dot nd from nd = 1 for εd = −U/2 to nd = 0 through a mixed
valence regime with nd ≈ 0.5 for εd ≈ 0. In the singly occupied
configuration, shown here for εd ≈ −U/2, the dot has a well-defined
spin 1

2 and the Coulomb blockade excitations at εd and εd + U

correspond to removing or adding an electron. The coupling of the
spin 1

2 to the leads results in the Kondo effect, which is manifested
by the appearance of an additional many-body Kondo resonance at
the Fermi level εF = 0 at low temperatures T � T0. This resonance
is also reflected as a zero-bias anomaly in the nonlinear conductance
dI/dV in experiments (Ref. 38).

level half-width at half-maximum given by � = �L + �R .
The spectral function of the latter model is required in the
calculation of the linear conductance, which we describe next.

III. NRG CALCULATION OF CONDUCTANCE

The linear response electrical conductance G(T ,B) of (1)
is given by39,40

G(T ,B) = e2

h

∫
dω

(
− ∂f

∂ω

) ∑
σ

Tσ (ω,T ,B), (2)

where

Tσ (ω,T ,B) = 4π
�L�R

�L + �R

Aσ (ω,T ,B) (3)

is the transmission function for spin-σ electrons. It can be
calculated from the single-particle spectral function of the dot
Aσ (ω,T ,B) = −Im[Gdσ (ω + iδ)]/π, where Gdσ (ω + iδ) =
〈〈dσ ; d†

σ 〉〉 is the Fourier transform of the retarded single-particle
Green’s function of (1). In Eq. (2), e and h are the electronic
charge and Planck’s constant, respectively, and f (ω) = [1 +
exp(βω)]−1 is the Fermi function.

We use the NRG to evaluate the spectral function
Aσ (ω,T ,B) via the Lehmann representation

Aσ (ω,T ,B) = 1

Z

∑
m,n

∣∣Mσ
mn

∣∣2
(e−βEm + e−βEn )

× δ[ω − (Em − En)], (4)

where Mσ
mn are the matrix elements of the spin-σ local

d-electron operator between eigenstates |m〉 and |n〉 with
energies Em and En and Z = ∑

m exp(−βEm) is the partition
function (see Ref. 34 for details). The usual approach is
to broaden the discrete spectral function in Eq. (4) with
Gaussians or logarithmic Gaussians in order to obtain a
smooth function,34,41,42 which is then substituted into Eq. (2),
thereby yielding G(T ,B) after a numerical integration. A more
accurate procedure, introduced in Ref. 35, is to substitute the
discrete representation in Eq. (4) directly into Eq. (2), resulting
in the expression

G(T ,B) = γβ

Z

∑
σ

∑
m,n

∣∣Mσ
mn

∣∣2 1

eβEm + eβEn
, (5)

where γ = 4π e2

h
�L�R

�L+�R
. This avoids errors from numerical

integrations and from an artificial broadening of the spectral
function and has been shown to give accurate results for the
conductance.35 A similar procedure has been used in Ref. 43
to extract cT for the symmetric Anderson model to within
5% accuracy. This uses a full density matrix evaluation of the
spectral function43,44 within the complete basis set45 and is
computationally more intensive than the approach which we
use here, whose computational complexity is comparable to
that of evaluating a local static correlation function.

For the remainder of this paper, we shall set the g factor g,
Bohr magneton μB , Planck’s constant h, electric charge e, and
Boltzmanns constant kB to unity, and also assume symmetric
coupling to the leads (�L = �R = �/2, γ = π�). A finite
asymmetry �L 
= �R only influences the value of G(0,0), but
not our results for cB and cT . Note that in experiments on
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FIG. 2. (Color online) Linear conductance G(T ) versus T/T s
0

for U/� = 16 and several values of εd = −U/2, 0, + U/2 using
the approach of Ref. 35, with T s

0 defined by Eqs. (6) and (7). We
also indicate with horizontal and vertical dashed lines the extraction
of the experimental Kondo scale T

expt
K from the mid-valley Kondo

conductance (i.e., that for εd = −U/2) via G(T = T
expt

K ) = G(0)/2.
NRG parameters were for � = 4, with an energy cutoff ec(� = 4) =
30 and nz = 2.

quantum dots,1,4 the extracted full width at half maximum of
the Coulomb blockade peaks is given by � = 2�.

In evaluating Eq. (5), we used z averaging46 within the
band discretization scheme of Ref. 36 (see Appendix A). A
discretization parameter of � = 4 with nz = 2 values for the
z averaging was used and the cutoff for the rescaled energies
at each NRG iteration was set to ec(� = 4) = 30. Figure 2
shows typical examples for G(T ) versus T/T0 at B = 0 for
a strongly correlated quantum dot (U/� = 16 � 1) in the
Kondo (εd = −U/2), mixed valence (εd = 0), and empty
orbital (εd = U � �) regimes. The scale T0 is defined from
the T = 0 susceptibility of the Anderson model (1)

χ (0) = 1/4T0 (6)

for all U and εd . For the case of particle-hole symmetry
(εd = −U/2) and strong correlations U � π�, one also has
from the Bethe ansatz solution for χ (0) an analytic expression
for T0,

T0(εd = −U/2) ≡ T
(s)

0 ≈
√

U�/2e−πU/8�+π�/2U , (7)

within corrections which are exponentially small in U/π�

(see Ref. 13).
The Kondo scale T0 is useful in analytic calculations of

cT and cB about the Fermi-liquid fixed point at T = 0, such
as those in Sec. IV. With this definition, the meaning of the
coefficients cT and cB is fixed by

G(T ,B = 0)

G(0,0)
= 1 − cT

(
T

T0

)2

(T � T0), (8)

G(T = 0,B)

G(0,0)
= 1 − cB

(
B

T0

)2

(B � T0). (9)

In extracting cB , we do not use Eq. (9), but instead use the
Fermi-liquid result in Eq. (17) of Sec. IV. This allows cB

to be obtained directly from the T = 0 occupancy of the
d level, a quantity that can be calculated to high accuracy

TABLE I. Optimal temperature range for fitting the conductance
G(T ,0) to the Fermi-liquid form f (T/T0) = a[1 − cT (T/T0)2] for
U/� = 12 and εd = −U/2 using a goodness of fit based on the

value of R2. The latter is defined by R2 = 1 −
∑n

i=1[yi−f (xi )]2∑n
i=1(yi−〈y〉)2 , where

xi = Ti/T0, yi = G(Ti,0), 〈y〉 = 1
n

∑n

i=1 yi and the number of data
points in the fitting ranges was n ≈ 200. The value R2 = 1 would
correspond to a perfect fit to the Fermi-liquid form. The % error in
cT in the last column is defined by % error = 100 · | cT −cT ,exact

cT ,exact
| where

cT,exact is the exact value at particle-hole symmetry given by Eq. (15).
From this table, we see that the optimal range which maximizes R2

and the accuracy of cT is close to T � 0.02T0. The NRG calculations
used � = 4, nz = 2, and an energy cutoff ec(�) = 30.

Fitting range R2 cT % error

10−5T0 � T � T0 0.818 0.7447 87
10−5T0 � T � 0.1T0 0.9969 5.1277 16
10−5T0 � T � 0.05T0 0.99965 5.8002 4.7
10−5T0 � T � 0.02T0 0.999980 6.0820 0.086
10−5T0 � T � 0.01T0 0.9999894 6.1459 0.96
10−5T0 � T � 0.005T0 0.99985 6.1468 0.98
10−5T0 � T � 0.001T0 0.9381 6.2034 1.91

within the NRG. The coefficient cT is extracted numerically by
fitting G(T ,0) in the range 10−5T0 � T � 2 × 10−2T0 to the
Fermi-liquid form in Eq. (8) with T0 as defined in Eq. (6). The
range T � 0.02T0 was found optimal for this purpose, as we
now describe.47 Specifically, we fit the NRG results for G(T ,0)
in the above range to f (x) = a(1 − cT x2) where x = T/T0.
We find that a = 2 ± 10−5 at the particle-hole-symmetric
point, with a = 2 (in units of e2/h) being the exact result
from the Friedel sum rule. The effect of the fitting range on the
accuracy of the extracted cT and the degree of confidence in
the Fermi-liquid form f (x) = a(1 − cT x2) may be ascertained
quantitatively by calculating the R-squared coefficient R2 (also
called the coefficient of determination and defined in Table I).
Table I lists R2 together with the extracted cT and the %
error in cT for different fitting ranges. We see that the range
10−5T0 � T � 0.02T0 is close to maximizing both R2 and the
accuracy of cT [as compared to the exact result in Eq. (15)
of Sec. IV]. We therefore used this range throughout, also
for the asymmetric cases. Care is needed in the choice of the
cutoff ec(�) in order to obtain correct results for G(T ) in the
low-temperature limit when using Eq. (5). If ec(�) is chosen
to be too small, the correct saturation behavior of G(T ,0)
in the low-temperature limit (i.e., the “leveling off” of the
conductance) is not obtained. In this case, a fit of G(T ,0) to
f (T/T0) shows a drop in R2 to small values, indicating a
problem. This is remedied by increasing ec(�) [the used value
ec(� = 4) = 30 was sufficient, whereas ec(� = 4) = 12, for
example, is not]. Thus, the R2 criterion can be a useful check on
appropriate choices of cutoff when evaluating the conductance
via Eq. (5).

In experiments on Kondo-correlated quantum dots, T0 is
not measurable, and instead one extracts a Kondo scale T

expt
K

from the temperature dependence of the B = 0 conductance
via

G
(
T = T

expt
K

) = G(0)/2. (10)
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In principle, this T
expt

K can be extracted for each gate voltage
(i.e., for each εd ), but in practice, it is usually extracted only at
mid-valley (εd = −U/2) where one is sure to be in the Kondo
regime for large U/�. This is illustrated in Fig. 2 by the dashed
lines.

With this definition of T
expt

K , one extracts the experimentally
measured coefficients c

expt
T and c

expt
B via

G(T ,B = 0)

G(0,0)
= 1 − c

expt
T

(
T

T
expt

K

)2 (
T � T

exp
K

)
, (11)

G(T = 0,B)

G(0,0)
= 1 − c

expt
B

(
B

T
expt

K

)2 (
B � T

exp
K

)
. (12)

For the particle-hole-symmetric Anderson model, the coeffi-
cients c

expt
T and c

expt
B are related to cT and cB via

c
expt
T = cT

(
T

expt
K

T
(s)

0

)2

, (13)

c
expt
B = cB

(
T

expt
K

T
(s)

0

)2

. (14)

For a precise translation of theoretical calculations of cB and
cT in terms of T0, into experimentally measured ones in terms
of T

expt
K , one therefore requires the ratio T

expt
K /T s

0 at mid-valley
for all charging energies (U/�), which we supply in Sec. VI.

IV. FERMI-LIQUID RESULTS FOR G(T,B)

For the case of particle-hole symmetry, the coefficient cT

is known for arbitrary U/� within renormalized perturbation
theory about the Fermi-liquid fixed point.48 The expression is
given by

cT = π4

12

1 + 2(R − 1)2

R2
, (15)

where R is the Wilson ratio [defined in Eq. (B24)]. In the limit
of strong correlations U/� � 1, the Wilson ratio approaches
2 and cT takes the well-known universal Kondo value cT =
π4/16 (see Refs. 49 and 50). In the opposite limit U/� → 0,
the Wilson ratio tends to 1 and cT acquires the value π4/12.
Evaluation of Eq. (15) for general U/� requires knowledge
of R, either from Bethe ansatz or from NRG.

Fermi-liquid theory allows an exact analytic expression
for cB to be obtained for all U and εd . For this purpose,
we use the Friedel sum rule Aσ (0,B) = sin2[πndσ (B)]/π�,
where ndσ (B) is the spin-σ local level occupancy in a small
finite magnetic field B � T0 at T = 0. Using ndσ (B) =
nd/2 + σαB, where nd is the total occupancy at B = 0, and
the fact that α = 1

2
nd↑(B)−nd↓(B)

B
= χ (0) we easily find the exact

result (correct to order B2)

G(0,B)

G(0,0)
= 1 − π2χ2(0)B2

[
1 − cot2

(
πnd

2

)]

= 1 − cB

(
B

T0

)2

, (16)

cB = π2

16

[
1 − cot2

(
πnd

2

)]
, (17)

where χ (0) = 1/4T0 has been used. Note that at the particle-
hole-symmetric point (εd = −U/2), where nd = 1, cB takes
the universal Kondo value π2/16 for all U .51 This universal
result [obtained also within SPT, see Eq. (19)] could be tested
in semiconductor quantum dots that can be tuned through
complete valleys. It would then acquire the value π2/16 at
mid-valley for any valley. The expression in Eq. (17) also
shows that cB decreases monotonically with increasing gate
voltage away from mid-valley, with cB becoming negative on
entering the mixed valence regime (which we define by the
average occupation being nd = 0.5).

V. SPT CALCULATION

The SPT approach25 is based on a renormalized per-
turbation theory on the Keldysh contour16,28 using dual
fermions.29–31 This approach can be shown to be current
conserving by construction25 even in the nonlinear response
regime, as opposed to finite-order perturbation theory in the
bare parameters.52 We compare the results of this theory for
the linear conductance with NRG calculations. The reference
system is the interacting particle-hole-symmetric Anderson
model characterized by the renormalized Coulomb interaction
ũ = z�0/π�, where z is the wave-function renormalization
constant, and �0(U ) ≡ �↑,↓;↓,↑(0,0; 0,0) the four-point vertex.
In order to obtain results for the asymmetric model, an expan-
sion in ε̃d ≡ z(εd + U/2)/z� = (εd + U/2)/� is carried out
for the local level Green’s function up to a given order in ε̃d and
ũ, currently up to order ũ2ε̃2

d . As z → 0 with increasing U/�

such that in the symmetric case ũ → 1, it follows that ũ2ε̃2
d

increases with growing U/� at fixed εd/�. An outline of the
method is presented in Appendix B, with full details available
in the Supplemental Material of Ref. 25. The expression for
cT , given in Ref. 25, and that for cB , derived in Appendix B,
are given by

c′
T = π4

12

1 + 2ũ2 + (1 − ũ)(5ũ − 3)ε̃2
d

(1 + ũ)2
[
1 + (1 − ũ)2ε̃2

d

]2 , (18)

c′
B = π2

16

1 − 3(1 − ũ)2ε̃2
d[

1 + (1 − ũ)2ε̃2
d

]2 , (19)

where the apostrophe on these indicates that they are evaluated
by using the susceptibility Kondo scale of the reference system
(symmetric Anderson model), i.e., c′

T ,c′
B are defined via

G(T ,B = 0)

G(0,0)
= 1 − c′

T

(
T

T
(s)

0

)2 (
T � T s

0

)
, (20)

G(T = 0,B)

G(0,0)
= 1 − c′

B

(
B

T
(s)

0

)2 (
B � T s

0

)
, (21)

where T
(s)

0 = 1/4χ (0) is the susceptibility Kondo scale
for the symmetric model and is given explicitly within
SPT by Eq. (B18). In order to compare the above results
with those from NRG, we need to relate the renormalized
Coulomb interaction ũ, appearing in the former, to the bare
Coulomb interaction U , appearing in the latter. As outlined in
Appendix B, from Eq. (B25) this relation is given by ũ =
R − 1 for the symmetric Anderson model, where the Wilson
ratio R is calculated for given U/� from the exact Bethe
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ansatz expressions for the susceptibility and specific heat53 of
the fully interacting symmetric Anderson model.54 Notice that
upon substituting ũ = R − 1 into the SPT expression (18), for
the particle-hole symmetric limit ε̃d = 0, it reduces to the exact
Fermi-liquid result (15).

VI. RESULTS

A. Symmetric case (εd = −U/2)

Figure 3 shows cT versus U for the symmetric model, both
in terms of the scale T0(εd = −U/2) ≡ T

(s)
0 and in terms of the

Kondo scale from the conductance T
expt

K (i.e., c
expt
T , discussed

below). The former is compared with the corresponding SPT
prediction in Eq. (18) and we see very good agreement between
this and the NRG calculations for all U/�. For U/� � 6,
the value of cT remains within 2% of the the universal
Kondo value cT = π4/16 = 6.088. The value U/� = π ≈ 3
separates the weakly correlated (U/π� < 1) from the strongly
correlated regime (U/π� > 1).13 We see that in the mod-
erately correlated regime 6 � U/� � 1, the deviation cT

from the Kondo value increases, eventually reaching 7%
at U/� ≈ 3. For weakly correlated (non-Kondo) quantum
dots with U/π� � 1, cT first decreases with decreasing U ,
reaches a minimum at U/� ≈ 1.7, and then increases to its
noninteracting value of π4/12 ≈ 8.117 at U = 0. Note that
this latter value differs by more than 30% from the Kondo
value at U � �.

In Fig. 3(a), we show the ratio T
expt

K /T
(s)

0 versus U . This
ratio allows obtaining c

expt
T from Eq. (13), the coefficient

measured in experiments, and which we show in Fig. 3.
Note the very different behavior between c

expt
T and cT for

charging energies U/� � 5. This is due to the strong de-
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FIG. 3. (Color online) cT vs U/� for the symmetric Anderson
model calculated within NRG (solid lines with symbols) and SPT
(dashed line). Filled circles show cT using the susceptibility scale
T

(s)
0 , while filled squares show cT upon using the scale from the

conductance T
expt

K . By comparing the value of cT at U/� � 1 with
the exact one cT = π 4/16 ≈ 6.088, we estimate the relative error
in the NRG calculation of cT to lie below 0.2%, considerably more
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T

expt
K /T

(s)
0 vs U/�. For U/� � 1, the ratio T

expt
K /T

(s)
0 approaches

1.04. NRG parameters were for � = 4 with an energy cutoff
ec(� = 4) = 30 and nz = 2.

0 5 10 15 20
U[Δ]

0.2

0.4

0.6

0.8

1

c B

cB        (NRG)

cB
expt

   (NRG)

cB         (SPT)

FIG. 4. (Color online) cB (filled circles) and c
expt
B (filled squares)

vs U/� for the symmetric Anderson model calculated within NRG
parameters were for � = 4 with an energy cutoff ec(� = 4) = 30
and nz = 2. SPT (dashed curve) also recovers the value cB = π 2/16
for particle-hole symmetry.

pendence of T
expt

K /T
(s)

0 on U/� in this range of charging
energies. In particlular, c

expt
T acquires a maximum value of ≈

8.75 at U/� ≈ 3.5. Since T
expt

K /T
(s)

0 ≈ 1.041 for U/� � 10
[Fig. 3(a)], c

expt
T ≈ 6.58 for strongly correlated quantum dots

in the Kondo regime.55 In contrast, for U/� � 10, the scale
T

expt
K differs appreciably from T

(s)
0 . Thus, even for nominally

Kondo-correlated quantum dots with U/� ≈ 4.5, such as
those in Ref. 4, one finds from Fig. 3(a) that T expt

K /T
(s)

0 ≈ 1.18,
so one should expect c

expt
T ≈ 7.5, which is somewhat larger

than the extracted value c
expt
T ≈ 5.6 ± 1.2.4

As discussed in Sec. IV, cB is independent of the charging
energy U for the particle-hole-symmetric case, where it takes
the value π2/16 ≈ 0.617, which is also recovered exactly
within SPT [see Eq. (19)]. However, experiments use the
scale T

expt
K and measure c

expt
B as given by Eq. (14). This

depends on U through the ratio of Kondo scales T
expt

K /T
(s)

0 .
For completeness, we therefore show the U dependence of
c

expt
B in Fig. 4. For U/� ≈ 4.5, relevant for the experiments in

Ref. 4, we find c
expt
B ≈ 0.89 significantly smaller than the value

c
expt
B ≈ 5.1 extracted from the measurements. As discussed in

that paper, the large discrepancy between the measured and
predicted values of c

expt
B could indicate the importance of the

large spin-orbit interaction present in the InAs quantum dots
investigated in Ref. 4.

B. Asymmetric case (εd > −U/2)

1. NRG results

For completeness, we show the dependence of cT on εd

for εd � −U/2 for U ranging from weakly (U/� � 1) to
strongly (U/� � 1) correlated quantum dots in Fig. 5. For
strong correlations U/� � 1, cT decreases monotonically
with increasing deviations from the Kondo regime, eventually
becoming negative after the mixed valence regime is reached.
A similar behavior is seen in the local level dependence of
cB , shown in Fig. 6. In Fig. 6(a), we show the ratio cT /cB

versus εd/� for selected U/� which approaches the value
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FIG. 5. (Color online) cT vs εd (in intervals of 0.5�) with εd �
−U/2 for several U/�, ranging from strong U � � to weak U � �

correlations, and using the scale T0. NRG parameters were for � = 4
with an energy cutoff ec(� = 4) = 30 and nz = 2.

π2 at particle-hole symmetry and U/� � 1. Notice that for
correlated quantum dots in the Kondo regime, cT /cB decreases
monotonically with increasing deviation from particle-hole
symmetry. Since cT /cB is independent of the definition of
Kondo scale used, it could be a useful quantity to quantify
the degree of correlations in a quantum dot (U/�) and the
degree of departure from particle-hole symmetry for specific
gate voltages.

2. Comparison with SPT

Figure 7 compares SPT results for the local level depen-
dence of c′

T , as defined in Eqs. (18) and (20), with correspond-
ingly defined quantities in NRG. Figure 8 shows a similar
comparison for the quantity c′

B defined in Eqs. (19) and (21).
We see in both cases that agreement between NRG and SPT
holds for ε̃d ≡ (εd + U/2)/� � 0.25, which is consistent with
the SPT calculations carried out to order ũ2ε̃2

d . For larger
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(a)

FIG. 6. (Color online) cB vs εd (in intervals of 0.5�) with εd �
−U/2 for several U/�, ranging from strong U � � to weak U � �

correlations, and using the scale T0. NRG parameters were for � = 4
with an energy cutoff ec(� = 4) = 30 and nz = 2. Inset (a) shows
cT /cB vs εd/� for selected U/�. The dashed line is a guide to the
eye and represents the universal Kondo value cT /cB = π 2 reached in
the limit U/� → ∞ and particle-hole symmetry.
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FIG. 7. (Color online) c′
T vs εd/� for several U/� calculated

within NRG (symbols) and SPT (lines). Legend: column one U/�,
column two ũ. c′

T is defined in Eq. (18) using the Kondo scale in
Eq. (20), and the corresponding NRG result uses the same Kondo
scale for the purposes of this comparison. NRG parameters were for
� = 4 with an energy cutoff ec(� = 4) = 30 and nz = 2.

deviations from the symmetric point and with increasing
Coulomb interactions, we see an increasing deviation of the
SPT results from the NRG calculations. In contrast to the NRG
calculation, we also see that the SPT result for c′

T ceases to
decrease monotonically with ε̃d for U/� � 3 (corresponding
to a renormalized Coulomb interaction ũ � 0.76). On the other
hand, the SPT result for c′

B decreases monotonically with
increasing ε̃d as in the corresponding NRG result. Although we
show comparisons also in the region ε̃d � 1, by construction
the SPT calculation is perturbative in ε̃d and agreement can
only be expected in the limit ε̃d � 1, which we find. We also
expect that the range of agreement between NRG and SPT
in both ũ and ε̃d can be increased by going to higher order
(see discussion at the end of Appendix B 4), however, this lies
beyond the scope of this paper.

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
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2.0 (0.576)
3.0 (0.761)

FIG. 8. (Color online) cB vs εd/� for several U/� calculated
within NRG (symbols) and SPT (lines). Legend: column one U/�,
column two ũ. c′

B is defined in Eq. (19) using the Kondo scale in
Eq. (21), and the corresponding NRG result uses the same Kondo
scale for the purposes of this comparison. NRG parameters were for
� = 4 with an energy cutoff ec(� = 4) = 30 and nz = 2.

165132-6



CONDUCTANCE SCALING IN KONDO-CORRELATED . . . PHYSICAL REVIEW B 87, 165132 (2013)

VII. CONCLUSIONS

In this paper, we investigated deviations from the universal
Kondo scaling in the linear conductance of a correlated quan-
tum dot due to a finite level asymmetry (i.e., deviation of gate
voltage from mid-valley) and a finite local Coulomb repulsion
(i.e., finite charging energy). In particular, we determined the
behavior of the coefficients cT and cB as a function of εd and
U within NRG and compared these with results from SPT,25

finding good agreement for all U at the symmetric point and
reasonable agreement for ε̃d = (εd + U/2)/� � 0.25 away
from the symmetric point. Both cT and cB are monotonically
decreasing functions of the deviation ε̃d from the symmetric
point ε̃d = 0 for all U , and an exact Fermi-liquid expression
for cB has been given which is valid for any U and εd . In
particular, the coefficients cT and cB become negative on
entering the mixed valence regime, signaling the onset of
thermally activated transport which becomes pronounced in
the empty orbital limit nd ≈ 0.

For the mid-valley conductance, we also determined the
ratio of the conductance to susceptibility Kondo scales
T

expt
K /T

(s)
0 , allowing us to relate our results for cT and cB

in terms of T
(s)

0 to the measured coefficients c
expt
T and c

expt
B in

terms of T
expt

K . While for quantum dots with U/� � 6, the
difference between the two sets of coefficients is a constant
factor of order unity [e.g., c

expt
T ,B/cT,B = (T expt

K /T
(s)

0 )2 ≈ 1.08
for U/� � 6], for quantum dots with U/� � 6 this difference
becomes significant and should be carefully taken into account
in detailed comparisons of theory with experiment. We expect
this to be particularly important for semiconducting quantum
dots since U/� is tunable to smaller values in these systems.
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APPENDIX A: ALTERNATIVE DERIVATION
OF THE CAMPO DISCRETIZATION

In this Appendix, we give a derivation of the discretization
scheme of Ref. 36, following the procedure for general energy-
dependent hybridization functions of Bulla et al. in Refs. 34
and 37, which has been used for the NRG calculations of the
conductance in this paper.

We start with the single-channel Anderson impurity model,
given by

H = Himp +
∑
k,σ

εk,σ c
†
k,σ ck,σ +

∑
k,σ

Vk(f †
σ ck,σ + c

†
k,σ fσ ),

which may be written in the energy representation as37

H = Himp +
∑

σ

∫ D+

−D−
h(ε)(f †

σ aε,σ + a†
ε,σ fσ )dε

+
∑

σ

∫ D+

−D−
g(ε)a†

ε,σ aε,σ dε. (A1)

Here, aε,σ and a
†
ε′,σ ′ obey the standard anticommutation rela-

tions {aε,σ ,a
†
ε′,σ ′ } = δσ,σ ′δ(ε − ε′), g(ε) is the dispersion, h(ε)

is the hybridization amplitude, and ±D± are the upper/lower
conduction electron band edges. The model (A1) is character-
ized by the hybridization function �(ω) = ∑

k |Vk|2δ(ω − εk).
As shown in Ref. 37, its energy dependence may be distributed
arbitrarily over the functions g(ε) and h(ε), as long as the
following condition is satisfied:

�(ω) = π
dε(ω)

dω
h[ε(ω)]2, (A2)

where ε(ω) is the inverse function of the dispersion g(ε), i.e.,

g[ε(ω)] = ω.

Our starting point is the observation by Campo et al.36

that a linear discretization of the conduction band with a
Fourier basis in the discrete intervals leads to a correct estimate
for �(ω), whereas a Fourier decomposition on a logarithmic
scale as suggested by Krishna-Murthy et al. in Ref. 33
systematically underestimates �(ω) [or equivalently the con-
duction electron density of states ρ(ω) since �(ω) = πρ(ω)V 2

for a constant hybridization matrix element Vk = V ]. This
underestimation results in an effective hybridization function
�̃(ω) = �(ω)/A� where the factor A� = ln �

2
1+�−1

1−�−1 > 1 is
due the discretization and � > 1 is the band discretization
parameter.56 While this effect may be corrected “manually” for
each �, it is clearly advantageous to have a built-in procedure
within the NRG that does this automatically. Campo et al.
accomplished this within a logarithmic discretization scheme
by using a Fourier decomposition in terms of nonorthogonal
basis functions. As in the case of the linear grid, this correctly
estimated �(ω). Motivated by this, we provide here an alter-
native derivation of this discretization scheme following the
procedure of Bulla et al. in Refs. 34 and 37 for general �(ω).

We consider the following set of orthonormal Fourier
functions in each interval of a linear grid:

ψn,p(η) =
{
e−2πipη, if η ∈ [n,n + 1], n = −1,0,1, . . .

0, otherwise.

The inverse functions are given by �n,p(η) = ψ∗
n,p(η) fulfilling

the usual orthonormality condition∫ ∞

−∞
ψn,p(η)�n′,p′ (η)dη = δn,n′δp,p′ . (A3)

We will transform this relation to a logarithmic grid such
that [n,n + 1] will be transformed to D+[�−n−z−1,�−n−z]
for n = 0,1, . . . . The first interval [−1,0] is special and
transforms to the first logarithmic interval containing the band
edge, i.e., to D+[�−z,1]. One possible choice, the obvious
one, is ε = D+�−η−z ↔ η(ε) = − ln |ε/D+|/ ln � − z,n =
0,1, . . . (ε = D+�−z(η+1), n = −1), but other choices are
possible for defining the transformation between linear and
logarithmic grids [and hence η(ε)].57 Thus, for n = 0,1, . . .,
we have58∫ ∞

0

1

|ε| ln �
ψn,p

(
−

ln |ε|
D+

ln �
− z

)
︸ ︷︷ ︸

=φ+
n,p(ε)/c+

n

�n′,p′

(
−

ln |ε|
D+

ln �
− z

)
︸ ︷︷ ︸

=c+
n ·�+

n′ ,p′ (ε)

dε

= δn,n′δp,p′ . (A4)
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For the expansion of the negative part of the band, we use
ε = −D−�−η−z and do not reverse the integration boundaries
yielding the same function inside the integration∫ 0

−∞

1

|ε| ln �
ψn,p

(
−

ln |ε|
D−

ln �
− z

)
︸ ︷︷ ︸

=φ−
n,p(ε)/c−

n

�n′,p′

(
−

ln |ε|
D−

ln �
− z

)
︸ ︷︷ ︸

=c−
n ·�−

n′ ,p′ (ε)

dε

= δn,n′δp,p′ . (A5)

The normalization factor c±
n can be distributed freely between

the new basis φ±
n,p and its inverse �±

n,p. aε,σ is expressed in
terms of the new basis

aε,σ =
∑
n,p

an,p,σ φ+
n,p(ε) + bn,p,σ φ−

n,p(ε),

where

an,p,σ =
∫ +n

aε,σ�+
n,p(ε)dε, bn,p,σ =

∫ −n

bε,σ�−
n,p(ε)dε,

where we defined∫ +n

=
∫ D+�−n−z

D+�−n−z−1
,

∫ −n

=
∫ −D−�−n−z−1

−D−�−n−z

.

Evaluating the anticommutator {an,p,σ ,a
†
n′,p′,σ ′ } we find

{an,p,σ ,a
†
n′,p′,σ ′ }

=
∫ +n

aε,σ�+
n,p(ε)dε

∫ +n′

a
†
ε′,σ ′�

+
n′,p′

∗
(ε′)dε′

+
∫ +n′

a
†
ε′,σ ′�

+
n′,p′

∗
(ε′)dε

∫ +n

aε,σ�+
n,p(ε)dε

= δn,n′

∫ +n ∫ +n

[aε,σ ,a
†
ε′,σ ′]�+

n,p(ε)�+
n,p′

∗
(ε′)dε dε′

= δn,n′δσ,σ ′

∫ +n

�+
n,p(ε)�+

n,p′
∗
(ε)dε

= δn,n′δσ,σ ′

∫ +n 1

|c+
n |2 e

2πi(p−p′)
( ln |ε|

D±
ln �

+z

)
with an analogous expression for {bn,p,σ ,b

†
n′,p′,σ ′ }. Setting

{an,p,σ ,a
†
n,p,σ } = {bn,p,σ ,b

†
n,p,σ } = 1 fixes the constants c±

n in
Eqs. (A4) and (A5), leading to

|c±
n |2 = D±�−n−z(1 − �−1) = d±

n

[= D±(1 − �−z) for n = −1]

and

{an,p,σ ,a
†
n′,p′,σ ′ } = δn,n′δσ,σ ′

{
1, if p = p′

ln �
2πi(p−p′)+ln �

, otherwise

with an analogous expression for {bn,p,σ ,b
†
n′,p′,σ ′ }. Thus, only

for the continuum limit � → 1 is the above an orthonormal
basis for all p,p′.36 However, as we show in the following,
an approximate discretized Hamiltonian can be formulated in
terms of the orthonormal subset of p = 0 states only, within
which the NRG calculation is carried out. We show that for
general �(ω), (i) only p = 0 states couple to the impurity,
and (ii) off-diagonal terms in p,p′ can always be eliminated
from the Hamiltonian by a suitable choice of the function

η(ε) relating the linear to the logarithmic discretization ε =
±D±�−η(ε)−z.

With the new basis functions, we follow the derivation of
Bulla et al. in Ref. 34, reformulating first the hybridization
part of Eq. (A1):∫ D+

−D−
h(ε)aε,σ dε =

∑
n,p

an,p,σ

∫ +n

h(ε)φ+
n,p(ε)dε

+
∑
n,p

bn,p,σ

∫ −n

h(ε)φ−
n,p(ε)dε.

The requirement that the hybridization only couples to the
p = 0 terms can be satisfied by choosing h(ε) ∝ �±

n,0(ε) =
1√
dn

, which by Eqs. (A4) and (A5) implies that p 
= 0 do not
hybridize. Therefore, we can choose the same h(ε) as in Ref. 34
(i.e., a step function in the discrete intervals):

h(ε)2 ≡ h±
n

2 = 1

d±
n

∫ ±n 1

π
�(ω)dω (A6)

for D±�−n−z < ±ε < D±�−n−1−z. This choice guarantees
that ε(±D±�−n−z) = ±D±�−n−z [proved by using Eqs. (A2)
and (A6)] and that the dispersion is linear at the grid
points g(±D±�−n−z) = ±D±�−n−z. The first part of the
hybridization may be written as

∑
σ

∫ +D+

−D−
h(ε)f †

σ aε,σ dε = 1√
π

∑
n

f †
σ (γ +

n an,0,σ + γ −
n bn,0,σ )

≡
√

ξ0

π

∑
σ

f †
σ f0σ ,

where γ ±
n

2 = ∫ ±n
�(ω)dω, and the conduction electron

Wannier orbital at the impurity site is defined as f0σ =
1√
ξ0

∑
n γ +

n an,0,σ + γ −
n bn,0,σ , with ξ0 = ∑

n(γ +
n )2 + (γ −

n )2.

Next, we reformulate the conduction electron kinetic energy
term∫ D+

−D−
g(ε)a†

ε,σ aε,σ dε

=
∑

n

∑
p,p′

a†
n,p,σ an,p′,σ

∫ +n

g(ε)φ+
n,p(ε)φ+

n,p′
∗
(ε)dε

+ b†n,p,σ bn,p′,σ

∫ −n

g(ε)φ−
n,p(ε)φ−

n,p′
∗
(ε)dε

=
∑

n

∑
p,p′

a†
n,p,σ an,p′,σ ξ+

n,p,p′ + b†n,p,σ bn,p′,σ ξ−
n,p,p′ ,

ξ±
n,p,p′ =

∫ ±n

g(ε)φ±
n,p(ε)φ±

n,p′
∗
(ε)dε

=
∫ ±n

ω�(ω)
1

πh(ε)2
φ±

n,p(ε)φ±
n,p′

∗
(ε)dω

=
∫ ±n

ω�(ω)d±
n φ±

n,p[ε(ω)]φ±
n,p′

∗
[ε(ω)]dω∫ ±n

�(ω)dω

=
∫ ±n ω�(ω)d±

n
2

[|ε(ω)| ln �]2 e2πi(p−p′)
( ln |ε(ω)|

D±
ln �

+z

)
dω∫ ±n

�(ω)dω
.
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For �(ω) = �0, we obtain ε(ω) = ω and only ξ±
n,p=p′ = ± d±

n

ln �

are unequal to zero and agree with the result of Campo and
Oliveira. Thus, the impurity, which by construction couples
only to the p = 0 state via the hybridization term, is completely
decoupled from the p 
= 0 states. We now show that the same
can be achieved for a general �(ω) by a suitable choice of
η(ε).

Following the same derivation as above, but substituting

η(ε) =
∫ ε

k
(2)
n

k(1)
n

g(ε′)
dε′ (A7)

in Eq. (A3) leads to diagonal ξn,p,p′ for an arbitrary
�(ω). k(1)

n and k(2)
n are given by the boundary conditions∫ ±D±�−n−z

k
(2)
n

k
(1)
n

g(ε′)dε = n and
∫ ±D±�−n−z−1

k
(2)
n

k
(1)
n

g(ε′)dε = n + 1. c±
n

and γ ±
n remain unchanged, but

ξ±
n,p,p′ =

∫ ±n

g(ε)φ±
n,p(ε)φ±

n,p′
∗
(ε)dε

=
∫ ±n d±

n k(1)
n

2

g(ε)
e

2πi(p−p′)
∫ ε

k
(2)
n

k
(1)
n

g(ε′ ) dε′
dε

= ∓k(1)
n d±

n δp,p′ .

k(1)
n can be obtained by taking the difference of the boundary

conditions (as defined above), and using ε(±D±�−n−z) =
±D±�−n−z and Eq. (A2),

k(1)
n =

∫ ±n
�(ω)dω

∓d±
n

∫ ±n �(ω)
ω

dω
.

As in Ref. 36, the resulting ξ±
n,p=p′ ≡ ξ±

n,p=p′ (C) are given by59

ξ±
n,p=p′ (C) =

∫ ±n
�(ω)dω∫ ±n �(ω)

ω
dω

. (A8)

The corresponding result, denoted by ξ±
n,p=p′ = ξ±

n,p=p′ (B), in
the usual logarithmic discretization scheme is given by37,60

ξ±
n,p=p′ (B) =

∫ ±n
ω�(ω)dω∫ ±n
�(ω)dω

. (A9)

Evaluating (A8) and (A9) for a flat band with D+ = D− = 1
gives

ξ±
n,p=p′ (C) = ± 1

2 (1 + �−1)�−n−z/A�, n = 0,1, . . .

ξ±
n,p=p′ (C) = ± 1

2 (1 + (�z)−1)/A�z, n = −1

ξ±
n,p=p′ (B) = ± 1

2 (1 + �−1)�−n−z, n = 0,1, . . .

ξ±
n,p=p′ (B) = ± 1

2 [1 + (�z)−1], n = −1.

We see that ξ±
n,p=p′ (B)/ξ±

n,p=p′ (C) is given by the factor A�

(A�z for n = −1), indicating that the Campo discretization
achieves the correct estimate for �(ω) via a reduction of the
effective bandwidth of the discretized model. For energies
close to the band edge, where the Campo discretization gives
a different correction to the desired one (A�z instead of A�),
further corrections are needed.61

APPENDIX B: SPT CALCULATION OF cB

We describe the system by the single-impurity Anderson
Hamiltonian Ĥ = Ĥc + Ĥd + Ĥd−c, where we defined

Ĥc =
∑

λ=L,R

∑
k,σ

εkλĉ
†
kλσ ĉkλσ ,

Ĥd =
∑

σ

Ed,σ d̂†
σ d̂σ + U

(
d̂
†
↑d̂↑ − 1

2

) (
d̂
†
↓d̂↓ − 1

2

)
− U

4
,

Ĥd−c =
∑

λ=L,R

∑
k,σ

(Vkλd̂
†
σ ĉkλσ + V ∗

kλĉ
†
kλσ d̂σ ). (B1)

Here, Ĥc is the single-band Hamiltonian for conduction
electrons at the metallic leads. Hd is the Hamiltonian for
localized quasiparticle states at the dot, which includes
Coulomb interaction. Ĥd−c represents the coupling between
the dot and the leads. We have defined the spin-dependent
local energy level Edσ = Ed − σb, with Ed = εd + U/2 a
small parameter to capture deviations from the particle-hole
symmetric condition εd = −U/2, and b = gμBB/2. We build
up an SPT calculation starting from a reference system
which is interacting (U 
= 0), particle-hole symmetric (Ed =
εd + U/2 = 0), and in the absence of an external magnetic
field (B = 0).

1. Reference system

The reference system (Ed = 0, B = 0) self-energy was
derived in detail in Ref. 25, and is given by the matrix form

�σ,ω =
[

�−−
σ,ω −�−+

σ,ω

−�+−
σ,ω �++

σ,ω

]
.

The local Green’s function for the reference system is given
by the matrix

gσ,ω =
[

g−−
σ,ω g−+

σ,ω

g+−
σ,ω g++

σ,ω

]
,

with components satisfying25

g−−
σ,ω = [1 − F (ω,T ,V )]gr

σ,ω + F (ω,T ,V )ga
σ,ω,

g−+
σ,ω = −F (ω,T ,V )

[
gr

σ,ω − ga
σ,ω

]
, (B2)

g+−
σ,ω = [1 − F (ω,T ,V )]

[
gr

σ,ω − ga
σ,ω

]
,

g++
σ,ω = −[1 − F (ω,T ,V )]ga

σ,ω − F (ω,T ,V )gr
σ,ω.

Here, the effective local nonequilibrium distribution function
is shown25 to be

F (ω,T ,V ) = �LfL + �RfR − (i/2)�−+
ω

�L + �R − Im�r
ω

.

The retarded component of the Green’s function is given by

gr
σω = (

ω + i� − �r
ω

)−1
,

with ga
σω = [gr

σω]∗, and � = �L + �R . It is shown in Ref. 25
that the self-energy components for the reference system
satisfy a similar set of relations as Eq. (B2), in particular with

�−+
ω = −2i Im�r

ωF (ω,T ,V ),

�+−
ω = 2i Im�r

ω[1 − F (ω,T ,V )].
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The (spin-independent) retarded self-energy of the reference
system was calculated in detail in Ref. 25, and is given by

�r
ω = (1 − χ̃++)ω − i�

χ̃2
+−
2

[(
ω

�

)2

+
(

πT

�

)2

+ ζ

(
eV

�

)2

− χ̃2
++

ζ

3

(
πT eV

�2

)2]
(B3)

with �a
ω = (�r

ω)∗. In Eq. (B3), the “odd” component of the spin
susceptibility is directly related to the four-point vertex �0(U )
defined in Eq. (B12) by the relation χ̃+−(U ) = �0/(π�).

2. SPT formulation

A coherent-states path-integral representation of the model
of Eq. (B1) in terms of Grassmann fields can be obtained
following the standard construction. On the Keldysh con-
tour, we introduce ψ̂kλσ (t)† = [c−

kλσ (t),c+
kλσ (t)]† and �̂(t)† =

[d−
σ (t),d+

σ (t)]†, where the indexes ± refer to the time-ordered
(−) and anti-time-ordered (+) paths, while λ = {L,R} labels
the two different leads.

The resulting nonequilibrium generating functional for the
model of Eq. (B1) is25,62

Z =
∫

D[ψ̂†,ψ̂]D[�̂†,�̂]eiS[ψ̂†,ψ̂,�̂†,�̂]. (B4)

Since the action in Eq. (B4) is Gaussian in the ψ̂
†
kλσ (t),

ψ̂kλσ (t) Grassmann fields, we integrate those in the partition
function (B4) to obtain, in the frequency-space representation,

Z =
∫

D[�̂†
σω,�̂σω]eiS[�̂†

σω,�̂σω]. (B5)

In Eq. (B5), we have defined the effective action as

iS[�̂†
σω,�̂σω] = iSU [�̂†

σω,�̂σω]

− i

∫ +∞

−∞

dω

2π

∑
σ

�̂†
σωEdσ σ̂3�̂σω,

where

iSU [�̂†
σω,�̂σω] = iSint

U [�̂†
σω,�̂σω]

+ i

∫ +∞

−∞

dω

2π

∑
σ

�̂†
σω[ω + i(�L + �R)]σ̂3�̂σω (B6)

is the effective action for a particle-hole-symmetric (Ed = 0)
and interacting (U 
= 0) system in the absence of an external
magnetic field (B = 0), and

i�λ = −
∑
k,σ

|Vkλ|2
ω − εkλ + iη+ for λ = L,R

is the coupling with the metallic leads, which in the limit
of a flat band [ρλ(ω) = ρλ

0 , Vkλ = Vλ] of infinite bandwidth,
tends to i�λ → iπρλ

0 |Vλ|2. In order to construct a perturbation
theory in the small parameters Ed , B, with respect to the
reference system defined by the action (B6), let us introduce
the dual fermion (Grassmann) fields φ̂†

σω = (f −
σω,f +

σω)† where,
as before, the index ∓ refers to the time-ordered (anti-
time-ordered) path along the Keldysh contour. We insert the

fermionic Hubbard-Stratonovich transformation29,30∫
D[φ̂†

σω,φ̂σω] exp

{
i
∑

σ

∫ +∞

−∞

dω

2π
[φ̂†

σω (gσωEdσ σ̂3gσω)−1

× φ̂σω − φ̂†
σωg−1

σω�̂σω − �̂†
σωg−1

σωφ̂σω]

}

= Det[(gσωEdσ σ̂3gσω)−1]e−i
∑

σ

∫ +∞
−∞

dω
2π

�̂
†
σωEdσ σ̂3�̂σ,ω

into the partition function (B5). Integrating out the local
fermion field �̂σω, one finds that the dual fermion bare Green’s
function is given by25

Gf (0)
σω = −gσω

(
gσω − E−1

dσ σ̂3
)−1

gσω. (B7)

On the other hand, by functional differentiation of the partition
function, an exact nonperturbative relation between the dual
fermion dressed Green’s function G

f,ij
σω = −i〈φ̂i†

σωφ̂
j
σω〉 and

the local Green’s function G
ij
σω = −i〈�̂i†

σω�̂
j
σω〉 is obtained25:

Gσ,ω = −E−1
dσ σ̂3 + (gσ,ωEdσ σ̂3)−1Gf

σ,ω(Edσ σ̂3gσ,ω)−1. (B8)

The dual fermion Green’s function satisfies the matrix Dyson
equation25

Gf
σ,ω = Gf (0)

σ,ω + Gf (0)
σ,ω �f

σωGf
σ,ω. (B9)

Notice that the zeroth-order solution of Eqs. (B9) and (B8) is

G(0)
σω = −Edσ σ̂3 + (gσωEdσ σ̂3)−1 Gf (0)

σω (Edσ σ̂3gσω)−1

= (
g−1

σω − Edσ σ̂3
)−1

.

The first-order solution for the Dyson equation (B9) is

Gf (1)
σ,ω = Gf (0)

σ,ω + Gf (0)
σ,ω �f

σ,ωGf (0)
σ,ω ,

which upon substitution into Eq. (B8) yields

G(1)
σ,ω = G(0)

σ,ω + G(0)
σ,ω�f

σ,ωG(0)
σ,ω

= [
G(0) −1

σ,ω − �f
σ,ω

]−1 + O([�f ]2)

= [
g(0) −1

σ,ω − �σ,ω − Edσ σ̂3 − �f
σ,ω

]−1
.

It is clear then that, within this first-order solution of the Dyson
equation, the perturbed matrix self-energy is given by

�σ,Ed
(ω,B) = (Ed + σb) σ̂3 + �σ,ω + �f

σ,ω. (B10)

3. Dual fermion self-energy

In order to simplify the notation, let us use the multi-indexed
labels 1 ≡ (ω1,σ1,i1) for frequency, spin, and Keldysh contour
i1 = ∓ indices. Let us define

D12 ≡ (2π )δω1−ω2δσ1,σ2Edσ1 [σ̂3]i1,i2 ,

g12 ≡ (2π )δω1−ω2δσ1,σ2g
i1,i2
σ1ω1

,

�1234 ≡ (2π )δω1+ω3−ω2−ω4 [�σ1σ2;σ3σ4 (ω1,ω2; ω3,ω4)]i1,i2;i3,i4 .

Here, �σ1σ2;σ3σ4 (ω1,ω2; ω3,ω4) is the four-point vertex of the
reference system. The dual fermion self-energy is given by the
expression

�
f

12 ≡ (2π )δω1−ω2δσ1,σ2

[
�f

σ1,ω1

]
i1,i2

= i�1234g44′ [g − D−1]−1
4′3′g3′3,

where in this context repeated indices stand for a generalized
convolution in frequency, spin, and Keldysh-contour indices.
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A series expansion of the dual fermion self-energy matrix fol-
lows from [g − D−1]−1 = −D[I − gD]−1 = −D − DgD −
DgDgD + . . .:

�
f

12 = −i�1234 [gDg]43 − i�1234 [gDgDg]43 + O(D3).

(B11)

The four-point vertex is given by

�
(0)−−−−
σσ ′;σ ′σ = �0(1 − δσ,σ ′ ), �

(0)++++
σσ ′;σ ′σ = −�0(1 − δσ,σ ′),

where

�0(U ) = U + π�(15 − 3π2/2)(U/π�)3 + O(U 5). (B12)

The first term on the right-hand side of Eq. (B11) possesses
only two nonvanishing diagonal matrix elements,

−i
∑

σ ′,j=±

∫
dω′

2π
�

(0)−−−−
σσ ′;σ ′σ g

−j

σ ′ω′Edσ ′[σ̂3]jj g
j−
σ ′ω′

= −i�0Ed,−σ Z−−
−σ ,

and +i�0Ed,−σ Z++
−σ , where we have defined

Z−−
σ =

∫ +∞

−∞

dω′

2π
([g−−

−σω′]2 − g−+
−σω′g

+−
−σω′)

and Z++
σ = (Z−−

σ )∗. Direct calculation of the integral, and
consistently with the approximation for the reference system
keeping terms up to O(�2

0) only, we obtain

�f,−−
σ (ω,B) = −i�0Ed,−σ Z−−

−σ

= −(Ed + σb)ũ

{
1 − 1

3

[(
πT

�̃

)2

+
(

eV

�̃

)2]

+ 7

9
ζ

(
πT eV

�̃2

)2}
, (B13)

with the other components given by �
f,++
σ (ω,B) =

−�
f,−−
σ (ω,B), �

f,+−
σ (ω,B) = �

f,−+
σ (ω,B) = 0.

4. Retarded self-energy

At the order of approximation of Eqs. (B10) and (B13),25

the self-energy components at the local site are

�++
σ,Ed

(ω,B) = �++
σω − Edσ + �f,++

σ (ω,B),

�−−
σ,Ed

(ω,B) = �−−
σ (ω,B) + Edσ + �f,−−

σ (ω,B),

�+−
σ,Ed

(ω,B) = �+−
σ (ω,B),

�−+
σ,Ed

(ω,B) = �−+
σ (ω,B). (B14)

We thus obtain the retarded self-energy from the relation
�r

σ,Ed
(ω,B) = �+−

σ,Ed
(ω,B) − �++

σ,Ed
(ω,B) as follows:

�r
σ,Ed

(ω,B)

= (1 − χ̃++)ω + Ed − σb − (Ed + σh)ũ

×
{

1 − 1

3

[(
πT

�̃

)2

+
(

eV

�̃

)2]
+ 7

9
ζ

(
πT eV

�̃2

)2}

+ i�ũ2

[(
ω

�̃

)2

+
(

πT

�̃

)2

+ ζ

(
eV

�̃

)2

− ζ

3

(
πT eV

�̃2

)2]
.

(B15)

Here, ũ = z�0/(π�) is the renormalized interaction, for
z = χ̃−1

++ the wave-function renormalization factor for the
particle-hole-symmetric reference system at zero magnetic
field. The renormalized quasiparticle spectral broadening is
�̃ = z�. The retarded Green’s function corresponding to this
self-energy is

Gr
σ,Ed

(ω,B) = [ω + i� − �r
σ,Ed

(ω,B)]−1

= χ̃−1
++(ω − Ẽd + σ b̃ + i�̃ − �̃r

σω(B))−1.

Here, we have defined the renormalized self-energy

�̃r
σω(B) = −(Ẽd + σ b̃)ũ

{
1 − 1

3

[(
πT

�̃

)2

+
(

eV

�̃

)2]

+ 7

9
ζ

(
πT eV

�̃2

)2}
+ i�̃ũ2

[(
ω

�̃

)2

+
(

πT

�̃

)2

+ ζ

(
eV

�̃

)2

− ζ

3

(
πT eV

�̃2

)2]
.

In the above, we have systematically included all contribu-
tions up to second order in the renormalized Coulomb inter-
action ũ and particle-hole asymmetry ε̃d = Ẽd/�̃ = Ed/�.
This corresponds to approximating the dual fermion Green’s
function by

Gf = Gf

0 + Gf

0 �f Gf

0 (B16)

instead of a self-consistent solution of the Dyson equation
Gf = Gf

0 + Gf

0 �f Gf . The self-energy in this equation in-
volves a single renormalized four-point vertex, as stated by
Eq. (B11). Additional contributions to the self-energy are gen-
erated by including reducible contributions to the four-point
vertex. This involves the entire family of “parquet” diagrams.
Explicit calculations of these higher-order contributions are
currently under development, but go beyond the scope of this
paper.

5. Differential conductance G(T,B)

The differential conductance G(T ,B) ≡ dI/dV is ex-
pressed by the formula

G(T ,B) = e2

h

∫ +∞

−∞
dω

(
− ∂f

∂ω

) ∑
σ

Tσ (ω,T ,B).

Here, the transmission is

Tσ (ω,T ,B) = 4π
�L�R

�L + �R

Aσ (ω,T ,B),

where the spectral function is defined as

Aσ (ω,T ,B) = − 1

π
ImGr

σ,Ed
(ω,B).

The differential conductance at zero bias, and up to second
order in temperature and magnetic field, can be cast into the
form

G(T ,B)

G0
= 1 − c′

T

(
T

T
(s)

0

)2

− c′
B

(
gμBB/2

kBT
(s)

0

)2

. (B17)
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Here, the Kondo scale is based on the spin susceptibility of the
particle-hole-symmetric system χs(0) = (gμB)2/4T

(s)
0 , with

χs(0) = (gμB)2

2
Ãd (0)(1 + Ũ Ãd (0))

= (gμB)2

2

1

π�̃

(
1 + Ũ

π�̃

)
= (gμB)2

2

1

π�̃
(1 + ũ),

and we have used Ãd (0) = 1/(π�̃). Thus,

T
(s)

0 = π�̃

2(1 + ũ)
. (B18)

The coefficients in Eq. (B17) are given by

c′
T = π4

12

1 + 2ũ2 + (1 − ũ)(5ũ − 3)ε̃2
d

(1 + ũ)2
[
1 + (1 − ũ)2ε̃2

d

]2 ,

c′
B = π2

16

1 − 3(1 − ũ)2ε̃2
d[

1 + (1 − ũ)2ε̃2
d

]2 ,

where we have set ε̃d = Ẽd/�̃ = (εd + U/2)/�.

6. Derivation of the relation ũ = R − 1

From Fermi-liquid theory, we have the general result

Ãd,σ (0) = z−1Ad,σ (0) = sin2(πndσ )

π�̃
, (B19)

where z is the wave-function renormalization factor, and ndσ

is the local level occupancy for spin σ . Along with this, we

have the following Fermi-liquid relations for the specific heat,
spin, and charge susceptibilities28:

γd = 2π2k2
B

3
Ãd,σ (0), (B20)

χd = (gμB)2

2
Ãd,σ (0)(1 + Ũ Ãd,σ (0)), (B21)

χc,d = 2Ãd,σ (0)(1 − Ũ Ãd,σ (0)), (B22)

where Ũ = z2�0, �̃ = z�. From Eqs. (B20)–(B22), we obtain

4

(gμB)2
χd + χc,d = 6

π2k2
B

γd, (B23)

and together with the definition of the Wilson ratio, combined
with Eqs. (B20)–(B23), we obtain

R ≡ 4π2k2
B

3(gμB)2

χd

γd

= 1 + Ũ Ãd,σ (0). (B24)

Substituting Eq. (B19) into (B24), we obtain

R = 1 + Ũ

π�̃
sin2(πndσ ).

Let us define ũ ≡ Ũ/(π�̃) = z�0/(π�), with �0 defined by
Eq. (B12) as the four-point vertex. Then, we have

ũ = R − 1

sin2(πndσ )
. (B25)

Finally, notice that for a particle-hole-symmetric system
ndσ = 1

2 , and hence ũ = R − 1.
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