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Carrier multiplication and separation in systems with strong electron interaction:
Photoinduced dynamics of a junction solar cell
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We examine the real-time photoinduced dynamics of a junction composed of the interacting electron systems
and propose a path to enhance the solar-cell efficiency using multiplication of electron-hole pairs caused by the
electron interaction. The key ingredients for the multiplication are instability and/or metastability of insulator-
to-metal transition, and the photoinduced dynamics of the band gap. The band-gap alignment of the junction is
also important for efficiency of the carrier generation.
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I. INTRODUCTION

It is an urgent matter to improve the efficiency of the solar
cell.1 For the conventional solar cells, the semiconductors are
mostly used, where the energy of absorbed light in excess of
the band gap is wasted as a heat. This gives a serious obstacle
to improve the performance of the solar cell. A potential idea to
overcome this difficulty is the “carrier multiplication.”2–8 This
effect is, in principle, based on the electron correlation. In the
previous studies,5–8 therefore, nanosized semiconductors are
fabricated because the confinement derives an enhancement of
the electron correlation.

On the other hand, the family of Mott insulators and their
doped systems are known as the representative of the strongly
correlated electronic systems. The systems often show the
sensitivity to the external stimuli because of the metastabil-
ity, i.e., the rich electronic phases with nearly degenerate
energies compete with each other.9 Consequently, even the
weak photoirradiation can trigger the insulator-to-metal (IM)
transition.10–13 Note that the band gap of the conventional
semiconductor is a fixed quantity which characterizes the
electronic state. On the other hand, the band gap (Mott gap) of
the strongly correlated electron systems reflects the dynamics
of the electronic structure and can be changed by external
fields, e.g., photoirradiation. To examine the photoinduced
dynamics, we have developed14 a method for the real-time
numerical simulation of a double exchange model15 where the
electrons are interacting with the classical local spins. In that
study, we found a considerable multiplication of electron-hole
(e-h) pairs, i.e., the higher energy (frequency) of incident light
derives a larger amount of the multiplication. This will give a
path to the high performance solar cell fabricated by transition
metal oxides.

In this paper, the path to enhance the efficiency of carrier
generation using multiplication of the separated e-h pairs in
the interacting electron systems is studied. The essential key
ingredients of our proposal are the photoinduced real-time
dynamics of the band gap along with the IM electronic phase
transition and the focus of an energy window for the emergence
of the e-h pair multiplication. First, we show the numerical
results of the real-time photoinduced relaxation dynamics on
an effective model which is a theoretically designed junction
of the interacting electron systems. And, later, in the light of

the theoretical results, we summarize the key ingredients for
the high-performance solar-cell action.

II. MODEL AND METHOD

We consider a junction system as shown in Figs. 1(a)
and 1(b), i.e., the two Mott insulators are connected via tunnel
junction, and the “Mott insulator 1” and “Mott insulator 2”
correspond to the light absorber and the selective contact
to sort out the charge carrier, respectively. The electronic
states of a large family of Mott insulators and their doped
systems are often accompanied by magnetic ordering. In the
magnetically ordered electronic states, the coupled dynamics
of the classical spins representing the magnetic moment and
quantum electrons describes the interacting electrons because
the order parameter behaves as a classical field.16 In this theory,
we adopt the double exchange model14,15 as the effective
Hamiltonian to describe the electronic structure of the Mott
insulators. A schematic representation of the model is shown
in Fig. 1(c), i.e., the “system 1” and “system 2” are for the
Mott insulator 1 and Mott insulator 2, respectively,
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where ν = 1,2 is the index for system 1 and system 2, i.e.,
j (ν), tν , JH,ν , Jν , and JN,ν are the site and coupling constants
in system 1 for ν = 1 and in system 2 for ν = 2, respectively,
sgn(ν) is +1 for ν = 1 and −1 for ν = 2, and n̂j (ν) =∑

s ĉ
†
j (ν)s ĉj (ν)s . The sites ja and jb (jc and jd ) are arbitrarily

chosen nearest-neighboring sites from system 1 (system 2).
The indices s and s ′ are for the electron spin, and the
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FIG. 1. (Color online) Schematic representation of the junction
system. (a) Two Mott insulators are connected via tunnel junction
(gray area). (b) The electronic state is shown by the density of
states (DOS). The yellow area is occupied by electron. The left panel
represents an excited electronic state by a light irradiation. (c) The
“junction” system composed of the double exchange models. Two of
the sites in system 1 are connected to those of system 2 via hopping
matrix element, t ′.

components of �σ , i.e., σx , σy , and σ z, are Pauli matrices.
The local spins, �Sj (ν)’s, are taken to be the classical vectors
with a magnitude S, and ĉ

†
j (ν)s and ĉj (ν)s are the creation and

annihilation operators for the quantum electrons. The quantum
electron couples with the classical local spin via JH,ν . The
accent ˆ is used to distinguish the quantum operators and
classical variables. In Fig. 1, the stick with a red dot represents
a local spin. The two systems, system 1 and system 2, are
connected by the hopping matrix element of electron t ′. The
potential difference �V is also introduced.

Here, let us summarize the scheme of the numerical
calculation:14 the Hamiltonian Eq. (1) is expressed to be

Ĥ = Ĥel + HS,
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i.e., Ĥel involves creation and annihilation operators of quan-
tum electron, while HS does not. We numerically calculate the
time (T̃ ) evolution of the electronic state |�(T̃ )〉 and the local
spins { �Sj (ν)(T̃ )}j (ν) for the small time increment T̃ → T̃ + �T̃

on the finite size system. In system 1, the effect of light is
introduced by the time-dependent vector potential A(T̃ ) into
the hopping matrix element, i.e., t1 → t1e

iA(T̃ ). Therefore, the
Hamiltonian is also time dependent through the vector poten-
tial A(T̃ ) and the local spins {�Sj (ν)(T̃ )}j (ν). In the beginning, we
put A(T̃ = 0) = 0 and a set of local spins {�Sj (ν)(T̃ = 0)}j (ν).
The Hamiltonian Ĥel(T̃ = 0) is numerically diagonalized in a

form

Ĥel(T̃ = 0) =
L1+L2∑
�=1

E�(T̃ = 0)φ̂†
�(T̃ = 0)φ̂�(T̃ = 0),

i.e., the fermion operator is expressed to be

φ̂
†
�(T̃ = 0) =

∑
ν

∑
j (ν)s

a∗
j (ν)s�(T̃ = 0)ĉ†j (ν)s

for an eigenstate of �th level E�(T̃ = 0). We fill up the
eigenstates from the lowest energy level to the energy level
being the total number of electrons Ne on the finite size system,
i.e.,

|�(T̃ = 0)〉 =
Ne∏
l=1

φ̂
†
�(T̃ = 0)|0〉

and take this state as an initial electronic state. The Landau-
Lifshitz-Gilbert (LLG) equation is introduced for the equation
of motion of local spins:

�̇Sj (ν)(T̃ ) = −�heff,j (ν)(T̃ ) × �Sj (ν)(T̃ ) − αν
�Sj (ν)(T̃ ) × �̇Sj (ν)(T̃ ),

where αν (ν = 1 is for system 1 and ν = 2 is for system 2) is
the Gilbert damping constant17 and

�heff,j (ν)(T̃ ) = 〈�(T̃ )| − ∂Ĥ (T̃ )/∂ �Sj (ν)(T̃ )|�(T̃ )〉.
By integrating the LLG equation, we calculate the time
evolution of the local spins, i.e., {�Sj (ν)(T̃ )}j (ν) → {�Sj (ν)(T̃ +
�T̃ )}j (ν). By putting the new local spin texture {�Sj (ν)(T̃ +
�T̃ )}j (ν) and A(T̃ + �T̃ ), we obtain the instantaneous
electronic Hamiltonian Ĥel(T̃ + �T̃ ) at time T̃ + �T̃ . The
time evolution of the electronic state during the small time
increment �T̃ is given by

|�(T̃ + �T̃ )〉 =
Ne∏

p=1

�̂†
p(T̃ + �T̃ )|0〉,

with

�̂†
p(T̃ + �T̃ ) = e−iĤel(T̃ +�T̃ )�T̃ /h̄�̂†

p(T̃ )eiĤel(T̃ +�T̃ )�T̃ /h̄

and �̂
†
p(T̃ = 0) = φ̂

†
p(T̃ = 0). We successively calculate the

time evolution of the local spin and electronic states in total
for the small time increment T̃ to T̃ + �T̃ , and examine the
photoinduced electron-spin coupled dynamics. Due to the first-
order nature of the IM transition in the real systems,9–13 the
typical length scale of the time evolution of the electronic state
discussed is of the order of 5–10 lattice sites. Therefore, the
one dimensionality and small size of the present system does
not disturb the essential part of the phenomenon. Also the
excitation density of the electron hole need not be so large as
in the simulation since this electronic process occurs rather
locally and hence will remain unchanged even if we increase
the size of the system.

III. RESULTS

We consider the half-filled case, i.e., the number of electrons
is equal to the number of sites. The biquadratic exchange
interaction of the local spins in the Hamiltonian Eq. (1)
gives a metastability between ferromagnetic-metallic (FM)
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FIG. 2. (a) Metastability of the system 1. A parameter set {t1 =
1.0, SJH,1 = 1.0, S2J1 = −0.119, S4JN,1 = −0.085, L1 = 20} is
used. The lowest energy per site is measured from the ground state as
a function of the angle between neighboring local spins in the isolated
system 1, i.e., in the case with t ′ = 0. In this case, the FM (θ = 0)
and the AFI (θ = π ) states are almost degenerate and divided by a
potential barrier. (b) The same as (a) but for system 2, and a parameter
set {L2 = 20, t2 = 0.5, SJH,2 = 1.0, S2J2 = S4JN,2 = 0} is used. In
this case, the AFI (θ = π ) state is stabilized.

and antiferromagnetic-insulating (AFI) states for JN,ν < 0.
Figure 2(a) shows the metastability of the isolated system 1,
i.e., the lowest energy per site within two-sublattice consider-
ation is plotted as a function of the angle between neighboring
local spins θ at half-filling with the number of sites L1 = 20
and a parameter set {t ′ = 0, t1 = 1.0, SJH,1 = 1.0, S2J1 =
−0.119, S4JN,1 = −0.085}. (Hereafter, t1 is a unit of energy
in this paper.) In this numerical condition, the FM (θ = 0)
and the AFI (θ = π ) states are almost degenerate, and we
can examine the photoinduced IM transition on the system 1.
On the other hand, we take a parameter set {t ′ = 0, t2 = 0.5,
SJH,2 = 1.0, S2J2 = S4JN,2 = 0.0} with the number of sites
L2 = 20 for system 2. In this case, at half-filling, the AFI
state is stabilized enough and is the unique ground state [see
Fig. 2(b)].

Figure 3 shows the numerical result for L1 = L2 = 20 with
t ′ = 0.1, �V = 1.0. For the relaxation dynamics, we take the
Gilbert damping constants Sα1 = 0.01 and Sα2 = 1.0, and
S = 1 is used. Here, the dimensionless time T = (t1/h̄)T̃ is
defined, so that the unit h̄/t1 is typically ∼10−15 s assuming
t1 = 0.4 eV. In the real-time simulation, the instantaneous
Hamiltonian is diagonalized in a form

Ĥel(T ) =
L1+L2∑
�=1

E�(T )φ̂†
�(T )φ̂�(T ),

i.e., the fermion operator

φ̂
†
�(T ) =

∑
ν

∑
j (ν)s

a∗
j (ν)s�(T )ĉ†j (ν)s

is for an eigenstate of �th level E�(T ) at time T . We
numerically solve E�(T ) and aj (ν)s�(T ), and calculate the local
density of states (DOS) of the site j (ν) at T by

dj (ν)(ε,T ) = −(1/π )Im
∑

s

〈0|ĉj (ν)s[ε−Ĥel(T )+iδ]−1ĉ
†
j (ν)s |0〉

= −(1/π )Im
∑
�s

|aj (ν)s�(T )|2/[ε − E�(T ) + iδ].
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FIG. 3. (Color online) Time evolution of the electronic structure
of the junction system. The DOS Dν’s (see text) as a function of
energy are shown in (a)–(d), i.e., horizontal and vertical axes are
DOS (in arbitrary unit) and energy. The electron occupancies are also
shown by yellow area. The figures (a), (b), (c), and (d) are the results
for system 1 (left panel) and system 2 (right panel) at T = 0, 30, 200,
and 500, respectively. The red horizontal lines, which are at �/2 in
system 1 and at −�/2 in system 2, show the centers of mass of the
energy bands in each system. Figures (e) and (f) [(g) and (h)] are
the number of excited electrons and holes of system 1 [system 2] as
the function of T , respectively. Figures (i) and (j) are the schematic
representations of the time evolution. The band gap of system 2 plays
a role of “filter” to sort out the multiplied electrons from system 1.

Using the local DOS, the total DOS in system 1 (system 2) is
calculated by

Dν(ε,T ) = (1/Lν)
∑
j (ν)

dj (ν)(ε,T ),

with ν = 1 (ν = 2). We define the local electron-occupation
number at T by

nj (ν)�(T ) = Re

[∑
s

aj (ν)s�(T )〈�(T )|φ̂†
�(T )ĉj (ν)s |�(T )

]
,

which holds the relation∑
ν

∑
j (ν)

nj (ν)�(T ) = 〈�(T )|φ̂†
�(T )φ̂�(T )|�(T )〉

being the electron occupancy of �th level at T . Using nj (ν)�(T ),
we calculate the electron occupancy of �th level in system 1
(system 2) by

n�,ν(T ) =
∑
j (ν)

nj (ν)�(T ),
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with ν = 1 (ν = 2). To measure the number of excited
electrons and holes in system 1, we calculate

ne,1(T ) =
∑

E�(T )>�V/2

n�,1(T )

and

nh,1(T ) =
∑

E�(T )<�V/2

[1 − n�,1(T )],

respectively. In the same way,

ne,2(T ) =
∑

E�(T )>−�V/2

n�,2(T )

and

nh,2(T ) =
∑

E�(T )<−�V/2

[1 − n�,2(T )]

are also defined for system 2.
Figures 3(a)–3(d) show the time evolution of the electronic

state by the DOS Dν’s with electron occupancy by the
Lorentzian with δ = 0.05. The time T dependence of e-h pairs
is shown by ne,1, ne,2, nh,1, and nh,2 in Figs. 3(e)–3(h). The
initial state is an AFI one.18 At T = 0, both system 1 and
system 2 have the insulating band gaps 2SJH,1 in system 1 and
2SJH,2 in system 2, respectively, and the lower energy bands
are completely filled by electrons but the upper ones are empty
in each system as shown in Fig. 3(a). In system 1, the effect of
light is introduced by the time-dependent vector potential
A(T ) into the hopping matrix element, i.e., t1 → t1e

iA(T ).
In the early stage, we have applied A(T ) = A0 sin(ωT ) in
a period 0 < T < Tf and turned off the light at Tf when
the number of excited electrons ne,1 reaches 2.0, and later
Tf < T , A(T ) = 0. The frequency ω is tuned for the energy
difference between the second highest and the second lowest
energy levels of the AFI state on the finite size system.19

The energy of the incident light is much larger than the
band gap 2SJH,1. For Fig. 3, A0 = 0.1 and Tf = 58.70. As
seen in Figs. 3(b), 3(e), and 3(f), the e-h pairs are created
by the light during 0 < T < Tf .20 For a period just after
turnoff the light , Tf < T � 135, ne,1, and nh,1 almost stay
around the values at Tf and, later, those increase. This is the
multiplication of e-h pairs in this system. The corresponding
electronic structure is shown in Fig. 3(c). As seen in the left
panel of this figure, the insulating band gap in system 1 almost
closes, and at around the center of mass of the band indicated
by the red line, we found a considerable multiplication of
e-h pairs. Note that an amount of the initially excited e-h
pairs during the initial stage 0 < T < Tf is still remaining
at the high-energy region, i.e., the multiplication occurs at
the low-energy window. For T � 200, ne,1 decreases. At
the same time, ne,2 increases. The result shows that the e-h
pairs are separated and the electrons (holes) accumulate into
system 2 (system 1). The separation of e-h pairs suppresses
the e-h pair recombination. Therefore, nh,1 saturates for
T � 200.

The photoinduced dynamics of the electronic state is
schematically shown in Figs. 3(i) and 3(j): the electronic state
in system 1 is excited by light at the first stage. Because of
the metastability of system 1, the relaxation dynamics results
in the collapse of the insulating band gap in system 1. During
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FIG. 4. (Color online) Band diagram and spin structure at T =
500. The upper and lower color maps show the electronic structures of
the systems, system 1 and system 2, respectively. Different color tones
are used above and below the center of mass of the energy bands for
the states of excited electrons and holes. The light-yellow and dark-
blue regions correspond to the forbidden bands. The orange and light-
green areas show the conduction and valence bands, respectively.
The black (red) area in the conduction (valence) band represents the
distribution of excited electrons (holes). The lattice and spin structures
are presented between the band diagrams.

the gap-closing transition, multiplication of e-h pairs mainly
occurs at the low-energy window in system 1. Because the
low-energy window for holes in system 1 is in the band
gap in system 2, the holes in system 1 cannot penetrate into
system 2. Finally, the e-h pairs are separated, i.e., the electrons
accumulate into system 2 but the holes remain in system 1. It
is important to note that the amount of the collected electrons
and holes are larger than that of initially created e-h pairs by
light irradiation.

The gap-closing transition is a consequence of the real-time
dynamics of the electronic and the local spin structures. A
typical dynamic state is shown in Fig. 4, i.e., the local spin
structure, the band diagram, and the distribution of excited
electrons and holes calculated from nj (ν)� at T = 500. In
this theory, the electron-electron interaction is mapped into
the spin-electron coupled dynamics,14 and this dynamics
is essential for the multiplication of e-h pairs. The pho-
toexcited electrons drive the active dynamics of the local
spins. The active dynamics of the local spins also couples
with the band structure. In the time evolution, the growing
active spin-electron coupled dynamics becomes critical and,
finally, the band gap collapses with a drastic change of spin
structure.

Now let us focus on the role of IM transition and band
alignment of junction to optimize the parameters for the
higher efficiency of e-h creation and separation. A key for
the multiplication of an e-h pair along with IM transition
is the “energy window,” i.e., our numerical results suggest
that the multiplication of an e-h pair is accelerated by the IM
transition and mainly occurs at the low-energy window [see
Figs. 3(c) and 3(d)]. Here, we examine the several cases which
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FIG. 5. (Color online) Theoretical design for high-efficiency
solar-cell action (see text). (a)–(c) Schematic representation of the
electronic structure in the relaxation dynamics. Figures (d)–(g) are
the numerical results with a parameter set where t2 = 1.0 and other
parameters are the same as those in the case of Figs. 3(e)–3(h). In
the case of Figs. (h)–(k), a parameter set where S2J1 = S4JN,1 = 0.0,
t2 = 1.0, and other parameters are the same as those in the case of
Figs. 3(e)–3(h).

are schematically summarized in Figs. 5(a)–5(c): Fig. 5(a)
describes a snapshot of DOS for the case where the gap closes
due to the photoexcitation in system 1 (left). A portion of the
initially excited e-h pair is remaining at the high energy region
and the multiplied e-h pairs are generated at a low-energy
window. To focus the low-energy window, the conduction
band of the system 2 (right) with a high DOS is arranged
in Fig. 5(a), which corresponds to the optimal case for the
carrier generation studied in Fig. 3. Figure 5(b) is similar to
Fig. 5(a), but the conduction band of the system 2 is broad
with lower DOS, i.e., this condition is not satisfied well on
the low-energy window of the multiplication in system 1 in
comparison to the case of Fig. 5(a). Figure 5(c) represents the
case without IM transition in system 1.

Figures 5(d)–5(g) show the numerical results with t2 = 1.0,
which is twice as large, while the other parameters are the
same as those for Fig. 3. The comparison between Figs. 3
and Figs. 5(d)–5(g) tells us the difference between Figs. 5(a)
and 5(b). In the case of Figs. 5(d)–5(g), the multiplication of
e-h pairs with the IM transition occurs in system 1; however,
the amount of collected electrons ne,2 is smaller than that
in Fig. 3. This is because of the difference of the DOS
in system 2 at the low-energy window, e.g., see Figs. 5(a)
and 5(b): the smaller DOS at the low-energy window results in
a smaller transition rate of multiplied electrons from system 1
to system 2. It is also noted that the remaining excited electrons
in system 1 cause the e-h pair recombination. This leads to the
decrease in nh,1 at T ∼ 1000 [see Fig. 5(e) and compare with
Fig. 3(f)].

For Figs. 5(h)–5(k), S2J1 = S4JN,1 = 0.0 and t2 = 1.0 are
used and the other parameters are the same with those for
Fig. 3. In this case which corresponds to Fig. 5(c), the AFI
state is stabilized enough without metastability in system 1,

and neither IM transition nor remarkable multiplication of e-h
pairs occurs. Therefore, a small amount of ne,2 is obtained
at T ∼ 1000. The comparison between Figs. 3(e)–3(h) and
Figs. 5(h)–5(k) shows that the effect of carrier multiplication
results in a three times or more larger amount of collected
electron and hole.

Here, let us discuss the efficiency of the light-to-electric
energy conversion within this calculation. During 0 < T <

Tf , the light is applied to excite the electronic state, and
the energy absorbed from the light (Ef ) is defined as the
excitation energy of the particle-hole pair just after Tf . Because
the transfer integral t ′ = 0.1 between system 1 and system 2
is much smaller than those within each system, one can
approximately define the chemical potentials independently.
Therefore, �V can be regarded as the “voltage drop” of the
designed solar cell in our model. A measure of the electric
power generation (W ) is the product of �V and the amount of
transferred electron ne,2 at the system 2. By using the value of
ne,2 at T = 1000 where the relaxation is almost saturated, we
estimate the efficiency W/Ef as follows: W/Ef ∼ 33% in the
case of Fig. 3, W/Ef ∼ 20% in the case of Figs. 5(d)–5(g),
and W/Ef ∼ 10% in the case of Figs. 5(h)–5(k). Thus it is
concluded that the multiple carrier generation due to electron
correlation offers an efficient way to improve the energy
conversion rate in the solar cell.

IV. DISCUSSION

We have examined the junction system composed of light
absorber and selective contact; the latter one is introduced
to collect the charge carrier. Our theoretical results indicate
the strategy to enhance the number of collected electrons and
holes using multiplication of e-h pairs: (1) metastability for
IM transition in the light absorber; (2) matching of band gap
between the light absorber and selective contact; (3) high
DOS at the low-energy window of the selective contact. To
(1), the metastability and/or instability of the IM transition
can be controlled by9 external magnetic field, external electric
field, chemical carrier doping, chemical pressure, strain effect
by heterojunction and superlattice, and so on, i.e., there
are a large number of control parameters. The dynamics
during the IM transition, i.e., the gap-closing dynamics, is
responsible for the multiplication of e-h pairs. Near the phase
boundary of the first-order phase transition, the characteristic
real-time dynamics is expected as a steady state under the light
irradiation: the insulating electronic state melts into a metallic
one by light irradiation. The melting is the time evolution of
the spatially inhomogeneous electronic state rather than the
instantaneous and simultaneous transition in the whole area.14

Depending on the metastability of the insulating and metallic
state, the areas with IM transition locally appear and dis-
appear successively, and the time-dependent inhomogeneous
mixed state by different phases forms the steady state. In a
large family of the transition metal oxides, e.g., vanadates,
nickelates, and manganites, this situation of metastability
often occurs. The IM transition along with the characteristic
dynamics is of crucial importance for the mass production of
photocarrier by the multiplication. The multiplication mainly
occurs at the low-energy window. To take advantage by the
carrier multiplication, the conduction band of the selective
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contact must be focused on the low-energy window. This
is of importance for the design of the junction. The band
gap of the selective contact plays a role of “filter” to sort
out the multiplied carriers from the light absorber, by tuning
of the band-gap alignment. For this purpose, the strongly
correlated system is not always required for the selective
contact.

It is noted that the mechanism of solar-cell action due to
IM transition discussed in the present paper is rather robust
against the electron-phonon interaction which is a serious issue
in the conventional semiconductor systems. Our numerical
results show that the band gap closes in the early stage
(typically within the order of small fraction of picosecond)
of the photoinduced real-time dynamics of electronic state,
and carrier multiplication occurs and is enhanced with the
band-gap closing. Once the metallic electronic state is achieved
the electron-phonon interaction is suppressed due to the
screening.21 Usually the electron-phonon interaction becomes
active after this electronic process occurs, typically of the order
of 0.1–1 ps. Therefore, the mechanism of carrier multiplication
presented in this study is expected to be not disturbed by the
electron-phonon interaction.

V. SUMMARY

In conclusion, we have examined the multiplication of
e-h pairs in the interacting electron systems by the real-time
photoinduced dynamics. The metastability of the interacting
electron system brings about the characteristic dynamics of
the band gap and results in the multiplication of electron-hole
pairs. The multiplication mainly occurs at a low-energy win-
dow. This is of importance for the design of the junction system
to maximize the carrier generation. A future experimental
study using transition metal oxides, whose band lineup has
been investigated,22 is highly desired.
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