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Gauge fields from strain in graphene
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We revise the tight-binding approach to strained or curved graphene in the presence of external probes such as
photoemission or scanning tunneling microscopy experiments. We show that extra terms arise in the continuum
limit of the tight-binding Hamiltonian which cannot be accounted for by changes in the hopping parameters
due to lattice deformations, encoded in the parameter β. These material-independent extra couplings are of the
same order of magnitude as the standard ones and have a geometric origin. They include corrections to the
position-dependent Fermi velocity and to a new vector field. We show that the new vector field does not couple to
electrons like a standard gauge field and that no β-independent pseudomagnetic fields exist in strained graphene.
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I. INTRODUCTION

One of the most interesting aspects of graphene is the tight
relation between its morphological and electronic properties.
Although this issue has been explored at length in the
theoretical literature1,2 and there is a fair number of related
experiments,3–9 recent results10–12 have given an extra push to
the subject that will be explored in this work.

In the continuum limit of the standard tight-binding
(TB) approach, lattice deformations couple to the electronic
excitations in the form of effective gauge fields and scalar
potentials.2,13 In particular, the so-called pseudomagnetic
fields have acquired a physical reality after the observation
of Landau levels from strain in graphene samples14 predicted
theoretically in Refs. 15 and 16. These deformation gauge
fields are at the basis of the proposed strain modifications of the
electronic properties (strain engineering) of graphene15,17–21

and have been used in the design and modeling of recent
experiments exploring the physics of lattice systems either
with cold atoms22,23 or with artificial lattices made with CO
molecules in a Cu surface.11 Hence it is very important to
establish the accuracy and completeness of the TB description,
to ascertain whether there are modifications to the model and,
if so, how they will affect the experiments.

In the standard approach the parameter that links the
TB electronics with the continuum elasticity theory, β, is
related to the electron-phonon coupling and appears in the
definition of the strain-induced effective magnetic fields. β

reflects the changes in the hopping parameter t of the TB
model with the changes of the relative distances between
atomic nearest neighbors due to the lattice deformations.
In a recent work24 it was claimed that extra β-independent
pseudomagnetic fields arise in the standard TB description
coming from the displacements of the atomic positions of
the lattice. Following this work there have been attempts to
correct the previous calculations leading to “strain Landau
levels.”25 Moreover, inspired by a geometric approach to

curved graphene,26–30 the continuum TB Hamiltonian was
supplemented in Ref. 31 with additional β-dependent terms
arising from a higher order derivative expansion, which can be
interpreted as a position-dependent Fermi velocity and an new
vector field.

In what follows we will show that no β-independent
pseudomagnetic fields exist in strained graphene: The only
pseudogauge fields are the well-known β-dependent fields in
Eq. (2). We will indeed identify all the new terms arising from
“frame effects” (i.e., due to the actual atomic positions) needed
to complete the TB description whenever the system is coupled
to external probes. But we will see that they only modify
the coefficients of the position-dependent Fermi velocity and
the new vector field obtained in Ref. 31. We will further
clarify the nature of the new vector field and show that it
does not act as a pseudogauge field, although it may have
interesting physical effects, such as pseudospin precession. We
will also show that the extra gauge fields suggested in Ref. 24
can be completely eliminated by a gauge transformation and
have no physical consequences. Finally we will discuss the
experimental context in which the newly derived terms might
lead to observable effects.

II. FRAME EFFECTS

We will assume for simplicity that there are no short-range
interactions or disorder connecting the two Fermi points of
graphene, so that the low-energy description around each
point remains valid. As is well known in the TB-elasticity
approach,2,32 elastic deformations of the lattice give rise, in the
continuum limit, to vector potentials that mimic the coupling
of real magnetic fields to the electronic current. The standard
TB Hamiltonian in the continuum limit is

HT B = −iv0

∫
d2xψ†σj (∂j + iAj )ψ, (1)
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where v0 = 3 ta/2 is the Fermi velocity for the perfect lattice,
with t the hopping parameter for nearest neighbors and a the
lattice constant; j = 1,2 (summation over a repeated index is
understood over the article), and σj are the Pauli matrices. The
potential Aj is related to the strain tensor by

A1 = β

2a
(uxx − uyy), A2 = β

2a
(−2uxy), (2)

where β = |∂ ln t/∂ ln a|. The strain tensor is defined as uij =
1
2

(
∂iuj + ∂jui + ∂ih∂jh

)
, where ui and h are in- and out-

of-plane displacements, respectively. Note that one usually
assumes that crystal deformations are small and (1) is valid
only up to O(u2

ij ) corrections. We will follow this practice for
the rest of the paper.

As shown in Ref. 31, if one uses the TB approach to go one
order higher in the derivative expansion, the Hamiltonian (1)
becomes

HT B = −i

∫
d2xψ†[vij (x)σi∂j + v0σi�i + iv0σiAi]ψ, (3)

where the field Ai is the one given in (2), vij is the tensorial
and space dependent Fermi velocity, vij = v0[ηij − β

4 (2uij +
ηijukk)], and �i is a new vector field given by

�i = 1

2v0
∂jvij = −β

4

(
∂juij + 1

2
∂iujj

)
. (4)

The key observation of the present work is that TB Hamilto-
nians describing strained graphene,2,32 and (3) in particular, are
commonly derived in a specific reference system, the “crystal
frame.” The reason is that the Bloch waves ak = ∑

x e−i�k·�xax

used to diagonalize the TB Hamiltonian are written using the
atomic equilibrium positions {x}, which are regularly spaced
and independent of the crystal deformation. On the other
hand, in the presence of strain the positions measured in the
“laboratory frame” are the actual positions of the atoms yi .
The two sets of coordinates are related by yi = xi + ui(x),
where ui is the in-plane horizontal displacement vector. Note
that the vertical displacements h are identical in both systems.
In the classical theory of elasticity, crystal (laboratory) frame
coordinates are usually referred to as Lagrangian (Eulerian)
coordinates.33

Thus, the TB Hamiltonian (3) is actually the crystal frame
Hamiltonian Hc(x). In order to describe the interaction of elec-
trons with external probes or fields, we must use the laboratory
frame Hamiltonian HLab(y); i.e., the TB Hamiltonian has to be
rewritten in laboratory frame coordinates. The TB Hamiltonian
is the sum of the Dirac Hamiltonian H0 plus the terms induced
by the lattice deformations. As these are already O(uij ), we
have to compute change-of-frame corrections only for the
uij -independent piece (H0)c of the crystal Hamiltonian. The
computation is simplified by using the symmetric convention
for the derivatives of the fermion fields

(H0)c = −iv0

∫
d2xψ†

c (x)σi

←→
∂i ψc(x), (5)

where ψ†←→∂i ψ ≡ 1/2[ψ†∂iψ − (∂iψ
†)ψ] and the subscript in

ψc indicates that this is the fermion field operator in the crystal

frame. The derivatives transform according to

∂

∂xi

= ∂yk

∂xi

∂

∂yk

= (δik + ∂iuk)∂k = (δik + ũik + ωεik)∂k,

(6)

where ũik = (∂iuk + ∂kui)/2 is the linear piece of the strain
tensor and ωεik = (∂iuk − ∂kui)/2. We also have to transform
the integration measure

d2x =
∣∣∣∣det

(
∂xk

∂yi

)∣∣∣∣ d2y = |det(δik − ũik − ωεik)| d2y

� (1 − ũii)d
2y. (7)

On the other hand, ψ
†
cψc is the particle density operator in the

crystal frame. As the number of fermions in any region should
be frame independent, we must impose ψ

†
cψc d2x = ψ†ψ d2y,

where ψ(y) is the laboratory frame field operator. This implies

ψc(x) =
∣∣∣∣det

(
∂xk

∂yi

)∣∣∣∣
−1/2

ψ(y), (8)

which exactly cancels the Jacobian in (7). The net result is

−iv0

∫
d2xψ†

c (x)σi

←→
∂i ψc(x)

� −iv0

∫
d2y[ψ†(y)σi

←→
∂i ψ(y)+(ũkl + ωεkl)(ψ

†σk

←→
∂l ψ)],

(9)

where the derivatives in the last term act only on the fermion
fields. Finally, the dependence on the antisymmetric piece ωεij

may be eliminated by a local rotation of the spinors

ψ(y) → e−(i/2)ωσ3ψ(y) � ψ(y) − i

2
ωσ3ψ(y). (10)

Indeed, the identity iσkσ3 = εklσl shows that this rotation
cancels the term proportional to ω in (9). A contribution pro-
portional to ∂kω vanishes as well due to the anticommutation
relation {σ3,σk} = 0 for k = 1,2. This yields

HLab = HT B + HGeom, (11)

where HT B is given by (3) and

HGeom = −iv0

∫
d2x ũkl(ψ

†σk

←→
∂l ψ)

= −iv0

∫
d2x ψ†

[
ũklσk∂l + 1

2
(∂lũkl)σk

]
ψ. (12)

In the last line we have used integration by parts to revert to
the asymmetric derivative convention. Note that, to first order
in the strain, β-dependent terms are the same in both frames.
Equations (11) and (12) are the main results in this paper.

As β � 2, the new β-independent terms in HGeom are of
the same order of magnitude as those in the standard TB
Hamiltonian (3). In particular, the space-dependent Fermi
velocity derived in the TB formalism in Ref. 31 will become

vij = v0

[
δij − β

4
(2uij + δijukk) + ũij

]
(13)

with the corresponding correction for the vector field

�i = 1

2v0
∂jvij = −β

4

(
∂juij + 1

2
∂iujj

)
+ 1

2
∂j ũij . (14)
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The Hamiltonian HLab can also be obtained by performing
the TB calculation directly in the laboratory frame. This
derivation is explicitly given in the Appendix, where we also
show that the additional pseudogauge field found in Ref. 24
has zero curl everywhere and can be eliminated by a gauge
transformation of the electronic wave function. As �i is the
only “new” vector field in strained or curved graphene, in what
follows we will comment briefly on its physical significance
and compare it with the well-known pseudogauge field Ai in
Eq. (2). First of all, note that, unlike Ai , �i is not a functionally
independent field. The reason is that the Hamiltonian (3) is
Hermitian only for �i = 1

2v0
∂jvij . Thus, a position-dependent

Fermi velocity requires the existence of the new vector
field �i .

A look at (3) might suggest that �i is some sort of purely
imaginary34 counterpart to Ai . However, this is obviously
wrong, as gauge potentials have to be real (Hermitian). The true
nature of �i is made apparent if we use the identity iσkσ3 =
εklσl to rewrite the relevant term as −iv0σi�i = v0σi�̃i , with

�̃1 = �2σ3, �̃2 = −�1σ3. (15)

Note that �̃i is matrix-valued and Hermitian. This shows that
the vector field �i plays the role a Hermitian connection for the
SO(2) group of local pseudospin rotations (10) generated by
σ3. As a consequence, a position-dependent Fermi velocity
will be accompanied by pseudospin rotation (“pseudospin
precession”), i.e., by electronic transitions between the two
sublattices. In more physical terms, whereas electrons prop-
agating in a (pseudo)gauge field acquire a path-dependent
complex phase, the new vector field induces pseudospin
rotation, very much like an optically active medium turns
the polarization plane of light. Thus �i is not a gauge field
and cannot give rise to the characteristic Landau levels of
real or pseudomagnetic fields: The only pseudogauge field in
strained graphene is the well-known Ai given by (2). Note
also that, in general, observable effects will not be associated
with the field �̃i itself but with its curl, which by (15)
is proportional to the divergence of �i . This is even more
obvious in the covariant model,31 where �i appears as the spin
connection associated with fermions propagating in a curved
background and its divergence is proportional to the scalar
curvature R.

III. SOME PHYSICAL EXAMPLES

To see the physical implications of this work for actual
measurements we now work out some practical examples.
Consider first a density of states measurement. The frame
effects discussed are rather trivial in this case but enough to
exemplify the issue. The effect of the coordinate change will
affect scanning tunneling microscopy (STM) measurements
when the tip resolution is large in units of the lattice constant
(no atomic resolution). The local density of states (LDOS) in
the laboratory frame can be computed approximately in the
local limit, for a sufficiently smooth uij . To do this, ρ(E,uij )
is computed assuming uij is constant, and then its dependence
on the position is restored in the final expression ρ(E,x) ≡
ρ(E,uij (x)). The LDOS can be computed in momentum

FIG. 1. (Color online) Pictorial view of the strain field discussed
in the text and the changes it produces in the density of states.
The dotted (green) line represents the contribution from β-dependent
terms alone, while the thick (blue) line represents the total correction
including frame effects. The black, dashed line represents the density
of states of the perfect lattice. The three plots correspond to x =
−L,0,L for the displacement discussed in the text with umax = 0.2.

space

ρ(E) =
∫

dqxdqy tr[E − H (qx,qy)]−1 (16)

with the Hamiltonian (11) by diagonalizing vij , which amounts
to a change of integration variables

ρ(E) =
∫

dq+dq−
v+v−

tr(E − H0)−1, (17)

with H0 the unperturbed Hamiltonian and v± the velocity
eigenvalues. This yields

ρ(E) = 4

2π

E

v+v−
= ρ0(E)

v2
0

v+v−
(18)

(the factor of 4 is due spin and valley degeneracy) which to
first order in strain can be computed to give

ρ(E,x) = ρ0(E)(1 + β tr u − tr ũ). (19)

A simple but interesting example is provided by in-plane
strains that are quadratic in the position, such as those
associated to the triangular bumps that led to the observation of
pseudo-Landau levels in STM10 and that have been explicitly
produced in artificial graphene.11 Remember that the TB gauge
field associated with a strain tensor uij is �A ∝ (uxx − uyy, −
2uxy). Consider first a deformation vector given by �u = (x2 −
y2,2xy)umax/4L shown in the upper part of Fig. 1. It is easy to
see that the associated pseudomagnetic field will be zero in this
case. The trace of the strain tensor is tr u = umaxx/L, hence
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a line scan along the y direction will give a perfect constant
V shape [ρ(E,x) ∼ |E|], while along the x direction there
will be a dilatation effect such that ρ(E,x) ∼ [1 + umax(β −
1)x/L]|E|, as depicted in the lower part of Fig. 1 for different
values of x. Due to the frame effects discussed in this work
there is an additional, material-independent change in the
magnitude of the LDOS that adds on top of the β-dependent
contributions. This is important to consider if one wants to
measure the space-dependent Fermi velocity from a local
probe with resolution larger than the lattice constant.

An interesting thing happens if we now consider the
same deformation vector but exchange ux and uy , i.e.,
�u ∝ (2xy,x2 − y2). In this case there will be no volume
effect (tr u = 0) and the strain will give rise to a constant
pseudomagnetic field whose associated density of states will
show similar Landau level oscillations along any scan line.
A 90◦ rotation of the strain deformation will give the same
V shape with a Fermi velocity increasing this time along
x = constant. Finally, for the strain �u ∝ (x2 − y2,−2xy) both
the trace and the pseudomagnetic field will be zero and there
will be no effect altogether. It can be shown that the geometric
vector field coming from the frame change does not affect the
DOS at the linear order in uij considered in this work.

On the other hand, these examples are a simple illustration
of the fact that the honeycomb lattice is very anisotropic and,
of course, does not have full rotational symmetry;35 hence
similar looking deformations give rise to very different effects
in the STM images. The important point is that, in the case of
general strain, the frame effects discussed in this work will be
responsible for additional spatial modulation of the intensity
of the LDOS while preserving its energy dependence.

Frame effects will also be important when the absolute
orientation of the lattice changes locally. An example of this
effect can be observed in the polarization dependence of the
ARPES signal.36 The usual ARPES pictures of Dirac cones see
only one half of the cones, due to the form of the matrix element
of the lattice electron at the K point with the free electron that
comes out. This effect sees the absolute orientation of the
lattice: If the lattice is rotated with respect to the polarization
of light, the part of the Dirac cone that is observed also rotates.
As before, in order to describe the physics in the laboratory
frame, vectors in the crystal frame have to be rotated to the
laboratory frame. This is again a β-independent contribution.
Note, however, that the suppression of part of the observed
Dirac cones in ARPES is due to the interference between
photoelectrons emitted from the two sublattices and, as such,
goes beyond the continuum limit considered in this paper.
Effects of local lattice rotations in ARPES have been reported
recently in Ref. 37. The frame effects associated with lattice
rotations could also be observed in optical experiments like
those described in Ref. 38.

IV. CONCLUSIONS

As a summary, we have shown that the TB description
of general crystal systems on distorted lattices must be
supplemented with geometric terms originating in the change
of coordinates needed to describe interactions with external
probes. These are of course always present in the experi-
ments. The correct Hamiltonian to use when trying to fit

experiments is Hlab = HT B + HGeom. The new terms are
material independent and different from the usual gauge fields
arising from deformation-induced changes in the hopping
parameter. We have worked out in detail the case of strained
graphene and tried to clarify some confusions in the literature.
We have seen that the extra terms are of the same form as
those already present in the complete TB Hamiltonian (3), but
come with β-independent coefficients. Moreover, aside from
the well-known pseudogauge fields in Eq. (2), the only vector
field in strained graphene is the connection �i (also present
in the geometric formalism31), which is compatible with the
symmetry analysis39–42 and required by the Hermiticity of the
Hamiltonian whenever we have a position-dependent Fermi
velocity. We have clarified that �i is not a gauge field and
will not give rise to the standard Landau levels in the density
of states, although it may have other physical effects, such
as pseudospin precession. We have also shown that the extra
gauge fields claimed in Ref. 24 can be gauged away and do not
lead to physical consequences. The frame effects described in
this work will be relevant to local experiments with resolution
λ 
 a, for which a continuum limit is appropriate.
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APPENDIX: THE TIGHT-BINDING DERIVATION IN THE
LABORATORY FRAME

The extra terms to be added to the standard TB calculation
due to frame effects can also be obtained by redoing the
TB calculation directly in the laboratory frame. That is, we
consider the TB Hamiltonian H = −∑

〈ij〉 tij a
†
i bj + H.c., but

now we map the labels to positions in the laboratory frame

H = −t
∑
�y,n

a
†
�y b�y+�δn

+ H.c., (A1)

where �y = �x + �u(x) with �x = m1�a1 + m2�a2, and �δn are the
three nearest-neighbor vectors (we follow Ref. 31 for their
definition and other conventions). As our interest here is in
the β-independent terms generated by the change of frames,
we have assumed that the hopping parameters tij take their
equilibrium value t . The real meaning of the relabeling in
(A1) is that nonequilibrium atomic positions are used in the
Fourier expansions

a†
y =

∑
k

e−i�k·[�x+�u(x)]a
†
k,

(A2)
by+δn

=
∑

k

ei�k·[�x+�δn+�u(x+δn)]bk.
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Note that, due to the fact that crystal momentum �k is
purely two-dimensional, only the in-plane components �u of
a three-dimensional displacement (�u(x),h(x)) will appear in
the Fourier expansions in (A2). As a consequence, only the
linear piece ũij of the strain tensor can give rise to frame
effects, while the out-of-plane contribution ∂ih∂jh does not
play any role in this regard. The same conclusion was reached
in the main text by noting that only �u enters the coordinate
transformation that relates crystal and laboratory frames.

To see how this will change the effective theory at the K
point, it is instructive to analyze ay further before computing
the Hamiltonian. If we restrict the states to �k = �K + �δk with
δk < �, we get

ay = ei �K·�xei �K·�u(x)
�∑
δk

ei �δk·�xei �δk·�u(x)ak (A3)

and, comparing with the corresponding expression ax =
ei( �K+�δk)·�xak in the crystal frame, we observe two new contribu-
tions. The first one is ei �K·�u(x), which we can factor outside the
integral. This is a trivial phase factor that can be reabsorbed
into ay by a gauge transformation and has no effect on the
physics. As shown below, if we do not reabsorb this phase,
it will show up in the effective theory as a new gauge field
Ai = ∂i(Kjuj ) = (ũij + ωεij )Kj . But this gauge field has zero
curl by construction and produces no pseudomagnetic fields,
even for position-dependent strains. The second term ei �δk·�u(xn)

cannot be eliminated by a gauge transformation in this way,
and will induce extra terms in the Hamiltonian which precisely
correspond to those in Eq. (9) after the field rescaling (8) is
performed.

Back to the actual computation, plugging (A2) into (A1)
gives

H = −t
∑
x,n

∑
k,k′

e−i�k·[�x+�u(x)]ei�k′ ·[�x+�δn+�u(x+δn)]a
†
kbk′ + H.c.

(A4)

It is convenient to use a symmetric parametrization for the
momenta: k → k + q/2,k′ → k − q/2, which corresponds to
the symmetric derivative convention in (5). Expanding to linear

order in u yields

H = −t
∑
x,n

∑
k,q

e−i �q·�xei(�k−�q/2)·�δna
†
k+q/2bk−q/2

×
[

1 + − i

2
�q · [�u(x) + �u(x + δn)]

− i�k · [�u(x) − �u(x + δn)]

]
+ H.c., (A5)

which, in terms of the Fourier coefficients of the displacement
u(x) = ∑

q ei �q·�xu(q), can be rewritten as

H = −t
∑
n,k,q

ei(�k−�q/2)·�δna
†
k+q/2bk−q/2

×
[
δ(�q) − i

2
�u(q) · (�q (1 + ei �q·�δn ) + 2�k (1 − ei �q·�δn ))

]

+ H.c. (A6)

Expanding around the K point and performing the sums
over n as usual yields the matrix element

Hk,q = 3ta

2
[δ(q)σiki + iqiuj (q)σi(Kj + kj ) − iqiui(q)σjkj ],

(A7)

where we have redefined δk → k. Replacing iqiuj (q) =
ũij (q) + ω(q)εij we finally obtain

Hk,q = v0[δ(q)σiki + (ũij + ωεij )σiKj

+ (ũij + ωεij )σikj − ũiiσj kj ]. (A8)

The last two terms are precisely those obtained from the
direct coordinate transformation (6) and (7) of the continuum
Dirac equation before the field rescaling (8), which eliminates
the term proportional to ũii . As anticipated, there is also a
seemingly new gauge field

Ai = (ũij + ωεij )Kj = ∂i(ujKj ) (A9)

which is a total derivative and has zero associated magnetic
field.43 It can be completely eliminated by the gauge transfor-
mation ψ → e−i �K·�u(x)ψ .
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