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Time-dependent effective potential and exchange kernel of homogeneous electron gas

V. U. Nazarov
Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan

(Received 30 January 2013; revised manuscript received 4 March 2013; published 19 April 2013)

By minimizing the difference between the left- and the right-hand sides of the many-body time-dependent
Schrödinger equation with the Slater-determinant wave function, we derive a nonadiabatic and self-interaction-
free time-dependent single-particle effective potential, which is the generalization to the time-dependent case of
the so-called localized Hartree-Fock potential. The new potential can be efficiently used within the framework
of the time-dependent density-functional theory as we demonstrate by the evaluation of the wave vector and
frequency-dependent exchange kernel f h

x (q,ω) of the homogeneous electron gas. This is found to be nonsingular
and causal, and it satisfies the positiveness of the dissipation, in contrast to the earlier known kernel from the
first-order perturbation theory, which makes our f h

x promising for applications.
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I. INTRODUCTION

Time-dependent (TD) density-functional theory (DFT)1 is
in the perpetual search for effective single-particle potentials
which accurately (ideally, exactly) map the propagation of an
interacting many-body system onto that of a noninteracting
one. While the exchange-correlation (xc) functionals based on
the local-density approximation (LDA)2,3 and its semilocal re-
finement of the generalized gradient approximation (GGA)4–6

have proven very successful in the ground-state DFT, in
TDDFT the usefulness of (semi)local approaches is limited
due to the fundamental spatial nonlocality of the exact TD xc
functional.7

Beyond LDA and GGA, the concept of the optimized
effective potential (OEP)8,9 plays one of the key roles in
the systematic nonheuristic construction of DFT. In the
ground-state case, OEP is defined as a single-particle potential
which minimizes the many-body Hamiltonian expectation
value taken on the Slater-determinant wave function. From
the DFT perspective, OEP is the first term in the adiabatic
connection series in the powers of the interaction constant
[exact exchange (EXX)].10 The generalization of the OEP
to the time-dependent case has been proposed11,12 but is
impractical for applications due to the formidable complexity
of the integral equation involved.

In this paper we propose and implement an alternative
approach to the development of the time-dependent single-
particle effective potential for many-body problems. This
is based on the variational principle of the minimization
of the difference between the left- and right-hand sides
of the time-dependent Schrödinger equation, which we had
introduced almost three decades ago.13 By this and with no
further approximations or ad hoc assumptions, we derive a
time-dependent effective potential with the following useful
properties: (i) It is free of self-interaction; (ii) it is expressed
in terms of an equation easily solvable for both a finite and an
infinite periodic (or homogeneous) problems; and (iii) in the
static case, our effective potential reduces to the previously
known so-called localized Hartree-Fock (HF) potential.14,15

As an immediate application of this approach, we derive
the dynamic exchange kernel fx(q,ω) of the homogeneous
electron gas (HEG).

This paper is organized as follows: In Sec. II we introduce
the variational principle of the minimization of the difference
between the left- and right hand sides of TD Schrödinger
equation and we work out the TD effective potential. In Sec. III
we use this potential to evaluate the exchange kernel of the
homogeneous electron gas. In Appendix A we give details
of the derivation of the effective potential. In Appendix B
we give an alternative derivation of the effective potential. In
Appendix C we evaluate integrals involved in the expression
of fx(q,ω). In Appendix D we analytically derive the infinite-
frequency limit fx(q,∞). Atomic units are used throughout.

II. TIME-DEPENDENT VARIATIONAL PRINCIPLE AND
SINGLE-PARTICLE EFFECTIVE POTENTIAL

A. Formalism

We are considering an N -electron system with the TD
Hamiltonian

Ĥ (t) =
∑

i

[
− 1

2
�i + vext (ri ,t)

]
+

∑
i<j

1

|ri − rj | . (1)

The many-body wave function �(t) propagates according to
the Schrödinger equation

i
∂�(t)

∂t
= Ĥ (t)�(t).

We ask the question: What is the potential veff (r,t) such
that the functional∫ ∣∣∣∣i ∂�s(t)

∂t
− Ĥ (t)�s(t)

∣∣∣∣
2

dr1 . . . drN (2)

is minimal at a given arbitrary time t , where �s(t) is the Slater
determinant built with the single-particle orbitals ψα(r,t), the
latter satisfying the single-particle Schrödinger equation

i
∂ψα(r,t)

∂t
=

[
− 1

2
� + veff (r,t)

]
ψα(r,t)? (3)

Let us assume that the TD part of vext (r,t) was absent at t <

0, and we have already solved the static problem of determining
veff (r) at t < 0 and the corresponding orbitals ψα(r,t) at
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t � 0. At t = 0, the time dependence of the potential is
switched on. Knowing the orbitals ψα(r,0), we find veff (r,0)
which, by determining ∂ψα(r,t)/∂t |t=0 using Eq. (3), mini-
mizes the functional (2) at t = 0. We then find ψα(r,�t) ≈
ψα(r,0) + ∂ψα(r,t)/∂t |t=0�t , where �t is a small time
increase. The procedure is repeated up to an arbitrary
time t .

In the �t → 0 limit, this scheme reads as follows: With
fixed (but yet unknown) orbitals ψα(r,t), we are looking for the
potential veff (r,t), which, by determining ∂ψα(r,t)/∂t using
Eq. (3), minimizes the functional (2). This gives veff (r,t) as a
functional of the orbitals, and, finally, the orbitals themselves
are found by the self-consistent solution of Eqs. (3).

We emphasize that in the above procedure �s(t) is un-
affected by the variation of veff (r,t ′) at t � t ′. Indeed, due
to causality, �s(t) does not depend on veff (r,t ′) at t < t ′.
Moreover, because of the very structure of the Schrödinger
equation for �s

i
∂�s(t)

∂t
=

∑
i

[
− 1

2
�i + veff (ri ,t)

]
�s(t) (4)

as the first-order differential equation with respect to time,
�s(t) does not depend on veff (r,t) at the same moment
t : Even if veff (r,t) experiences a jump at the moment t ,
only �s(t ′),t ′ > t would be affected, not �s(t). This property
can be referred to as the “inertia” of the wave function. In
contrast, ∂�s(t)/∂t is affected instantaneously by the change
in veff (ri ,t) according to Eq. (4).

Exploiting this property, at every particular moment t ,
we adjust veff (r,t) and, therefore, by Eq. (4), ∂�s(t)/∂t to
make the functional (2) minimal. According to this procedure,
globally in time �s(t) remains a functional of veff (r,t ′) at
t ′ < t as causality dictates. We note that a procedure of
the minimization of the same functional (2) with respect to
∂ψα/∂t as independently varied functions retrieves the TD
HF equations.13

By using Eq. (4) the functional (2) can be rewritten as

∫ [ ∑
i

ṽ(ri ,t) −
∑
i<j

1

|ri − rj |

]2

|�s(t)|2dr1 . . . drN, (5)

where ṽ = veff − vext . By equating to zero the first variation
of Eq. (5) with respect to δṽ = δveff , where the expression in
the brackets but not �s(t) is varied, we find

∫ [ ∑
i

ṽ(ri ,t) −
∑
i<j

1

|ri − rj |

]

× |�s(t)|2
∑

i

δṽ(ri ,t)dr1...drN = 0,

which can be rewritten using the permutational symmetry of
the wave function as

∫ [ ∑
i

ṽ(ri ,t) −
∑
i<j

1

|ri − rj |

]

|�s(t)|2δṽ(r1,t)dr1 . . . drN = 0,

and, due to the arbitrariness of δṽ,∫ [∑
i

ṽ(ri ,t) −
∑
i<j

1

|ri − rj |

]
|�s(t)|2dr2 . . . drN = 0.

(6)

Straightforward but rather lengthy transformations carried out
in Appendix A lead from Eq. (6) to the following equation for
the exchange potential vx = ṽ − vH , where vH is the Hartree
potential:

n(r,t)vx(r,t) =
∫ [

vx(r1,t) − 1

|r − r1|
]
|ρ(r,r1,t)|2dr1

+
∫

ρ(r,r1,t)ρ(r1,r2,t)ρ(r2,r,t)
|r1 − r2| dr1dr2,

(7)

where

n(r,t) =
N∑

α=1

|ψα(r,t)|2, (8)

ρ(r,r1,t) =
N∑

α=1

ψα(r,t)ψ∗
α (r1,t) (9)

are the particle density and the single-particle density matrix,
respectively.16 Equation (7) is the main result of this paper.

B. Properties of the effective potential

First, we note that the only difference of Eq. (7) from
the earlier known static localized HF potential (see Refs. 14
and 15 for spin-neutral and spin-polarized cases, respectively)
is the time dependence of all the quantities involved. However,
it must be emphasized that without the derivation from the
time-dependent variational principle the generalization of the
static localized HF potential to the time-dependent case by just
inserting the time variable into the static equation would have
been ungrounded. Trivially, Eq. (7) reduces to the equation
for the localized HF potential in the time-independent case.
Therefore, as a by-product, our method provides an alternative
derivation of the localized HF potential of the stationary
problem, treating it as a specific case of the TD problem and
requiring the minimal violation of TD Schrödinger equation,
rather than doing it from the approximation of the equality of
HF and EXX orbitals.14 Comparison of the two methods of
the derivation of Eq. (7) is carried out in Appendix B.

The solution of Eq. (7) in the case of a few-body system
does not present a difficulty, as has already been pointed out
in Ref. 14 in conjunction with the time-independent case: Due
to Eq. (9), the kernel |ρ(r,r1,t)|2 of the integral equation (7)
is a separable function with respect to r and r1 variables. It
also does not present a difficulty in the case of infinite periodic
systems, when the equation reduces to the matrix one. The
fact that vx(r,t) is free of self-interaction can be demonstrated
by substituting ρ(r,r1,t) = ψ(r,t)ψ∗(r1,t) into Eq. (7) for a
one-particle system, which gives vx(r,t) = −vH (r,t) + A(t),
where A(t) is a time-dependent constant, and, moreover,
A(t) = 0 by Eq. (A10) of the Appendix A.

Equation (7) admits an explicit solution in the simplest
nontrivial case of a two-body system propagating in a singlet
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state. By substituting

ρ(rσ,r′σ ′,t) = ψ(r,t)ψ∗(r′,t)[δ↑σ δ↑σ ′ + δ↓σ δ↓σ ′],

where the coordinate and spin variables are written explicitly
and δσσ ′ is the Kronecker δ, into Eq. (7), we obtain

vx(r,t) = −1

2

∫
n(r′,t)
|r − r′|dr′ − 1

8

∫
n(r′,t)n(r′′,t)

|r′ − r′′| dr′dr′′,

(10)

where the second term is a time-dependent constant. Equation
(10) shows that in a singlet state of two particles our exchange
potential is effectively minus one half of the Hartree potential,
which coincides exactly with both HF and EXX results.17

We conclude this section by noting that the variational
principle we employ to derive the TD exchange potential of
Eq. (7) is the minimum principle, which is in contrast to the
stationary variational principle used to derive the conventional
OEP.11

III. DYNAMIC EXCHANGE KERNEL OF THE
HOMOGENEOUS ELECTRON GAS

We now apply our effective potential to obtain the wave
vector and frequency-dependent exchange kernel fx(q,ω) of
HEG, which, being a fundamental quantity by itself,18 is also
an important input in the theory of optical response of a
weakly inhomogeneous interacting electron gas.19 In the case
of HEG and a weak externally applied potential δvext (r,t) =
δvext (q,ω)ei(q·r−ωt), we linearize Eq. (7) with respect to the
latter. The zeroth-order orbitals are plane waves,20 and to the
zeroth and first orders we have for the density matrix

ρ0(r,r1) = 2

V

∑
k

∫
f (εk)eik·(r−r1),

δρ(r,r1,ω) = δvs(q,ω) eiq·r 2

V
(11)

×
∑

k

f (εk) − f (εk+q)

ω − εk+q + εk + iη
eik·(r−r1),

where εk = k2/2 are free-particle eigenenergies, f (εk) are
their occupation numbers, δvs(q,ω) is the perturbation of the
Kohn-Sham (KS) potential, V is the normalization volume,
and η is an infinitesimal positive. After the linearization, Eq. (7)
yields

δvx(q,ω)

δvs(q,ω)
= 4π

(2π )3A(q)

∫ [
1

ω − εk+q + εk + iη

− 1

ω + εk+q − εk + iη

]
{f (εk)B(q,k)

− f (εk+q)[f (εk) − 1]C(k)}dk, (12)

where

A(q) = n0 − 2

(2π )3

∫
f (εk)f (εk+q)dk, (13)

B(q,k) = 2

(2π )3

∫
f (εk1 )f (εk1+q)

|k − k1|2 dk1, (14)

C(k) = 2

(2π )3

∫
f (εk1 )

|k − k1|2 dk1. (15)

With the use of Eq. (12), the exchange kernel is now found as

f h
x (q,ω) ≡ δvx(q,ω)

δn(q,ω)

= δvx(q,ω)

δvs(q,ω)

δvs(q,ω)

δn(q,ω)
= δvx(q,ω)

δvs(q,ω)

(
χh

s

)−1
(q,ω),

(16)

where χh
s (q,ω) is the Lindhard density-response function21

χh
s (q,ω) = 2

V

∑
k

f (εk)−f (εk+q)

ω−εk+q+εk+iη
. (17)

In Appendix C, we evaluate the integrals (13) and (15)
analytically and reduce the integral (14) to a single-fold one.

It can be seen from Eqs. (12) and (16) that Im f h
x is nonzero

inside the single particle-hole excitation continuum only and
shares this property with its counterpart from the first-order
perturbation theory.22 This deficiency of fx derived from our
effective potential is not limited to HEG but, as can be easily
seen, persists for any extended (periodic) system. Therefore,
such subtle effect as the high-frequency tail of Im fx of HEG23

cannot be accounted for within the present approach. Instead,
we now show that fx derived from our effective potential
significantly corrects the Lindhard dielectric function of HEG
within the single particle-hole continuum. We also note that
our f h

x (q,ω) does not have singularities, is causal, and satisfies
the requirement of the positivity of dissipation, all of which
are violated by the first-order perturbation theory.18,22

In Fig. 1, the exchange kernel f h
x (q,ω) obtained by the use

of Eqs. (12) and (16) is plotted at q = 0.5 × kF for rs = 2 and
5. With the inclusion of fx , the dielectric function of HEG can
be written as

εh(q,ω) = 1 − 4π

q2

χh
s (q,ω)

1 + χh
s (q,ω)f h

x (q,ω)
. (18)

In Fig. 2, the dielectric function of HEG of rs = 5 obtained
through Eq. (18) is plotted together with the Lindhard dielectric
function. From this we judge that the dynamic exchange plays
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FIG. 1. (Color online) Exchange kernel f h
x (q,ω), q = 0.5 × kF ,

of HEG of rs = 2 (black curves) and rs = 5 (red [gray] curves). Solid
and dashed curves are real and imaginary parts of f h

x , respectively.
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FIG. 2. (Color online) Dielectric function εh(q,ω), q = 0.5 × kF ,
of HEG of rs = 5 evaluated by the use of Eq. (18) with the
exchange kernel f h

x included (red [gray] curves) and its Lindhard
counterpart εh

s (q,ω) (black curves). Solid and dashed curves are real
and imaginary parts of the dielectric function, respectively.

a significant role at this density and can hardly be considered
as a weak perturbation.

In Fig. 3, the static exchange kernel f h
x (q) is plotted for

HEG of rs = 5 as a function of the wave vector, where we find a
qualitative agreement with the Monte Carlo (MC) simulations
of f h

xc(q,0) of Ref. 24.
The following limiting cases can be further worked out

from Eqs. (12)–(15):25

f h
x (0,ω 
= 0) = − 3π

4k2
F

, (19)

lim
q→0

f h
x (q,0) = − π

k2
F

, (20)

lim
q→∞ f h

x (q,0) = −2π

q2
, (21)

and the infinite-frequency limit at an arbitrary wave vector
f h

x (q,∞) is given in Appendix D. Equation (19) suggests that,
similar to the first-order perturbation theory,22 our fx(0,ω) is
purely real and frequency independent. More refined theories
taking correlations into account26 but restricted to the q = 0
case, do account for the imaginary part of fxc(0,ω). We
note that the value in the right-hand side of Eq. (19) is
somewhat greater than the EXX value −3π/(5k2

F ) derived
from the exact relation between f h

xc(0,∞) and the xc energy
per particle εxc,26,27 with the substitution of the exchange-only
εx = −3kF /(4π ) for the latter. Since both EXX and our
scheme are approximate approaches, this discrepancy must
not be a surprise. On the other hand, the limit of Eq. (20) is in
the perfect agreement with the compressibility sum rule26,27 in
the exchange-only case.
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−2π/q2

FIG. 3. (Color online) Static exchange kernel f h
x (q) of HEG of

rs = 5. Solid line (red [gray]) is the present result. Symbols with
error bars are f h

xc(q) by MC simulations from Ref. 24. The dashed
line (blue [dark gray]) shows the asymptotic behavior at large q, as
stipulated by Eq. (21).

IV. CONCLUSIONS

Within the well-defined procedure of the minimization
of the difference between the left- and right-hand sides of
the time-dependent Shrödinger equation, we have derived a
time-dependent single-particle effective potential for a system
of an arbitrary number of electrons under the action of a
time-dependent external field. This potential is nonadiabatic
and free of self-interaction. At the same time, our effective
potential is comparatively easy to evaluate, which is in contrast
to previously known TD optimized effective potentials. These
properties open a way to efficiently use this potential within
the context of the time-dependent density-functional theory,
as we demonstrate by the derivation of the exchange kernel
f h

x (q,ω) of the homogeneous electron gas. This f h
x is found

to be nonsingular and causal and satisfies the requirement of
the positivity of the dissipation, which makes it superior to the
earlier known kernel by the first-order perturbation theory and
opens up a way to use our kernel in applications.
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APPENDIX A: DETAILS OF THE DERIVATION OF EQ. (7).

Using permutational symmetry, we can rewrite Eq. (6) as

ṽ(r1,t)
∫

|�s(t)|2dr2 . . . drN +
∫ [

(N − 1)ṽ(r2,t) − (N − 1)

|r1 − r2| − (N − 1)(N − 2)

2|r2 − r3|
]
|�s(t)|2dr2 . . . drN = 0, (A1)

or

ṽ(r1,t)n(r1,t)

N
+ (N − 1)

∫ [
ṽ(r2,t) − 1

|r1 − r2| − N − 2

2|r2 − r3|
]
|�s(t)|2dr2 . . . drN = 0, (A2)
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where n(r,t) is the particle density. Further simplifications give

ṽ(r1,t)

N (N − 1)
+

∫ [
ṽ(r2,t) − 1

|r1 − r2|
]
ρ2(r1,r2; r1,r2; t)

n(r1,t)
dr2 − (N − 2)

2

∫
ρ3(r1,r2,r3; r1,r2,r3; t)

n(r1,t)|r2 − r3| dr2dr3 = 0, (A3)

where the k-particle density matrix is

ρk(r1, . . . rk; r′
1, . . . r′

k; t) =
∫

�s(r1 . . . rk,r′′
k+1 . . . r′′

N,t)�∗
s (r′

1 . . . r′
k,r

′′
k+1 . . . r′′

N,t)dr′′
k+1 . . . dr′′

N . (A4)

For the Slater-determinant wave function �s(t) the equalities hold

ρ2(r1,r2; r1,r2; t) = 1

N (N − 1)
[n(r1,t)n(r2,t) − |ρ(r1; r2,t)|2], (A5)

ρ3(r1,r2,r3; r1,r2,r3; t) = 1

N (N − 1)(N − 2)
[n(r1,t)n(r2,t)n(r3,t) − n(r2,t)|ρ(r1; r3,t)|2 − n(r3,t)|ρ(r1; r2,t)|2

− n(r1,t)|ρ(r2; r3,t)|2 + ρ(r1; r2,t)ρ(r2; r3,t)ρ(r3; r1,t) + ρ(r1; r3,t)ρ(r3; r2,t)ρ(r2; r1,t)], (A6)

where

ρ(r; r′,t) = Nρ1(r; r′,t) =
∑

α

ψα(r,t)ψ∗
α (r′,t). (A7)

Therefore

ṽ(r1,t) − VH (r1,t) −
∫ [

ṽ(r2,t) − 1

|r1 − r2|
] |ρ(r1; r2; t)|2

n(r1,t)
dr2 +

∫
n(r2,t)|ρ(r1; r3,t)|2

n(r1,t)|r2 − r3| dr2dr3

−
∫

ρ(r1; r2,t)ρ(r2; r3,t)ρ(r3; r1,t)

n(r1,t)|r2 − r3| dr2dr3 + C(t) = 0, (A8)

where

VH (r,t) =
∫

n(r′,t)
|r − r′|dr′, (A9)

C(t) =
∫

ṽ(r2,t)n(r2,t)dr2 − 1

2

∫
n(r2,t)n(r3,t)

|r2 − r3| dr2dr3

+ 1

2

∫ |ρ(r2; r3,t)|2
|r2 − r3| dr2dr3 = 0, (A10)

and the second equality in Eq. (A10) follows from Eq. (A8).
Equations (A8) and (A10) give immediately Eq. (7).

APPENDIX B:DIFFERENT METHOD OF DERIVATION
OF EQ. (7)

In this Appendix we outline the derivation of the effective
potential of Eq. (7) in the same spirit as has been done in Ref. 14
in application to the time-independent case. HF and EEX
determinant wave functions, �HF and �EXX, respectively,
satisfy the equations

i
∂�s(t)

∂t
= ĤHF (t)�s(t), (B1)

i
∂�s(t)

∂t
= ĤEXX(t)�s(t), (B2)

where ĤHF and ĤEXX are HF and EXX Hamiltonians,
respectively, and the approximation of Ref. 14, �HF =
�EXX(= �s), has been applied. By subtracting Eq. (B2) from
Eq. (B1), multiplying by �∗

s , and integrating over all but one
particle’s coordinates, we arrive at Eq. (7) in the similar way
as has been done in Ref. 14 in the time-independent case. It
must be noted, however, that Eqs. (B1) and (B2) cannot hold
simultaneously except in trivial cases. We, therefore, consider

the derivation from the time-dependent variational principle
preferential with respect to the mathematical formulation, as
it also is with respect to the physical insight it imparts.

APPENDIX C: INTEGRALS (13)–(15)

For integrals (13) and (15) we have straightforwardly

A(q) = n0 − 1

48π2
�(2kF − q)(2kF − q)2(4kF + q), (C1)

C(k) = 2

(2π )3
H (k,kF ), (C2)
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FIG. 4. Exchange kernel as a function of the wave vector q at
infinite frequency. Solid lines are results from Eq. (D2) for rs = 2,5,

and 10. Dashed lines are f h
xc(q,∞) with the neglect of the correlation

kinetic energy taken from Ref. 28.
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where �(x) is the Heaviside step function and

H (k,p) = π

k

[
(p2 − k2) log

∣∣∣∣p + k

p − k

∣∣∣∣ + 2kp

]
. (C3)

For integral (14) we have

B(q,k) = 2

(2π )3
�(kF − q)H (k,kF − q) + 2

(2π )2
�(2kF − q)

∫ kF

|kF −q|
P

(
k,k1,

k2
F − k2

1 − q2

2k1q
,
k · q
kq

)
dk1, (C4)

where

P (k,k1,x,y) = k1

2k

{
log

[√
k4 + 4k2k2

1x
2 + 2kk1

[
kk1(2y2 − 1) − 2xy

(
k2 + k2

1

)] + k4
1 + 2kk1x − y

(
k2 + k2

1

)]
− log((1 − y)(k − k1)2)

}
. (C5)

APPENDIX D: INFINITE-FREQUENCY LIMIT OF fx(q,ω)

By expanding Eq. (12) to the second order in ω−1, we have

δvx(q,ω)

δvs(q,ω)
= 16π

(2π )6A(q)ω2

∫
q · k
k2

f (εk+k1 )f (εk1+q)

×
[
f

(
εk1

) − 1

2

]
dkdk1 + O(ω−4). (D1)

Equation (D1) can be analytically evaluated. With the use of
Eq. (16), for the kernel this gives

fx(q,∞) = − kF

560πq̃3A(q)
{[Z(q̃) + Z(−q̃) − 4q̃6

+ 10q̃4(13 + 14 log 2) − 8q̃2(3 + 28 log 2)

+ 192 log(2)]�(2 − q̃) + [Z(q̃) − Z(−q̃)

+ 2(28 − q̃2)q̃5 log q̃ + 4(q̃4 + 44q̃2 + 24)q̃]

� (q̃ − 2)}, (D2)

where q̃ = q/kF , A(q) is given by Eq. (C1), and

Z(x) = (x + 2)4[(x − 6)(x − 2)x − 6] log |x + 2|. (D3)

In Fig. 4 we plot fx(q,∞) of Eq. (D2) and compare it
with fxc(q,∞) of Ref. 28 [f (1)

xc (q,∞)] calculated with the
neglect of the correlation kinetic energy and with the use of
the static structure factor of Ref. 29. The two are found to be
in reasonable agreement.
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