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We use a combination of numerical density matrix renormalization group calculations and several analytical
approaches to comprehensively study a simplified model for a spatially anisotropic spin- 1

2 triangular lattice
Heisenberg antiferromagnet: the three-leg triangular spin tube (TST). The model is described by three Heisenberg
chains, with exchange constant J , coupled antiferromagnetically with exchange constant J ′ along the diagonals
of the ladder system, with periodic boundary conditions in the shorter direction. Here, we determine the full phase
diagram of this model as a function of both spatial anisotropy (between the isotropic and decoupled chain limits)
and magnetic field. We find a rich phase diagram, which is remarkably dominated by quantum states: the phase
corresponding to the classical ground state appears only in an exceedingly small region. Among the dominant
phases generated by quantum effects are commensurate and incommensurate coplanar quasiordered states, which
appear in the vicinity of the isotropic region for most fields, and in the high-field region for most anisotropies.
The coplanar states, while not classical ground states, can at least be understood semiclassically. Even more
strikingly, the largest region of phase space is occupied by a spin density wave phase, which has incommensurate
collinear correlations along the field. This phase has no semiclassical analog, and may be ascribed to enhanced
one-dimensional fluctuations due to frustration. Cutting across the phase diagram is a magnetization plateau,
with a gap to all excitations and “up-up-down” spin order, with a quantized magnetization equal to 1

3 of the
saturation value. In the TST, this plateau extends almost but not quite to the decoupled chains limit. Most of
the above features are expected to carry over to the two-dimensional system, which we also discuss. At low
field, a dimerized phase appears, which is particular to the one-dimensional nature of the TST, and which can be
understood from quantum Berry phase arguments.

DOI: 10.1103/PhysRevB.87.165123 PACS number(s): 75.10.Jm, 75.40.Cx, 75.50.Ee

I. INTRODUCTION

The nearest-neighbor spin- 1
2 Heisenberg antiferromagnet

on the triangular lattice is an archetypal model of frustrated
quantum magnetism. While the isotropic model in zero field
is rather well understood and is known to order into a coplanar
“120◦” state,1 away from this limit the situation is less clear.
Two deformations of the Hamiltonian are of particular physical
and experimental importance: the application of an external
magnetic field and the introduction of spatial anisotropy into
the exchange interactions.

The spatial anisotropy is introduced by decomposing the
lattice into chains with bonds of strength J , arranged into
a parallel array, with interchain interactions of strength J ′
(see Fig. 1). Here, we define R ≡ 1 − J ′/J as the degree of
anisotropy, and h measures the applied magnetic field. There
have been many extensive studies that consider these effects
separately. However, a two-dimensional (2D) phase diagram,
taking both effects together, remains to be understood. This
problem is of considerable experimental interest. The appli-
cation of a magnetic field is one of the few general means to
tune quantum magnets in situ, and provides very important
information on the quantum dynamics, as well as clues to
the underlying spin Hamiltonian, which is often not well
known. Two materials whose behavior in magnetic fields has
been extensively studied are Cs2CuCl4 and Cs2CuBr4, which
are known to be approximately described by the spatially
anisotropic version of the model, with larger anisotropy in
the chloride (R ≈ 0.7) than the bromide (R ≈ 0.3–0.5). Both
materials exhibit a rich structure of multiple phases in applied

magnetic fields, for which a theoretical view of the phase
diagram would be quite helpful.

The solution of the ground state of a fully two-dimensional
frustrated quantum spin model in a two-parameter phase space
is quite ambitious. Here, we consider a somewhat simpler task
by concentrating on the problem defined by the model confined
to a cylinder with a circumference of three lattice spacings
(i.e., making y periodic with period 3), which we refer to as
a triangular spin tube, or TST (see Fig. 2). By a combination
of analytical approaches and extensive numerical simulations
using the density matrix renormalization group2 (DMRG), we
reveal a rich and complex phase diagram for the TST, shown
in Fig. 3. We argue in the Discussion (Sec. VIII) that much
of this diagram translates to the fully 2D model. Whenever
possible, we use a nomenclature for the ground-state phases
which translates directly to two dimensions, although there
are, of course, differences due to the absence of spontaneously
broken continuous symmetry in one dimension.

Different parts of this phase diagram will be discussed
in detail in the bulk of the paper, but we will highlight a
few aspects here, where strong quantum features occur. First,
the isotropic line R = 0 as a function of magnetic field has
been considered many times in the two-dimensional limit.
There, semiclassical methods3,4 predict the stabilization of
both coplanar spin configurations by quantum fluctuations,
and, most interestingly, a magnetization plateau, at which the
magnetization of the system is fixed (at T = 0) at 1

3 of the
saturation magnetization over a range of magnetic fields. We
will refer to this state as the “ 1

3 plateau” throughout this text.
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FIG. 1. TST in (a) Cartesian and (b) sheared coordinates with
intrachain interactions J and interchain interactions J ′.

On the plateau, the spins order into a collinear configuration.
Stabilization of such a plateau is very much a quantum
effect and is one of the more striking quantum features of
the TST. The presence of the plateau has been confirmed
for both the one-dimensional5–7 and the two-dimensional
spin- 1

2 Heisenberg models by exact diagonalization,8 coupled-
cluster,9 and variational10 methods. Our DMRG study of the
TST is also consistent with the semiclassical picture along the
R = 0 line. We directly confirm the two “coplanar” phases,
and accurately locate the boundaries of the 1

3 plateau.
Another regime of strong quantum fluctuations occurs

when R is close to 1, where the system is composed of
weakly coupled (strictly) one-dimensional (1D) chains. There,
an approach based on scaling and bosonization methods
is possible, following Refs. 11 and 12. Those techniques
(explained in this context in Sec. V) predict a spin density

FIG. 2. (Color online) TST in sheared coordinates with period of
three lattice spacings in the y direction. It is crucial to note that this ge-
ometry allows one to write

∑3
y=1

∑
x OyOy+1 = ∑3
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for an operator O.
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FIG. 3. (Color online) Phase diagram for the spatially anisotropic
spin- 1

2 TST in a magnetic field. Here, we use the following
abbreviations to label the various phases of the diagram: C =
commensurate; IC = incommensurate; SDW = spin density wave.
R ≡ 1 − J ′/J is the degree of anisotropy. The dashed lines indicate
constant magnetization lines, where the upper, middle, and lower
ones are atM/Ms = 5

6 ,
1
2 , and 1

6 , respectively.

wave (SDW) state over a wide range of applied fields. In
this SDW state, the dominant spin correlations are those of
the Ising component parallel to the field, in sharp contrast to
the classical behavior. Our DMRG simulations show that the
SDW state dominates a remarkably broad region of the phase
diagram, extending far beyond the decoupled line R = 1.

In two dimensions, the quasi-1D approach of Refs. 11 and
12 shows the existence of a (very narrow) 1

3 plateau arising out
of the SDW phase, leading to the speculation that the plateau
persists for allR in two dimensions. In the TST, we find that the
plateau is also very robust, and persists almost, but not quite,
to the 1D limit. The suppression relative to two dimensions
can be understood as a result of enhanced fluctuations due to
the one dimensionality of the TST. To check this, we have also
carried out some DMRG studies of wider cylinders consisting
of six and nine sites in the periodic direction. Our results
appear consistent with the existence of a plateau for all R in
two dimensions.

The last quantum regime we discuss here is clearly specific
to the periodic boundary conditions imposed around the TST.
This occurs at zero field, where for all values ofR, we observe
a spontaneously dimerized ground state. The dimerization is
most clearly observed in the entanglement entropy, which
shows a pronounced oscillatory behavior along the chain.
We argue that this can be understood as an effect of one-
dimensional quantum fluctuations upon an underlying short-
range spiral magnetically ordered state, somewhat similar to
the formation of a Haldane gap in integer spin chains with
collinear classical states. The elementary excitations of the
dimerized state are solitons, and we show how the behavior
at small magnetization can be understood in terms of a dilute
system of such solitons.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the model and then describe key technical
aspects of our DMRG simulations, including the procedure to
determine the phase boundaries using the second derivative
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of the ground-state energy and entanglement entropy, and
careful finite-size scaling. In Sec. III, we review and compare
the semiclassical predictions to the DMRG results in the
isotropic limit. Next, we discuss the high-field region in
Sec. IV. In the vicinity of the saturation field, the problem
can be modeled as a dilute system of spin-flip bosons. We
compare an analysis of this limit, built upon an analytic
solution of the Bethe-Salpeter equation, to the DMRG, and
find a transition between coplanar and cone phases, and a
commensurate-incommensurate transition. In Sec. V, we study
the regime of weakly coupled chains, and in particular discuss
the spin density wave (SDW) state and show that the 1

3
plateau terminates in a Kosterlitz-Thouless transition around
R ∼ 0.7 ± 0.1 for the TST. We consider the low-field region
in Sec. VII, showing the persistent dimerization, the evidence
for solitons at small magnetization, and the commensurate
to incommensurate transition near R = 0. DMRG numerical
results will be presented throughout these sections, presenting
the important features used to identify each phase. Physical
quantities, such as entanglement entropy, vector chirality, and
the spin density profile will be shown for some representative
large system size. Finally, we conclude in Sec. VIII with a
summary and discuss some generalizations of our results to
larger spin and two-dimensional systems.

II. MODEL AND DMRG METHOD

A. Hamiltonian and notation

The explicit Hamiltonian studied in this paper is written as

H =
∑
x,y

[J Sx,y · Sx+1,y + J ′ Sx,y · (Sx,y+1 + Sx−1,y+1)]

−h
∑
x,y

Szx,y, (1)

where x is the direction along the chains, and y is perpendicular
to it, and h is the magnetic field. Importantly, we choose
coordinates, as shown in Fig. 1(b), where the triangular lattice
is “sheared” to embed it in a square one. This is convenient for
the application of periodic boundary conditions in the TST.

Many previous works on the anisotropic triangular lattice in
two dimensions, including those by some of the authors,11,13

use instead “Cartesian” coordinates, as shown in Fig. 1(a).
Both for convenience in certain calculations (especially in the
quasi-one-dimensional limit), and to clarify the connection to
this prior work, we give the relation between the sheared and
Cartesian coordinates here. In Cartesian coordinates, we take
the distance between sites along the chains and the (normal)
distance between chains to unity. Defining the Cartesian
coordinates as x,y, and r = (x,y), then

x = x + y/2, y = y. (2)

From this, we may also obtain the relationship between wave
vectors in the two coordinate frames. We require q · r = q · r,
which implies

qx = qx, qy = 1
2 qx + qy. (3)

B. DMRG

Throughout this paper, we rely extensively on DMRG
simulations. For this study, we kept up to m = 3072 states
in the DMRG block, performing more than 24 sweeps to
obtain fully converged results. In doing so, we find that our
truncation error is of the order 10−7. We also take advantage
of the cylindrical boundary condition to study large systems
and to reduce finite-size effects for a more reliable extrapola-
tion to the thermodynamic limit. In particular, in the regions
above the 1

3 plateau, we find that observables have much better
convergence, with a truncation error of the order 10−9. Even
in the regions below the 1

3 plateau not close to the dimerized
phase, we find reasonable convergence, with a slightly larger
truncation error on the order of 10−7. However, when we
approach the dimerized phase near zero magnetization, finite-
size effects dominate: system sizes up to N = 180 × 3 do not
provide a reliable extrapolation to the thermodynamic limit.

The phase boundaries in Fig. 3 were determined from the
simulations. We describe the methodology for doing so here,
leaving the characterization of the phases which occur for
subsequent sections. For the case of continuous transitions, it is
common to calculate the second derivative of the ground-state
energy ∂2E0

∂R2 . The calculation follows standard procedure of
using three data points at R + dR, R, and R − dR, according
to the formula ∂2E0/∂R

2 = [E0(R + dR) + E0(R − dR) −
2E0(R)]/dR2. The derivative diverges when the infinite-size
system undergoes a transition. For finite systems, however,
one will observe a finite peak that increases with system
size. We then determine the phase boundaries numerically by
looking at the peak position as a function of tuning parameter
R. For example, as shown in Fig. 4(a), sharp peaks are
located at R = 0.6. We observe that the peak value increases
significantly with sample size, for all system sizes studied.
We have not attempted to carry out detailed finite-size scaling
analyses of the peaks, as our focus here is on the phases,
not the critical behavior at the transitions between them. This
transition corresponds to the upper dashed line in Fig. 3, where
there is a transition between an incommensurate planar and a
cone phase. We use similar procedures to determine phase
boundaries at other magnetizations, e.g., M/Ms = 1

2 ,
1
6 in

Figs. 4(b) and 4(c) correspond to the middle and lower dashed
lines in Fig. 3, respectively.

In addition to these divergent peaks, there are some other
features (which are not phase transitions) due to finite-size
effects. For example, in Fig. 4(a) for M/Ms = 5

6 , a broad
peak near R = 0.8 actually decreases (and eventually goes
to zero) in the thermodynamic limit. Therefore, we can
confidently say that the cone phase dominates in the region
R > 0.6, and that there is no transition at R = 0.8. Similarly,
for Figs. 4(b) and 4(c), the fluctuations in the plots near
R ≈ 0.7,0.45, respectively, are finite-size effects and vanish
in the thermodynamic limit.

Finally, we use the structure factor

Sμμ(q) = 1

N

∑
r,r′
e−iq·(r−r′)〈Sμr Sμr′

〉
(4)

to determine the boundaries between the commensurate and in-
commensurate phases. For example, for smallR, the transverse
and longitudinal components of the structure factor peak at
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FIG. 4. (Color online) Second derivative of the ground-state
energy with respect toR, for different values of magnetization. These
plots are used to locate the phase boundaries in Fig. 3.

commensurate momenta Q = (4π/3,2π/3) and (2π/3,4π/3),
respectively. This defines the “C planar” regions in Fig. 3.

III. SEMICLASSICAL BEHAVIOR IN THE
ISOTROPIC CASE

A. Two-dimensional model

The isotropic model J ′ = J has been extensively studied
in two dimensions, and it is believed that a semiclassical
description, with weak quantum fluctuations included via spin
wave theory, is qualitatively correct in this case.3 We find that
the semiclassical analysis largely carries over to the TST, with
small modifications to allow for one-dimensional fluctuations.
Therefore, we review the established semiclassical results first.

In the classical limit, where spins are described as O(3) vec-
tors, the isotropic problem is known to display an “accidental”
degeneracy in a nonzero applied magnetic field.14 This can be
seen from the fact that this model can be rewritten as

H = J

2

∑
�

(
S� − h

3J
ẑ
)2

, (5)

where S� = S1 + S2 + S3 is the sum of the spins on a triangle,
and the sum is over all triangles on the lattice. The ground-state
configuration is given by the constraint

S� − h

3J
ẑ = 0. (6)

ẑ

cos θx̂ + sin θŷ

ẑ

cos θx̂ + sin θŷ

(a) (b)
ẑ

(c)

FIG. 5. (Color online) Degenerate classical spin configurations
in the isotropic limit. With the magnetic field taken in the z direction,
(a) shows the “V” configuration above the 1

3 plateau, (b) depicts the
“Y” phase below the 1

3 plateau, while (c) shows the cone (or umbrella)
state.

At zero magnetization, this constraint is solved by placing all
spins in a plane, with the three spins in each triangle at 120◦
angles to one another in a three-sublattice structure. A specific
ground state is specified by three angles, e.g., two determining
the plane of the spins and one determining the angle within the
plane. All such states are related by O(3) spin symmetry; so,
this is a symmetry-demanded degeneracy. A previous DMRG
study15 on the 2D model also confirms the three-sublattice
structure.

In a nonzero field, the ground states retain a three-sublattice
structure, with three arbitrary angles remaining to determine
the specific ground state. However, the presence of the
field reduces the O(3) symmetry to O(2) [or U(1)], and
only one of these angular degrees of freedom is symmetry
demanded. The remaining two angular degrees of freedom
constitute an accidental degeneracy. Two simple states within
the degenerate manifold are the coplanar and umbrella ones,
shown in Fig. 5.

As first shown by Chubukov and Golosov,3 this accidental
degeneracy is lifted by quantum fluctuations. They showed
by a 1/S spin wave expansion that the degeneracy is lifted in
favor of the coplanar states. Additionally, they demonstrated
the existence of the 1

3 plateau, in which the spins adopt a three-
sublattice “up-up-down” structure. Away from the plateau, the
coplanar state retains a three-sublattice structure with ordering
wave vector Q = (4π/3,0), or Q = (4π/3,2π/3).3,4,16 Below
the plateau, the three spins form a “Y” with one spin
antiparallel to the field and two spins with equal positive
projection to the field but at opposite angles from each other.
This can be viewed as a deformation of the 120◦ state with
spins in a plane containing the magnetic field. Here, the spin
configurations can be parametrized by

〈S+
r 〉 = aeiθ sin(Q · r),

(7)〈
Szr
〉 = b − c cos2(Q · r),

where θ is an arbitrary angle specifying the plane of the spins,
while a,b,c are constants dependent upon the field magnitude.
Since Q · r = 2π (2x + y)/3, we see from Eq. (7) that when
2x + y is a multiple of 3, one of the spin is aligned with the
magnetic field. Above the plateau, one finds instead a “V”
configuration, with two spins identical and the third chosen to
give zero moment normal to z. In this case, we have

〈S+
r 〉 = aeiθ cos(Q · r)

(8)〈
Szr
〉 = b − c cos2(Q · r).
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Note that the cosine in the first line of Eq. (8) never vanishes
on lattice sites, so that spins are never parallel to the field in
the V state.

B. One dimension

We will see that the semiclassical results summarized in
the previous section for the two-dimensional case remain
qualitatively correct, at least at short distances, in the TST.
However, we must still account for the effects of quantum
fluctuations on long length scales since the one-dimensional
system can not break the U(1) spin-rotational symmetry about
the field axis. Since the U(1) symmetry is unbroken in the
plateau state, there are no essential effects of one-dimensional
fluctuations there. However, they have qualitative effects in the
Y and V phases since 〈S+

r 〉 = 0 there, in contrast to Eqs. (7)
and (8). Note that the modulation of 〈Szr 〉 is perfectly consistent
with one dimensionality, and is expected to persist directly
without qualitative modifications.

To incorporate one-dimensional fluctuations, we regard the
semiclassical results in Eqs. (7) and (8) as defining the local
spin ordering, with a fluctuating quantum phase θ (x,τ ) (τ is
imaginary time), that is, we make the replacement

S+
r (τ ) → aeiθ(x,τ ) sin(Q · r) (9)

in the Y phase, and

S+
r (τ ) → aeiθ(x,τ ) cos(Q · r) (10)

in the V phase. Note that these formulas are not invariant
under translations, reflecting the three-sublattice structure of
the coplanar phases. This can also be seen from the oscillations
in the 〈Szr 〉 expectation values. Even when one-dimensional
fluctuations are taken into account, translational symmetry
is broken. This is still consistent with the Mermin-Wagner
theorem since the broken translational symmetry is discrete.
Translating by one or two lattice spacings, one obtains two
other symmetry-related but distinct ground states.

In both the Y and V phases, the field θ (x,τ ), representing the
“would-be” Goldstone mode of the spontaneously broken U(1)
symmetry, is governed by the usual massless free relativistic
boson action

Sθ =
∫
dxdτ

{
vK

2
(∂xθ )2 + K

2v
(∂τ θ )2

}
. (11)

C. Comparison to DMRG

We now turn to a comparison of the semiclassical predic-
tions, corrected as in the previous section for one-dimensional
fluctuations, to the DMRG.

1. Entanglement entropy

The simplest comparison arises immediately from Eq. (11):
the low-energy physics is that of a single massless scalar
field, which is a conformal field theory with central charge
c = 1. This central charge can be directly measured using the
entanglement entropy.

According to conformal field theory,17 in a one-dimensional
critical system with open boundary conditions and total length
L, the von Neumann entanglement entropy associated to a
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FIG. 6. (Color online) Entanglement entropy in the isotropic limit
R = 0 for system size Nx = 120. Note that the reduced coordinate
x ′ ≡ ln[L

π
sin( πx

L
)] is plotted on the x axis. We show the von Neumann

entanglement entropy for (a)M/Ms = 1
6 , the commensurate Y phase

and (b) M/Ms = 1
2 , the commensurate V state. The solid line is a

linear fit, where by Eq. (12), we can extract the central charge c.

region with length x and its complement of length L− x is
given by

S(x,L) = c

6
ln

[
L

π
sin

(
πx

L

)]
. (12)

By plotting the entropy S(x,L) versus the reduced coordinate
x ′ = ln[L

π
sin(πx

L
)], we can directly extract c from the numer-

ics. As shown in Fig. 6, we can indeed obtain c = 1 with high
accuracy for both Y and V phases. For example, the obtained
central charge c = 0.98 at M/Ms = 1

6 in the Y phase below
the plateau, and c = 0.97 atM/Ms = 1

2 in the V phase above
the plateau. Both are consistent with the theoretical prediction.

2. Sz profile

The modulation of 〈Szr 〉 predicted by the semiclassical
theory in Eqs. (7) and (8) can be directly compared to the
DMRG results. This is shown in Figs. 7 and 8. Note that a
particular symmetry-broken state is chosen in the simulations,
presumably due to pinning by the boundaries, which explicitly
break translational symmetry. The origin of the coordinate r
in Eqs. (7) and (8) must be appropriately chosen to match the
chosen ground state.

3. S± correlations

Due to quantum fluctuations of the phase θ , the single-spin
expectation value 〈S+

r 〉 = 0. Therefore, we must instead turn
to correlation functions to detect the Y and V structures of the
local ordering. Using Eq. (9), we obtain

〈S+
r S

−
r′ 〉 ∼ a2 sin(Q · r) sin(Q · r′)〈ei[θ(x)−θ(x ′)]〉, (13)

in the Y phase below the 1
3 plateau. A similar formula, with the

sines replaced by cosines, describes the correlation function
of the V phase above the plateau. The correlation function is
evaluated with respect to Eq. (11), where a finite-size form,
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(blue) data points show the three-sublattice structure of the isotropic
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first derived in Ref. 18, is as follows:

〈ei[θ(x)−θ(x ′)]〉 = Cη(x,x ′), (14)

where

Cη(x,x
′) = aη0

[f (2x)f (2x ′)]η/2

[f (x − x ′)f (x + x ′)]η
,

(15)

f (x) =
[

2(L+ 1)

π
sin

(
π |x|

2(L+ 1)

)]
.

Here, a0 is a cutoff-dependent factor, which we can take to
unity, absorbing the dependence in a in Eq. (13). The function
f (x) originates from a quantum average over the normal
modes of the bosonic field θ . One is now able to fit the
DMRG measurement of the transverse spin-spin correlation
function to Eqs. (13) and (14) to obtain the ordering wave
vector and the additional fit parameter η. A comparison is
plotted in Fig. 9, where we show the correlation function along
each chain (i.e., y = 1,2,3) forR = 0 andM/Ms = 1

6 ,
1
2 . The

fitting in Fig. 9(a) yields a commensurate wave vector Q =
(4π/3,2π/3) and η = 0.65 forM/Ms = 1

6 , which corresponds
to the Y phase below the plateau. Above the plateau, in the V
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FIG. 8. (Color online) Sz profile for the commensurate V phase
at M/Ms = 1

2 and R = 0.1. We find that the wave vector remains
commensurate, even for a nonzero, but small, R.
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FIG. 9. (Color online) Transverse spin-spin correlations in the
isotropic limit R = 0 in the (a) commensurate Y phase and (b) V
phase forNx = 120 and x ′ = Nx/2. Data points are shown as (black)
circles, while the theoretical fit from Eq. (14) is shown as the (blue)
line.

phase shown in Fig. 9(b), the ordering wave vector still shows
commensurability Q = (4π/3,2π/3) with η = 0.43. One can
show that in the thermodynamic limit, the correlation function
in Eq. (14) reduces to a simple power-law relation ∝|x − x ′|−η,
which is reflected by our data for distances |x − x ′| � L/2.

D. Behavior for small nonzero R

If we perturb slightly away from the isotropic limit, i.e., 0 <
R � 1, we expect the semiclassical picture to still hold. This
has been analyzed in Refs. 4 and 16. Classically, the minimum
energy spin configuration changes immediately when R > 0
from a commensurate state to an incommensurate one, with
an ordering wave vector Q 
= (4π/3,0) or Q 
= (4π/3,2π/3).
However, we expect that quantum fluctuations will stabilize
the commensurate state for a range of anisotropies for a
generic value of the magnetic field. The reason is that coplanar
phases break discrete translational symmetries of the lattice.
Since there are three equivalent ground states connected by
translations, the symmetry breaking can be described by a Z3

order parameter. Specifically, the combination

ζr = Szr e2πi(x+2y)/3 (16)

defines a Z3 order parameter with 〈ζr〉 = |ζ |eiϑ and ϑ =
0,2π/3,4π/3 in the three distinct Z3 domains. To restore
this discrete symmetry, a phase transition is required. More
specifically, there are topological excitations of the coplanar
state which are domain walls, also called solitons, connecting
different symmetry-broken states. There is a nonzero energy
gap to create a domain wall in any phase with long-range
Z3 order. For the Z3 order to be destroyed, solitons must
proliferate in the ground state. Small changes of parameters,
such asR, can not instantly lower the gap for the domain walls
to zero, which implies stability of the phase for a range of
R values. This is correct, at least, away from the exceptional
points where h = 0 (where the symmetry breaking becomes
continuous) and h = hsat (where the symmetry breaking
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vanishes). We will discuss the vicinity of these exceptional
points in subsequent sections.

In general, with increasing anisotropyR, we will encounter
a phase transition to an incommensurate phase, which corre-
sponds to the proliferation of solitons and a vanishing of their
gap. Beyond that point, 〈ζr〉 becomes zero, and Sz correlations
peak at a wave vector other than Q = (4π/3,2π/3). This
transition is discussed in Sec. IV E.

A useful test for this phase is the measurement of the
central charge via entanglement entropy. In the commensurate
regions, even for R > 0, we expect c = 1, while incommen-
surate phases may have c > 1. We observe this effect in
Fig. 6, which shows c = 1 in the commensurate state, whereas
Fig. 11 shows c = 2 in the incommensurate state. In addition,
we can check for commensurability using structure factor
measurements, as discussed in Sec. II B.

E. Phenomenological analysis at low field

We now address the region slightly away from R = 0 and
at low applied magnetic field. We begin the discussion from
a 2D point of view, although it largely applies to the TST
as well. Commensurate coplanar spin order is described by
the order parameter d = n1 − in2, where n1, n2 are mutually
orthogonal vectors with identical norm spanning the plane of
the spin order. Then, a spin at coordinate r can be written as

Sr = M + Re(deiQ·r) = M + n1 cos[Q · r] + n2 sin[Q · r].

(17)

Lattice translations transform d → de−i2π/3, while lattice
inversion r → −r results in complex conjugation d → d∗.
The effective Ginzburg-Landau Hamiltonian describing the
coplanar state should remain invariant under these operations
(see Ref. 19 for a closely related discussion). Then,

Hcomm = −rd∗ · d + a0|∂xd|2 + a1(d∗ · d)2 + a2|d · d|2
+χ1h

2d∗ · d + χ2|h · d|2
+ 1

2χ3[(h · d)3 + (h · d∗)3]. (18)

Here, at mean-field level, r > 0 is required to obtain nonzero
n1,2, and a0,1 > 0, for stability in the ordered phase. Fur-
thermore, a2 > 0 energetically imposes the orthogonality
condition n1 · n2 = 0 in zero field. To favor coplanar (rather
than umbrella) spin structures in a finite magnetic field requires
χ2 < 0. We may expect that χ2 is a function of the anisotropy,
being negative for the isotropic limit R = 0 and changing
sign to positive values for sufficiently large R, where the
order-by-disorder physics favoring coplanar states gives way to
the classical energetic preference for umbrella states. Here, we
restrict ourselves to the small anisotropy regime, for which we
expect χ2 to remain negative. With the preference for coplanar
states set by χ2 < 0, for field oriented along ẑ, the preferred
configurations of d may be parametrized as

d = |d|eiθ̃ [ẑ + i(cos θ x̂ + sin θ ŷ)], (19)

where θ describes the orientation of the plane of the spins, and
θ̃ the angle of the spins within that plane. With this form for

d, we obtain the spin operators as

Szx,y ∼ M + |d| cos(Q · r + θ̃ ),
(20)

S+
x,y ∼ −|d|e−iθ sin(Q · r + θ̃ ).

The last term in Eq. (18) describes the commensurate
locking of the spin to the lattice by the finite magnetic field.
Using Eq. (19), it may be rewritten as a sine-Gordon term

Hsg = χ3|d|3h3 cos[3θ̃ ]. (21)

The sign χ3 > 0 is fixed by the condition that one of the three
spins in a sublattice must be oriented opposite to the external
field in the commensurate state. Thus, in the commensurate
state, θ̃ = π in Eq. (19).

Now, we move away from the isotropic line to R > 0.
Here, threefold rotational symmetry is broken, which allows
the introduction of an additional term, linear in derivatives,
into the effective Hamiltonian:

Hincomm = i

2
b1(d∗ · ∂xd − d · ∂xd∗) = −b1|d|2∂xθ̃ . (22)

Since this term must vanish at R = 0 and be analytic, b1 ∼ R.
This term competes with the sine-Gordon term in Eq. (21),
with the commensurate state with constant θ̃ favored at small
R and destabilized at larger R. Thus, the commensurate-
incommensurate transition in two dimensions can be described
by a Hamiltonian of the phase

HC-IC =
∫
d2r{ã0(∂xθ̃ )2 − b̃1∂xθ̃ + χ̃3h

3 cos[3θ̃]}. (23)

Here, the coefficients with tildes, ã0,b̃1,χ̃3, are rescaled by
unimportant factors, such as the amplitude |d|.

The sine-Gordon model of the form in Eq. (23) appears in
several guises in this paper, and is analyzed in Appendix A.
It encodes a commensurate-incommensurate transition (CIT)
with increasing b̃1. This transition is mean-field like for
d = 2, and we may apply the results of Appendix A 1. This
gives a critical value for the CIT of b̃1,cr ∼

√
ã0χ̃3h3 for the

incommensurate state, which translates to

hC-IC ∼ R2/3 (24)

since b̃1 ∼ R. This is roughly consistent with shape of the
boundary in the lower left corner of Fig. 3.

For the TST, the situation is complicated by one-
dimensional fluctuations. At zero field h = 0, we know that,
in fact, the ground state is not a spiral but rather a dimerized
phase. Hence, we can not directly apply the above analysis at
the lowest fields. The dimerized phase is broken fairly rapidly
by the field, and so, above some small critical field, we may
expect to be able to use results of this type. Even so, we
should really use results for the d = 1 case, where a non-mean-
field analysis applies, as described in Appendix A 2. Using
Eq. (A16), the critical value b̃1,cr is suppressed by a factor of

(χ̃3h
3/ã0)
3/(4−2
3), so that the net result is b̃1,cr ∼ h

3−
3
2−
3 , and

hence

hC-IC ∼ R
2−
3
3−
3 . (25)

Here,
3 is the scaling dimension of the cos 3θ̃ term. Assuming
the commensurate phase is at all stable for small R implies

3 < 2, so that the cosine term is relevant in the isotropic case
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R = 0. It is also bounded below by zero, so that the exponent
in Eq. (25) varies between 0 and 2

3 . Once again, we caution
that the expression must be taken with care since it does not in
fact apply at the lowest fields.

IV. HIGH-FIELD REGION

A. Spin-flip bosons

In this section, we study the phase diagram near saturation,
i.e., for applied fields sufficiently large that the magnetization
is close to its maximum of 1

2 per site. At saturation, the ground
state of the model is the trivial product state with all spins
aligned in the direction selected by the field. For fields above
the saturation field, this is the exact ground state, and the
lowest excited states consist of single magnons, in which
just one spin has been flipped relative to the saturated state.
These magnons are bosons with Sz = 1, and upon reducing the
field to the saturation value, the minimum energy required to
create a magnon vanishes. Below the saturation field, therefore,
we can expect Bose-Einstein condensation (BEC) of these
magnons. In the one-dimensional TST, strict BEC is not
possible due to phase fluctuations, but these fluctuations are
readily taken into account and a quasicondensate description
remains appropriate.

To formalize the magnon BEC picture, one may transform
the spin model to a bosonic one,20–25 using the equivalence of
the spin s = 1

2 Hilbert space to that of hard-core bosons:

S+
r = Pr br Pr, (26)

Szr = 1
2 − nr, (27)

where nr = b†rbr is the boson occupation number, and one
must project onto the space of no-double-boson occupancy
Pr = |nr = 0〉〈nr = 0| + |nr = 1〉〈nr = 1|. Equation (26) is
equivalent to the Holstein-Primakoff bosonization formula,
truncated to quadratic order in boson operators and taking s =
1
2 , provided the no-double-occupancy constraint is imposed.
The generalization to s > 1

2 will be briefly discussed later in
Sec. VIII B1.

It is convenient to implement the no-double-occupancy
constraint by first relaxing the constraint, adding an onsite
interaction U to the Hamiltonian, and then realizing the
projection by taking the U → ∞ limit. In this way, we can
proceed simply by rewriting the Heisenberg model using
Eq. (26), forgetting the projection operators, i.e., taking Pr →
1. We thereby obtain a boson Hamiltonian with hopping terms
(J ), onsite energies (J,h), an onsite (U ), and nearest-neighbor
(J,J ′) interactions. Fourier transforming to diagonalize the
quadratic terms, we find

H =
∑

k

[ε(k) − μ] b†kbk + 1

2N

∑
k,k′,q

V (q)b†k+qb
†
k′−qbk′bk,

(28)

where

ε(k) = J (k) − Jmin, (29)

μ = hsat − h, where hsat = J (0) − Jmin, (30)

V (k) = 2 [ε(k) + U ] . (31)

Here, J (k) is the Fourier transform of the exchange interaction,
μ is the bosonic chemical potential, and hsat is the saturation
field. We will use this formalism to derive an effective
action for the dilute bosons, and also to locate (if any) a
transition between the planar and cone phases near saturation.

B. Effective field theory for dilute bosons

For h > hsat, the vacuum is an exact ground state of this
Hamiltonian, i.e., bk|0〉 = 0. Below the saturation field, a
finite density of magnons is introduced into the system, and
a BEC or quasi-BEC is expected. The phase of the system,
and correspondingly the magnetic order (correlations), is
determined by the structure of this condensate (or quasicon-
densate). To determine this structure, we construct an effective
model. The lowest-energy magnon excitations in the triangular
lattice occur at nonzero momenta ±Q, which minimize the
dispersion.23,24 In our (sheared) coordinates, the dispersion
relation is

JTST(k) = J cos kx + J ′[cos ky + cos(ky − kx)]. (32)

In two dimensions, we can choose arbitrary kx and ky , and the
minima occur at k = ±Q2D, with Q2D = (Q2D,Q2D/2), and

Q2D = 2 arccos

[
− J

′

2J

]
. (33)

Note that in the conventional Cartesian coordinates, this wave
vector is Q = (Q2D,0). For the TST, we must quantize ky =
0,2π/3,4π/3. With this restricted choice of ky , the 2D wave
vector Q2D can not generally be achieved. Instead, we find
that the minimum energy wave vector is kTST = ±QTST =
±(Q1D,2π/3), with

Q1D = π + arctan

( √
3J ′

2J − J ′

)
. (34)

The two wave vectors coincide when J = J ′.
In a low-energy description, the modes away from these

two minima may be integrated out, leaving an effective theory
in terms of two “flavors” of bosons ψ1 and ψ2 defined via

bk = ψ1,Q+k + ψ2,−Q+k + b̄k. (35)

Here, ψ1,q (ψ2,q) is defined as a boson “centered” on the
minimum energy momentum Q (−Q), with weight only for
small |q| < 
, where 
� 2π is a cutoff introduced by
integrating out the modes away from the minima. The third
operator b̄k represents the high-energy modes which remain
uncondensed, and are integrated out. In two dimensions,
Fourier transforming in qx,qy back to real space leads to slowly
varying continuum fields ψa(r), where r is a two-dimensional
spatial coordinate. For the TST, we need to keep only the mode
with minimum energy qy , and so, we Fourier transform only
in qx , which leads to a continuum field dependent only on the
position along the chain x.
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In this continuum limit, the boson fields are governed by an
effective action of the form

S=
∫
ddr dτ

{
ψ

†
1

(
∂τ − 1

2m
∇2

)
ψ1 +ψ†

2

(
∂τ − 1

2m
∇2

)
ψ2

−μ(ρ1 + ρ2) + 1

2
�1
(
ρ2

1 + ρ2
2

)+ �2ρ1ρ2

}
, (36)

where ρα = |ψα|2. We have written the action (36) in a form
which includes both the TST (d = 1) and two-dimensional
(d = 2) cases. We expand to fourth order in |ψa| and to lowest
order in derivatives, which is justified near saturation due to the
diluteness of the magnons. The quadratic terms in Eq. (36) can
be readily extracted from the exact single-magnon dispersion,
which is given in Eq. (29) [in general in two dimensions
the quadratic term may have an anisotropic effective mass
tensor,24 which is not explicitly shown in Eq. (36)]. The
quartic interaction terms are more subtle because although the
magnons may be assumed dilute, the lattice-scale interactions
in Eq. (28) are not weak. Therefore, the parameters�1,�2 must
be obtained from a more careful analysis, which we return to
below.

C. Order-parameter structure

Taking for the moment the �a as phenomenological
parameters, we discuss the structure of the condensed or
quasicondensed phase. If μ < 0, there are no bosons in the
system, and the vacuum is the ground state. When μ > 0,
a finite density of bosons is present. Depending upon their
interactions, different phases may result.23 To discuss the
nature of these phases, a mean-field analysis of Eq. (36) is
sufficient. We comment on the modifications to the mean-field
results at the end of this section.

In mean-field theory, we simply minimize S in Eq. (36)
for constant values of ψα . When μ > 0 and �1 < �2, then
ρ1 
= 0,ρ2 = 0 or vice versa, which means that the magnons
condense at one of the two minima: a single-Q condensate.
Here, in minimizing the energy, one finds that ρ1 = 〈ρ1〉 =
μ/�1 and E/N = −μ2/(2�1). By taking ψ1,2 = √

ρ1,2e
iθ1,2 ,

one can write the spin operator as follows:

S+
r = ψ ei(Q·r+θ1), (37)

Szr = 1
2 − 〈ρ1〉, (38)

where ψ = √〈ρ1〉 in mean-field theory. We see that the z
component of the spins is nonzero but constant in space,
while the xy components rotate as one moves in space. Such
a configuration is called a cone or umbrella phase because the
spins trace out a cone as one proceeds through the lattice [see
Fig. 5(c)].

When �2 < �1, then ρ1 = ρ2, which means that the bosons
condense at both +Q and −Q. This is a double-Q condensate
with density 〈ρ〉 = 〈ρ1〉 + 〈ρ2〉 = μ/(�1 + �2) in mean-field
theory. Here, the energy E/N = μ2/(�1 + �2). Again, by
letting ψ1,2 = √

ρ1,2e
iθ1,2 and θ1,2 = θ ± θ̃ ,

S+
r = 2ψ eiθ cos(Q · r + θ̃ ), (39)

Szr = 1
2 − 4〈ρ〉 cos2(Q · r + θ̃ ), (40)

where ψ = √〈ρ〉 in mean-field theory. In this phase, the z
component of the spins is not constant, but the phase of S+

r is
constant. This implies that the spins remain in a plane, i.e., this
is a coplanar phase. Instead of a cone, the spins in this phase
sweep out a “fan,” so this is sometimes called a fan state.

How much of this survives beyond mean-field theory? In
general, the dependence of the density on chemical potential is
affected by fluctuations. Note that in the original spin problem,
this dependence gives the behavior of the magnetization versus
field in the vicinity of saturation, as is seen from Eq. (26).
As is well known,26 the BEC transition at μ = 0 is a very
simple example of a quantum critical point, whose upper
critical dimension is d = 2. Thus, in two dimensions, the
deviations from mean-field theory are minimal and consist just
of logarithmic corrections. However, in d = 1 the corrections
are much more significant, and the dependence of the density
on chemical potential is quite different.

In mean-field theory, we see that there is a first-order
transition between the cone and fan states upon varying
�1 − �2 through zero. In fact, the location of this transition
at �1 = �2 is correct and, moreover, exact, beyond mean-
field theory. To see this, note that when �1 = �2 = �, the
interaction terms may be rewritten as �

2 (ρ1 + ρ2)2, which
implies that the action has an enlarged SU(2) symmetry under
rotations ψα → ∑

β Uαβψβ , where U is an arbitrary SU(2)
matrix. This guarantees the degeneracy of the cone and fan
states at this point since one can be rotated into the other by
such an SU(2) rotation, and therefore, fixes the location of the
cone to coplanar transition.

When �1 
= �2, the SU(2) symmetry of Eq. (36) is reduced
to U(1) × U(1), corresponding to independent phase rotations
of ψ1 and ψ2. As a consequence, there will be one gapless
mode in the theory described by Eq. (36) for each Bose field
with nonzero amplitude, i.e., one in the cone state and two in
the fan. The fluctuations of these gapless modes lead, in the
one-dimensional TST, to power-law correlations of the spin
components transverse to the magnetic field, rather than the
long-range order (broken-symmetry states) obtained in mean
field.

Physically, the overall U(1) symmetry under simultaneous
and equal rotations of both fields reflects conservation of Sz

and is microscopically mandated by the Heisenberg model.
The “orthogonal” symmetry under the rotation of the two
boson fields by opposite phases is emergent, however. It is
a consequence of the discrete translational symmetry of the
lattice and the (generically) incommensurate nature of the
wave vector Q. In general, this symmetry is broken by terms
[which should be added to S in Eq. (36)] of the form

S ′ = −
∑
n

wn

∫
ddx dτ (ψ†

1ψ2)n e−inqn·r + H.c., (41)

where naı̈vely qn = 2Q, but in fact we can take qn = 2Q −
K/n, where K is any reciprocal lattice (RL) vector, since r is
a lattice coordinate. So, henceforth we work with

qn = min
K∈RL

[2Q − K/n], (42)

i.e., we choose K to minimize the magnitude of qn. When
the wave vector Q is incommensurate and the magnitude
of these terms is small, their oscillations average to zero
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over short distances, and they can thereby be neglected.
However, if 2nQ is close to a reciprocal lattice vector, then
qn is small and the corresponding wn term becomes slowly
varying, and it can have effects that persist into the continuum
theory. This occurs only if 2nQ is close to a reciprocal lattice
vector and the amplitude of both ψ1 and ψ2 is nonzero, i.e.,
within the coplanar or fan state. This leads to commensurate-
incommensurate transitions, discussed in Sec. IV E.

In the cone state, such effects are not important. In this
case, we expect one gapless “Goldstone” mode (θ1) and
power-law transverse spin correlations. But, actually there
is some hidden long-range order. Note that in Eq. (37)
we have (arbitrarily) chosen the minimum with ρ1 
= 0 and
ρ2 = 0 instead of the one with ρ1 = 0, ρ2 
= 0. In doing
so, the system spontaneously breaks discrete symmetries.
In particular, for the TST, this choice breaks both inversion
symmetry and a “charge-conjugation” symmetry, the latter
being the antiunitary symmetry of the Scrödinger equation
under complex conjugation of the wave function. Although the
fluctuations of the phase θ1 above will reduce the mean-field
magnetic order to quasi-long-range order in the TST, the
discrete symmetry breaking is robust to one-dimensional
fluctuations. This symmetry breaking can be most directly
sensed by the vector chirality7,27

Vx,y = ẑ · 〈Sx,y × Sx+1,y〉. (43)

Replacing S+
r in Eq. (43) by the ansatz in Eq. (37), we find

V = ψ2
sinQ, i.e., a nonzero and constant value in the cone

state. The opposite sign would be obtained for the solution with
ρ1 = 0, ρ2 
= 0, so this serves as an Ising-type order parameter
for the cone state.

D. Incommensurate planar-to-cone-state transition at the
saturation

1. Bethe-Salpeter equation

Now that we have described the phases of Eq. (36), we
will briefly outline the methods to compute �1,�2. When
the external field is sufficiently close to the saturation field,
then the density of magnons, or spin flips, is dilute. In this
case, we can safely use the ladder approximation28–30 to renor-
malize the interaction vertex in a controlled manner. In fact,
we (strictly speaking) analyze the interactions for fields above
the saturation field, where there are no bosons present in the
ground state, and we consider just two bosons interacting
pairwise above the vacuum. We require the behavior in the
limit in which the saturation field is approached, i.e., in which
the energy of the two interacting bosons approaches zero.
This limit should be familiar from ultracold atomic systems,
in which the complicated interactions between atoms can be
replaced by one or a few scattering lengths, which represent
the effective interactions in the dilute limit. Here, we obtain the
effective interactions from the Bethe-Salpeter (BS) equation,
which reads as

�(k,k′; q) = V (q) −
∫
p

V (q − p)�(k,k′;p)

ε(k + p) + ε(k′ − p) +�. (44)

Here, �(k,k′; q) is the irreducible four-point interaction vertex
taken with all external frequencies equal to zero, and � =
2(h− hsat) = −2μ. The k,k′ are the incoming momenta

Γ
k

k k − q

k + q

=

Γ
k

k
k − p

k − q

k + p
k + q

q − pq +

FIG. 10. Ladder approximation of Eq. (44). Here, k,k′ are
incoming momenta while k + q, k′ − q are outgoing momenta.

and k + q,k′ − q are the outgoing momenta, as shown in
Fig. 10. From this, one obtains that �1 = �(Q,Q,0) and �2 =
�(Q,−Q,0) + �(Q,−Q,−2Q). In Eq. (29), we introduced a
factor of U into the definition of V (q) to enforce the spin- 1

2
constraint, which is equivalent to taking the limit U → ∞.
This limit in the BS language, Eq. (44), provides us with an
additional constraint which reads as21,23∫

p

�(k,k′;p)

ε(k + p) + ε(k′ − p) +� = 1. (45)

Both Eqs. (44) and (45) can be applied either in two or three
dimensions, or for the one-dimensional TST; in the latter case,
the integral over p should be regarded as an integral over px
and a sum over the discrete py = 0,2π/3,4π/3. Notice that
in two or fewer dimensions, since ε(k) ∼ k2,V (k) ∼ 1 near
k = 0, the integral is at least logarithmically divergent when
� approaches zero. This reflects the fact that weak interactions
are marginally relevant at the zero-density fixed point in d = 2,
and relevant for d < 2. We use this to our advantage since we
are interested precisely in this limit: the singular parts dominate
the vertex function as�→ 0+, and we extract these dominant
singular terms analytically to obtain the asymptotic behavior.
For d > 2, the integrals become nonsingular, and one can
directly take the � = 0 limit.

2. Calculation of �1 and �2 in 2D

We first give a brief summary of our calculations for the
2D case. The dispersion minima occur at k,k′ = ±Q2D =
±(Q2D,Q2D/2), where Q2D is given in Eq. (33). To solve
the BS equation, we use the following ansatz:

�(k,k′; q;�) = A0 + A1 cos qx + A2 sin qx
+A3 cos qy + A4 sin qy + A5 cos(qy − qx)
+A6 sin(qy − qx), (46)

where Ai are coefficients dependent on k, k′, J, J ′, and �.
With Eqs. (44)–(46), one can solve a set of linear equations
for the coefficients Ai , which give an explicit form of �(q) for
a given set of k, k′, J, J ′, and �. Details of the 2D case are
given in Appendix B 1. From the solution, we simply obtain

�1 > �2 for 0 < R < 1, (47)

which implies that for all range of anisotropies 0 � R � 1,
the ground state near saturation field is always an incommen-
surate planar (or fan) state.
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To see how the incommensurate planar state dominates over
the cone state in the weakly coupled chains region, we expand
the expression of �’s in the leading order of both 1/ ln� and
j ≡ J ′/J :

�1/J =
[
−4πj + π

2
j 3 +O(j 5)

]
1

ln�

+ [−8jπ ln(4j ) + α +O(j 3)]
1

(ln�)2
+ · · · ,

�2/J =
[
−4πj + π

2
j 3 +O(j 5)

]
1

ln�
(48)

+ [−8jπ ln(4j ) +O(j 3)]
1

(ln�)2
+ · · · ,

α = 8jπ (24 − 16 ln 2 − 3π ln 2)

16 + 3π
> 0.

Since the extra factor α is always larger than zero, the ground
state always prefers the fan state in the limit of decoupled
chains.

One can analytically check this result in the same limit
J ′ � J . We discuss this extension in Appendix B 3.

3. Calculation of �1 and �2 in the TST

We now present a brief overview of our calculations
on the TST. We consider an infinitely long system, where
qx is continuous and qy = 0,2π/3,4π/3 is discretized by
periodic boundary conditions. The dispersion minima occur
at k,k′ = ±Q1D = ±(Q1D,2π/3), given in Eq. (34). We are
now in a position to solve the BS equation, where we follow
similar procedures as the two-dimensional case. We use the
same ansatz (46) to solve for the coefficients Ai . From these
coefficients, we can obtain the explicit forms of�(q), for which
we provide details in Appendix B 2. Our results are as follows:

�1 > �2 for 0 < R < 0.48,
(49)

�1 < �2 for 0.48 < R < 1.

This tells us that forR < Rc = 0.48, the incommensurate (fan)
state is favored, while for R > Rc, the cone (umbrella) state is
favored. This result is in agreement with the analytical result,
in Appendix B 3, where it was shown that spins order into a
cone state in the decoupled chains limit.

E. Commensurate-incommensurate transitions (CIT)

In the previous section, we found that near saturation, the
ground state of the two-dimensional model for all R and of
the TST for R > 0.48 is coplanar, with modulation of the z
component of the spin at wave vector 2Q. As mentioned in
Sec. IV C, this implies spontaneous breaking of the discrete
translational symmetry, which is sensitive to commensurability
effects via the terms in Eq. (41). In particular, we expect
that the wave vector Q will lock to commensurate values,
where 2Qn is a reciprocal lattice vector, over a finite range of
field and anisotropy R. We now turn to a description of these
commensurate-incommensurate transitions (CITs), both in the
2D case and for the TST.

To study the CITs, we must now consider the full action
[Eqs. (36) and (41)] for h < hsat, i.e., for μ > 0, where
the bosons are at nonzero density. In two dimensions, we

can regard them as condensed, while in the TST, true
condensation is impossible but the system can be viewed as a
quasicondensate or a Luttinger liquid. In either case, amplitude
fluctuations of the ψα fields are small, and we can write the
effective action in terms of the phases θα , whereψα ∼ ψ0e

−iθα
in the coplanar/fan region.

Conceptually, the effective action for the phase fields
is obtained by first following the renormalization of the
system away from the zero-density fixed point μ = 0, where
amplitude fluctuations are still important. Once the energy
scale set by μ is reached, these fluctuations are quenched,
and it is sufficient to consider only small fluctuations in the
amplitudes. To achieve this, we simply make the assumption
of small amplitude fluctuations in Eqs. (36) and (41), but with
the bare couplings replaced by fully renormalized ones, at
the scale μ. We believe this procedure properly captures the
scaling for small μ, although it is not quantitatively reliable.

Because the low-energy dispersion of the single-magnon
states is exactly known and described by the quadratic terms
in Eq. (36), the corresponding couplings are unrenormalized.
The interactions �1 and �2, however, are renormalized by
multiple scatterings, which is exactly what is captured by the
BS equation discussed in Sec. IV D. From this analysis, we
simply take as our renormalized couplings �a(� = 2μ). Note
that this would be exactly correct if we replaced μ by |μ|
for the case μ < 0, but on scaling grounds it should give the
correct dependence even for μ > 0.

The renormalized interactions can be approximately repre-
sented for small μ as

�α(μ) ∼ uα

1 +muα/ζ (mμ)
, (50)

where

ζ (mμ) =
{

(mμ)1/2, d = 1

1/| ln(mμ)|, d = 2
(51)

and uα are constants related to the “bare” values of �α . We can
in principle use the renormalized �α(μ) for the original lattice
spin model, which have the same leading and first subleading
terms for small μ (up to second order in ζ � 1) as in Eq. (50),
but with considerably more complicated coefficients. Beyond
second order in ζ , the lattice �α differs somewhat, and the
expression is unwieldy. The above form is sufficient for our
purposes, and is exact for a continuum model.

Once the �α(μ) are known, the analysis is straight-
forward.24 We writeψα = [ρ + σα]1/2 e−iθα , and assume small
fluctuations in σα around the saddle-point value for

ρ = μ

[�1(μ) + �2(μ)]
. (52)

[Here, we assume �1(μ) > �2(μ).] Equation (52) properly
captures, through the dependence of �α on μ, the non-mean-
field dependence of the boson density on chemical potential. In
particular, it yields ρ ∼ μ1/2 in 1 + 1 dimensions, consistent
with the fact that repulsively interacting bosons behave with
an effective hard core at low density, and consequently have
an equation of state similar to free fermions.

Expanding the action to quadratic order inσα and neglecting
irrelevant terms involving derivatives of σα and their couplings
to higher derivatives of θα , we obtain (neglecting constant
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terms)

S =
∫
ddrdτ

{
i(σ1∂τ θ1 + σ2∂τ θ2) + ρ

2m
(|∇θ1|2 + |∇θ2|2)

+ �1

2

(
σ 2

1 + σ 2
2

)+ �2σ1σ2

}
. (53)

Next, we integrate out the σα fields, and express the resulting
action in terms of new linear combinations

θ = θ1 + θ2, θ̃ = θ1 − θ2. (54)

The result is

S = Sθ + Sθ̃ , (55)

where

Sθ =
∫
ddrdτ

{
κc

2
(∂τ θ )2 + ρc

2
(∇θ )2

}
, (56)

with

κc = 1

2[�1(μ) + �2(μ)]
, ρc = ρ

2m
, (57)

and

Sθ̃ =
∫
ddrdτ

{
κ

2
(∂τ θ̃ )2 + ρ

2
(∇θ̃)2

−
∑
n

λn cos[n(θ̃ − qn · r)]

}
, (58)

with

κ = 1

2[�1(μ) − �2(μ)]
, ρ = ρ

2m
, λn = 2wnρ

n. (59)

Here, we have restored the term resulting from S ′ in Eq. (41).
Note that the “charge” field θ describes the Goldstone mode
of the broken (or quasibroken in 1D) U(1) symmetry, and thus
remains exactly massless. It completely decouples from the θ̃
field, and can be neglected in the analysis of the CIT.

We are now in a position to analyze the CIT using Eqs. (58)
and (59) and the results of Appendix A. This is strongly
dimension dependent, so we treat the cases of two dimensions
and one dimension separately.

1. Two dimensions

In two dimensions, we begin by presuming that one of the
cosines in Eq. (58) is almost nonoscillating, i.e., when one of
the qn is close to zero. Generically, this will happen for one
specific minimal n, when

Q2D = πm

n
+ δQ (60)

for some specific m,n, with |δQ| � 1. The other rapidly
oscillating cosines can be neglected, and we retain only the
weakly oscillatory one. Then, in the x,y coordinates, the
action takes the form given in Eq. (A1), with λn = λ and
q = qn = 2δQ.

We can now directly apply the results of Appendix A 1.
Using δ = ρq = 2ρδQ, and Eq. (A6), we obtain that the
commensurate state is stable for |δQ| < δQc, which defines

the location δQc of the CIT as

δQc ∼
√
λn/ρ ∼ √

mwn ρ
(n−1)/2

∼ √
mwn[ϒ(μ)μ](n−1)/2, (61)

where we used Eq. (59) for d = 2, and, of course, we assume
μ > 0. Here,

ϒ(μ) = 1

�1(μ) + �2(μ)
∼ 2|ln(mμ)|

m
for μ� 1 (62)

is a weak logarithmic function of μ.
For the commensurate state centered around R = 0 (J ′ =

J ), we have n = 3, and the phase boundary for the C-
IC transition is linear in μ, up to logarithmic corrections.
However, as n increases, the widths of the commensurate
phases decrease.

2. One dimension

In the TST, to derive the 1D theory we must sum over
discrete y. This restricts the λn terms in Eq. (58) to n which
are multiples of 3, so that the y component of qn (=2nQy) is
a multiple of 2π .

Following the discussion for two dimensions, we again
consider wave vectors

Q1D = πm

n
+ δQ, (63)

with appropriate m,n such that |δQ| � 1, and keep only the
dominant cosine term of order n, which then matches the
sine-Gordon form in Eq. (A1) with q = 2δQ. Then, we take
over results from Appendix A 2.

According to that discussion, a commensurate phase is
stabilized whenever the scaling dimension of the cosine term

n is less than two. Using the result in Eq. (A12) and also
Eq. (59), we obtain


n = n2

√
2π

(
μ

m

)1/4√
u1 − u2

u1u2
, (64)

so that 
n � 1 for μ� 1. This shows that 
n < 2, and
the commensurate phase is indeed realized. Note that if we
approximate 
n = 0, then this becomes the same classical
estimate as in the previous section, except that �a(μ) has
a different dependence in one dimension. While this is in
principle appropriate for very small μ, the 1

4 exponent in
Eq. (64) indicates that 
n can be substantial nonetheless, so
we will proceed with the estimate taking 
n 
= 0.

Using δ = 2ρδQ and the estimate for the critical δc in
Eq. (A16), and applying Eqs. (52) and (59), we find the location
of the 1D CIT as

δQc ∼ (
wnm

n+1
2 n
nμ

n−1
2
) 1

2−
n . (65)

For n = 3 and assuming 
n → 0, this predicts δQc ∼ μ1/2,
which does not agree withμ ∼ R scaling of the C-IC boundary
in the upper left corner of the phase diagram in Fig. 3. However,
the range of μ there is not particularly small, h changes
from 4.5 to approximately 3 as R changes from 0 to 0.1.
This observation calls for a more careful analysis of behavior
predicted by Eqs. (64) and (65) for μ ∼ O(1). We find that
numerical coefficients in (64) make
n=3 to vary in the interval
0.5–1 for μ relevant to the C-IC boundary in Fig. 3, resulting
in an almost linear dependence δQc ∼ μ away from the strict
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FIG. 11. (Color online) Entanglement entropy at (a)M/Ms = 5
6 ,

R = 0.3, the incommensurate coplanar phase, and (b) M/Ms = 5
6 ,

R = 0.66, the cone (or umbrella) phase. We take a system size of
Nx = 120.

μ→ 0 limit and in qualitative agreement between our analysis
here and the numerical data in Fig. 3.

F. DMRG results

In Sec. IV C, we show that the cone state corresponds to a
single-Q condensate bosonic field, while the incommensurate
planar state corresponds to double-Q condensate. This is
verified by the central charge measurement, where we find
c = 2 to describe the coplanar phase as shown in Fig. 11(a),
as opposed to c = 1 for the cone in Fig. 11(b).

The transverse spin-spin correlation function for the cone
state can be written as

〈S+
r S

−
r′ 〉 ∼ ψ2 cos[Q · (r − r′)]〈ei[θ(r)−θ(r′)]〉

∼ ψ2 cos[Q · (r − r′)]Cη(x,x ′) (66)

with Cη(x,x ′) given in Eq. (15). We fit the DMRG results to
this formula in Fig. 12(b). The transverse correlation shows
a clear sinusoidal pattern with incommensurate wave vector
Q = (1.10π,2π/3) and η = 0.37 at M/Ms = 5

6 , R = 0.66.
Figure 12(b) shows an excellent fit which yields the exponent
η = 0.37.

The whole procedure is repeated for the incommensurate
planar state

〈S+
r S

−
r′ 〉 ∼ 4ψ2〈cos (Q · r + θ̃ (x)) cos (Q · r′ + θ̃ (x ′))〉

× 〈ei(θ(x)−θ(x ′))〉

= ψ2

2
cos[Q · (r − r′)]Cη+η̃(x,x ′). (67)

The exponent η and η̃ come from averaging the θ and θ̃ fields,
respectively. The fitting estimates Q = (1.26π,2π/3) and η +
η̃ = 0.54 atM/Ms = 5

6 , R = 0.3, shown in Fig. 12(a).
Next, we consider the vector chirality (VC), which is

defined as Vx,y = ẑ · 〈Sx,y × Sx+1,y〉 in Eq. (43). As discussed
in Sec. IV C, since the cone state favors XY order, the VC
should be a nonzero and constant value. Indeed, as shown
in Fig. 13, the VC correlation function does not decay with
distance in the cone state, i.e., R = 0.66 and 0.80, and the

(a)

(b)

x-x′

S
+ x
,y

S
− x

,y
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0.02

0.04

0.06

FIG. 12. (Color online) Transverse spin-spin correlation function
for M/Ms = 5

6 , Nx = 120, and x ′ = Nx/2 at (a) R = 0.30 in the
incommensurate coplanar state and (b) R = 0.66 in the cone state.
Our DMRG data points are plotted in (black) circles, while the
theoretical fit [Eq. (66)] is shown as a solid (blue) line.

finite-size scaling [Fig. 13(b)] shows that the corresponding
VC order parameter remains finite in the thermodynamic limit.
Instead, for planar states, the spins are confined to one plane,
so the VC correlation decays exponentially (see R = 0.4 data
in Fig. 13).
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FIG. 13. (Color online) Spin vector chirality (VC) correlation
function, as defined in Eq. (43), at M/Ms = 5

6 with system size
Nx = 120 and x ′ = Nx/2. In (a), we showR = 0.4 (purple diamond)
where the system orders into an incommensurate coplanar phase.
Furthermore, R = 0.66,0.80, where the system is in the cone phase,
is shown on the same plot. We can see that the VC approaches a
constant in the cone phase while decaying in the coplanar phase. In
(b), we show the finite-size scaling of the VC order parameter in the
cone phase.
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V. WEAKLY COUPLED CHAINS

A. Bosonization of a Heisenberg chain

In this section, we give a brief overview of applying Abelian
bosonization to a single spin- 1

2 Heisenberg chain in a magnetic
field. The Hamiltonian of interest is as follows:

Hch = J
L∑
x=1

S(x) · S(x + 1) − h
L∑
x=1

Sz(x), (68)

where the magnetic field is chosen along the z direction, and
the lattice spacing has been set to 1. Here, the magnetization
M ≡ ∑

x
1
L
Sz(x) is conserved and hence, the magnetic field h

can be treated as a chemical potential to relate the properties
at h 
= 0 to those at h = 0. For any magnetizations less than
saturation, i.e., M < Msat = 1

2 , the low-energy theory can be
described by a canonical set of a massless scalar field θ and
its dual field φ:

H0 =
∫
dx
v

2
[(∂xφ)2 + (∂xθ )2]. (69)

These two fields satisfy the familiar commutation relations

[θ (x),φ(x ′)] = −i�(x − x ′), (70)

where� is the Heaviside step function. The spin velocity v in
Eq. (69) is a function of the magnetization M . When M = 0,
v/J = π/2, and the SU(2) symmetry is restored. For the case
when M > 0, v decreases continuously and is numerically
determined by the Bethe-ansatz integral equations (see Fig. 9
of Ref. 31).

At a fixed magnetization, both the longitudinal (along the
field direction) and transverse (perpendicular to the field axis)
spin fluctuations have gapless excitations. The longitudinal
modes occur at commensurate wave vector kx = 0 and
incommensurate ones kx = π ± 2δ, where δ = πM , while the
transverse modes are at commensurate wave vector kx = π and
incommensurate vectors kx = ±2δ. Then, one can expand the
spin operator around these low-energy gapless modes, i.e.,

Sz(x) = M + Sz0(x) + ei(π−2δ)xSzπ−2δ(x)

+ e−i(π−2δ)xSzπ+2δ(x), (71)

S+(x) = e−i2δxS+
−2δ(x) + ei2δxS+

2δ(x) + (−1)xS+
π (x),

where Sz0, Szπ±2δ(x), S+
±2δ(x), and Sπ are operators whose

scaling dimensions depend on M . One can rewrite these
operators in terms of the bosonic fields φ and θ :

Sz0(x) = β−1∂xφ, Szπ−2δ(x) = − i
2
A1e

−2πiφ/β,

(72)

S+
±2δ(x) = ± i

2
A2e

iβθ e±i2πφ/β, S+
π (x) = A3e

iβθ .

Here, the parameter β ≡ 2πR is related to the compact-
ification radius R and can be calculated by solving the
integral equations, which can be found in Refs. 32–34. The
compactification radius takes on a simple form 2πR2 = 1 at
zero magnetization, and approaches 2πR2 = 1/2 as M →
Msat = 1/2. The constants A1, A2, and A3 are determined
numerically.18 Furthermore, at M = 0, the scaling dimension
of Sz0 and S+

±2δ(x) is 1, and these operators can be written in its
SU(2)-symmetric form M = JR + JL. The scaling dimension

of Szπ±2δ(x) and Sπ , however, is 1
2 at zero magnetization and is

related to the staggered Néel order N and dimerization ε. Fur-
ther details for theM = 0 case are provided in Appendix C 1.

Now, in order to compare our DMRG results to this analysis,
we must enforce open boundary conditions (BC) along the
chain direction to mimic DMRG’s BC. This can be achieved by
introducing two additional “phantom sites” at x = 0 and x =
L+ 1.35 At these positions, we enforce boundary conditions
on the bosonic field φ, where φ(x = 0) = 0 and φ(x = L+
1) = 0. The sum in Eq. (68) now runs from site index 0 to L,
and we effectively obtain a periodicity of L+ 1 using these
phantom sites. We can now substitute Eq. (72) into Eq. (71),
and enforce the open boundary conditions. The spin operators
can now be written as (for brevity, we suppress chain index y)

Sz(x) = M̃ + 1

β

dφ

dx
− A1 sin

(
2π

β
φ(x) − (π − 2δ̃)x

)
,

S+(x) = eiβθ(x)

[
A3(−1)x + A2 sin

(
2π

β
φ(x) + 2δ̃x

)]
,

(73)

where M̃ = ML/(L+ 1) and δ̃ = πM̃ . The bosonic field φ
can also be expanded in terms of its lattice modes as

φ(x) =
∞∑
n=1

sin(qnx)√
πn

(an + a+
n ), (74)

where qn = πn/(L+ 1). Here, an and a+
n are the annihilation

and creation operators and satisfy the commutation relation
[an,a

+
n′ ] = δn,n′ .

B. Triangular spin tube

We now extend our previous discussion to study the
behavior of the TST, described by Eq. (1), in the limit of
weak coupling J ′ � J . Using the low-energy expansions of
the spin operators in Eq. (71), we can express the low-energy
Hamiltonian as H = H0 +H1, where H0 is described by a
sum over the free bosonic modes in Eq. (69) on each chain.
Here, H1 describes interchain interactions and is as follows:

H1 = J ′
3∑
y=1

∫ L

x=0
dx

{
2M̃2 + 2Szy;0Szy+1;0

+
∑
σ=±

(1 − e2iσ δ̃)Sz
y;π+2σ δ̃

Sz
y+1;π−2σ δ̃

+ 1

2
[S+
y;π∂xS−

y+1;π + H.c.]

+
∑
σ=±

[(
1 + e2iσ δ̃

2

)
S+
y;2σ δ̃

S−
y+1;2σ δ̃

+ H.c.

]}
, (75)

where again M̃ = ML/(L+ 1).
The first term 2M̃2 with scaling dimension 0 is the

most relevant, but is trivially a constant. The second term
is marginal with scaling dimension 2, and renormalizes the
Luttinger parameters and the velocities of the bosonic fields
φ, θ in Eq. (69). The third term is relevant at M̃ = 0 with
scaling dimension 1, and becomes marginal as magnetization
increases, approaching a scaling dimension 2 as M̃ → Msat.
This term is responsible for the SDW phase that arises when
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relevant. The fourth term, which involves a derivative, is
marginal at M̃ = 0 with scaling dimension 2 and becomes
increasingly relevant with increasing magnetization, saturating
to a scaling dimension of 3

2 as M̃ → Msat. This is a “twist”
term that favors the cone orXY phase that orders perpendicular
to the magnetic field. The last term is always irrelevant, with
scaling dimension �2 and can be neglected in the analysis of
this theory.

Apart from the trivial constant term, the SDW and the
“twist” terms are the most relevant ones and have competing
scaling dimensions as magnetization varies from 0 to satura-
tion. With the exception of some subtleties that arise from the
TST boundaries (we discuss this in later sections), standard
scaling arguments can be made about these two operators. For
smallM , the SDW term dominates, and the system orders into
a collinear SDW in which the ordering momentum π − 2δ̃
scales linearly with magnetization. The twist interaction dom-
inates over the SDW at a larger magnetization, and the system
orders into a conelike state. Since there is no spontaneous
breaking of continuous symmetry in one dimension, the SDW
and cone order are not really ordered states, but are Luttlnger
liquids with one gapless mode. This competition between
cone and SDW phase was discussed for 2D triangular lattice
in Ref. 11, where critical magnetization Mcrit at which the
quantum phase transition from the SDW to the cone phase
takes place was evaluated. The TST has the same critical
Mcrit = 0.64Msat as the 2D case, except that the cone state
obtained in this quasi-1D regime is smoothly connected to the
cone phase obtained in the high-field region in Sec. IV.

Equation (75) is not complete as it does not account for
several less-obvious relevant terms which are allowed by the
lattice symmetry of the problem. This will be considered in
more detail later. Within the SDW phase, it is possible to lock
the SDW momentum to a commensurate value by accounting
for high-order umklapp processes. The first of these leads to a
commensurate SDW, which is in fact identical to the 1

3 plateau
with the “up-up-down” structure. This is discussed extensively
later in Sec. VI.

Other more relevant intrachain interaction terms may
appear due to fluctuations that are not accounted for in the
naive bosonization in Eq. (73). We will discuss these effects
in Appendix C 2.

C. SDW

In the region of low to intermediate magnetization and small
J ′, we can neglect all terms in H1 except the marginal one
and the SDW interaction. Using bosonization [Eq. (73)], the
Hamiltonian can be rewritten as follows:

HSDW =
3∑
y=1

∫
dx
v

2
[(∂xφy)

2 + (∂xθy)
2] + 2J ′

β2
∂xφy∂xφy+1

+ γSDW cos

[
2π

β
(φy − φy+1) − π − 2δ̃

2

]
, (76)

where the bare SDW coupling is given by γSDW =
J ′A2

1 sin(δ̃) > 0.

1. Scaling considerations

Renormalization group arguments give considerable insight
into the physics of Eq. (76). All but the last term in HSDW

are scale invariant, and can be considered a fixed-point
Hamiltonian. The remaining SDW term, proportional to γSDW,
is not, and renormalizes under the scale transformation x →
bx, according to the usual linearized relation

γSDW(b) = b2−
SDWγSDW, (77)

where b > 1 is an arbitrary scale factor. As discussed in
the previous section, 
SDW < 2, so that the SDW interact is
relevant, and grows in strength under rescaling. Equation (77)
is valid for small dimensionless γSDW(b), and therefore the
weak-coupling regime is limited by the condition γSDW(b) <
v. This defines an “SDW correlation length” ξSDW such that
γSDW(b) = v:

ξSDW ∼ (v/γSDW)1/(2−
SDW). (78)

In the weakly coupled chain regime, γSDW is small and so ξSDW

is large. On scales large compared to this correlation length, we
expect that the bosonic modes appearing inside the SDW term
become “pinned” to values which minimize this interaction.
This pinning corresponds to the creation of well-established
SDW order.

Due to the divergence of ξSDW, however, the establishment
of SDW order can be prevented by finite-size effects, even for
reasonably large systems accessible by DMRG. For a finite
system of length L, we must compare the SDW correlation
length to L, and it is expected that physical quantities will
be functions of the dimensionless ratio �SDW ≡ ξSDW/L. For
�SDW � 1, SDW-like behavior is expected, but when�SDW �
1, there may be a nontrivial crossover. This occurs particularly
in the case of the TST, for which an analysis, detailed below,
shows that the crossover is discontinuous.

2. L = ∞
For an infinitely long system � = 0, we can understand

the nature of the SDW state by simply minimizing the γSDW

term in Eq. (76). When the width is also infinite, i.e., in two
dimensions, one can simultaneously minimize each cosine
term (for each y) independently. This occurs by taking

2π

β
φy

∣∣∣∣
d=2

= ϕ + π − 2δ̃

2
y, (79)

where ϕ is an arbitrary constant (x and y independent) phase.
Allowing for small gradients of ϕ, which might be present due
to fluctuations or perturbations and by substituting Eq. (79) into
Eq. (73), we see that the spin operator can then be represented
as

Szy(x)
∣∣
d=2 ∼ M̃ + ∂xϕ

2π
−A2 sin

[
ϕ(x) − π − 2δ̃

2
(2x− y)

]
,

(80)

which indeed is the classic form for a spin density wave
with wave vector π−2δ̃

2 (−2,1). This corresponds to an ideal
two-dimensional SDW state, and ϕ gives the “sliding” or
“phason”36 mode of the SDW. For generic irrational δ̃/π , ϕ
remains a gapless pseudo-Goldstone mode associated with
translational symmetry breaking. In two dimensions, the
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zero-point fluctuations of this mode do not, however, destroy
long-range SDW order.

Now, consider the case of the TST ladder, where y = 1,2,3
and periodic boundary conditions are applied. In this case,
it is generically impossible to simultaneously minimize each
cosine term separately. Instead, the minimum occurs when

2π

β
φy

∣∣∣∣
L=∞,TST

= ϕ + 2π

3
y, (81)

where again ϕ is an arbitrary constant, reflecting the invariance
of Eq. (76) under uniform translations of all the φy . Again, one
can express the spin operator here using this form

Szy(x)
∣∣
L=∞,TST

∼ M̃ + ∂xϕ
2π

− A2 sin

[
ϕ(x) − (π − 2δ̃)x + 2π

3
y

]
. (82)

In contrast with Eq. (79), the minimum configuration in the
TST, Eq. (81) is independent of δ̃, manifesting in Eq. (82) as
a difference dependence on y from Eq. (80). The difference is
due to the frustration of the intrinsic 2D SDW order by periodic
boundary conditions, which tend to lock the SDW order to a
commensurate form in the y direction. Interestingly, the two
results coincide when δ̃ = π/6, which corresponds to the case
M = Msat/3. At this point, the periodicity of the TST and the
SDW order are compatible.

As in the 2D case, at the level of Eq. (76) applied to
the TST, the uniform translation mode ϕ remains gapless.
Unlike the 2D case, however, in one dimension, the zero-
point fluctuations of this mode are sufficient to disrupt long-
range SDW order, which instead manifests as power-law
correlations. Nevertheless, the short-distance physics is still
that of an SDW, and moreover the 1D fluctuations are easily
accounted for theoretically. This is accomplished simply by
treating ϕ as a free massless boson, as we discuss below in
Sec. V C3.

3. Finite length L < ∞
As we have discussed in Sec. V A, for a finite-length chain,

we must impose the boundary conditions φy(x = 0) = φy(x =
L) = 0. These conditions are incompatible with the values, in
Eq. (81), which minimize the SDW term in the infinitely long
case. This means that end effects strongly affect, and tend
to suppress, SDW ordering. What do we expect? For short
systems, where �� 1, the end effects will dominate, and the
effects of the SDW interaction become negligible. In other
words, all components φy will be largely not affected by the
SDW term, and the system should behave similarly to three
decoupled chains of finite length. For long systems �� 1,
the SDW pinning should be effective far from the boundaries,
and only the pseudo-Goldstone mode �̃0 will behave like a
massless field (pinned at the boundaries).

Let us now address the crossover. It is convenient to first
make a change of basis34 from the φ1,φ2,φ3 to new fields
�0,�1,�2:⎛

⎜⎝
φ1

φ2

φ3

⎞
⎟⎠ =

⎛
⎜⎝

1/
√

3 1/
√

2 1/
√

6

1/
√

3 0 −2/
√

6

1/
√

3 −1/
√

2 1/
√

6

⎞
⎟⎠
⎛
⎜⎝
�0

�1

�2

⎞
⎟⎠ . (83)

The dual fields θy transform similarly. Note that the center-of-
mass field is just proportional to the SDW phase introduced

earlier: �0 =
√

3β
(2π)ϕ. The boundary conditions φy = 0 at the

ends translate to �i = 0 at the ends. The SDW Hamiltonian
now reads as HSDW = H (0)

SDW +H (1)
SDW, where the harmonic

part

H
(0)
SDW =

3∑
n=1

∫
dx

[
ṽn

2κn
(∂x�n)

2 + ṽnκn
2

(∂x�n)
2

]
(84)

is expressed in terms of renormalized stiffnesses κ−2
0 =

1 + 4J ′/(β2v) and κ−2
1,2 = 1 − 2J ′/(β2v) and velocities ṽn =

v/κn. Its interacting part [the analog of the second line in
Eq. (76) written in the new basis] reads as

H
(1)
SDW = γSDW

∫
dx2 cos

[
2π√
2β
�1 − π − 2δ̃

2

]

× cos

[
2π

β

√
3

2
�2

]
+ cos

[
2π

β

√
2�1 + π − 2δ̃

2

]
.

(85)

Note that the center-of-mass mode �0 ∝ ϕ does not enter
in Eq. (85). Thus, it behaves as a free massless boson,
independent of the strength of the SDW coupling. The
distinction between δ and δ̃ in the SDW Hamiltonian is not
important when analyzing the crossover, and will be dropped
in this section from now on.

To analyze the crossover, we first carry out the renormal-
ization group procedure by integrating out fluctuations of the
fields due to modes with wavelength less than the system size
L. In doing so, we replace γSDW by its renormalized value at
this scale,

γSDW → γSDW(L) = L−
SDWγSDW. (86)

Note that we have done the coarse-graining step of the RG
of integrating out modes, but we have not rescaled any fields
or coordinates, so as to keep the original units unchanged
for clarity. Under this coarse-graining transformation, the
quadratic terms in the Hamiltonian remain unmodified.

In this renormalized Hamiltonian, it is appropriate to carry
out a classical saddle-point approximation for �1 and �2,
which are the fields pinned by the SDW coupling. The
SDW potential in Eq. (85) is minimized by �2 = 0, which
is compatible with the boundary condition, and so, we can
impose this condition. Then, only �1 enters the saddle-point
condition in a nontrivial way. For simplicity, we specialize
to the case δ = π/6, or M = Msat/3. Then, we may define
� = 2π√

2β
�1 + 2π

3 , for which the saddle-point Hamiltonian,
neglecting the decoupled �0 term, becomes

Hclass =
∫ L

0
dx {K(∂x�)2 − γSDW(L)(cos[2�]

+ 2 cos[�])}, (87)

with K = β2ṽ1/4π2κ1.
The γSDW term is clearly minimized by � = 0, while the

open boundaries require �(0) = �(L) = 2π/3, causing the
strong suppression of SDW order by the ends. There can be a
nontrivial configuration �(x) which minimizes the functional
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Hclass. To bring out the crossover physics, we transform to
dimensionless coordinates, letting

x =
√
K/γSDW(L)z, (88)

which gives

Hclass = ε0

∫ L̃

0
dz {(∂z�)2 − (cos[2�] + 2 cos[�])}, (89)

with

ε0 =
√
KγSDW(L), (90)

L̃ = (L/ξ )1−
SDW/2 = �
SDW/2−1
SDW , (91)

ξSDW = (K/γSDW)1/(2−
SDW). (92)

Note that Eq. (92) agrees, at the level of scaling, with Eq. (78)
obtained earlier from general arguments. For the purpose of
minimization, the overall prefactor ε0 is irrelevant, so it is clear
already from Eq. (89) that the properties are a function of the
scaling variable �SDW only, as expected.

We are now prepared for the saddle-point approximation,
which consists in minimizing Eq. (89). Starting from the Euler-
Lagrange equation, which has the usual “energy” integral of
motion, one obtains(

d�

dz

)2

= C − (2 cos[�] + cos[2�]), (93)

where the integration constant (“energy”) C is fixed by
the condition d�(z = L̃/2)/dz = 0 as C = (2 cos[�1/2] +
cos[2�1/2]), where we denote �1/2 ≡ �(z = L̃/2). As a
result, the mid-ladder value of � is implicitly given by the
following integral:∫ 2π/3

�1/2

dϕ√
2 cos[�1/2] + cos[2�1/2] − 2 cos[ϕ] − cos[2ϕ]

= L̃

2
. (94)

The full crossover (in this saddle point-approximation) is
obtained from Eq. (94). First, we observe that in the limit
�1/2 → 0, the above integral diverges logarithmically, imply-
ing that, indeed, �(L̃/2) = 0 in the infinite-size limit. The
short system size limit is less obvious. For small L̃, we must
choose �1/2 to minimize the integral. However, if we make
the obvious choice to let �1/2 = 2π/3 − ε, with ε → 0+, one
finds that the integral in fact does not vanish, but approaches
the constant value π/

√
6. In fact, the integral as a function

of �1/2 has a nonmonotonic dependence, and the minimum
value of the integral is ≈1.1436 < π/

√
6 = 1.2826, which

is achieved for�1/2 ≈ 1.3178 < 2π/3 = 2.0944. Regardless,
the lower bound on the integral implies that there is a minimum
dimensionless length L̃min � 2.28, such that for L̃ < L̃min,
the minimum action solution is simply �1/2 = 2π/3, i.e.,
�(z) = 1/2 for all z. For such short systems, the boundary
conditions completely disrupt the SDW order, and the system
behaves as though it were just decoupled chains. The transition
from L̃ < L̃min to L̃ > L̃min is evidently discontinuous since
�1/2 must jump from a value �1/2 � 1.3178 at L̃ = L̃min + ε
to �1/2 = 2π/3 for shorter systems. To precisely determine

the value of L̃min requires a comparison of the action of the
nontrivial and trivial solutions to see where they cross.

What are the consequences of this transition? In numerics,
the transition can be probed by varying L or varying J ′/J
at fixed L. In either case, on crossing the transition, one
expects a sharp change from SDW-like behavior for L̃ > L̃min

to decoupled chainlike behavior for L̃ < L̃min. In the SDW-like
regime, the two modes �1,�2 may be considered to have
developed a gap, and consequently, the entanglement entropy
of a bipartite cut of the sample is reduced compared to the
decoupled chainlike regime. Specifically, in the SDW-like
regime, a logarithmic growth withL is expected and consistent
with central charge c = 1, while in the decoupled chain regime,
the behavior should be closer to c = 3. At the transition, a
sharp drop with increasing L of the entanglement entropy is
expected. More detailed predictions can be made for the spin
density profile 〈Szy(x)〉. We make such a comparison in the
following section.

D. DMRG results for SDW

A number of measurements in the DMRG give evidence
of the SDW state. As discussed in the previous section, the
SDW regime of long TSTs can be described by pinning the
fields �1 = �2 = 0, and allowing for gapless fluctuations
of the free massless boson field �0. In the semiclassical
approximation discussed in Sec. V C3, one can do somewhat
better by using the�0 fluctuations and replacing�2 → 0 and

�1(x) →
√

2β
2π [�(x) − 2π

3 ], with �(x) given by the solution
of Eq. (93). In this way, one obtains from Eq. (73)

〈
Szy(x)

〉 = M̃ + 2 − y
2π

∂x�(x) − A1

XηSDW

× sin

[
(2 − y)

(
�(x) − 2π

3

)
− (π − 2δ̃)x

]
.

(95)

Here, the quantity

X =
[

2(L+ 1)

π
sin

(
π |x|
L+ 1

)]
(96)

arises from the quantum average over the free boson field �0,
which is evaluated along the lines of Ref. 18, with the result
that the exponent

ηSDW = πκ0

3β2
= κ0

6

1

2πR2
. (97)

For M = Msat/3 and small J ′, we estimate κ0 ≈ 1 and
2πR2 ≈ 1 − 1/{2 ln[6

√
8/(πe)]} = 0.72 (see Appendix A of

Ref. 11), which leads to ηSDW ≈ 0.23, so the spin density
profile decays quite slowly with distance from the boundary
in the SDW regime. Note that the y = 2 chain does not
depend on �, so one can directly compare the numerically
obtained magnetization profile for the “nonfrustrated” chain
with Eq. (95) (see Fig. 14).

One may wonder about the selection of the y = 2 chain.
For the geometry of our simulations, the model has full
translational symmetry y → y + 1 in the y direction. This
symmetry is broken by our combined choice of saddle
point � = �0 = 0 in the bulk and the boundary condition
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FIG. 14. (Color online) Sz profile for R = 0.7 at (a) M/Ms = 1
3

plateau and (b) M/Ms = 1
2 in the SDW state for the nonfrustrated

chain (see text). We show the DMRG results by (black) circles and
the theoretical prediction [Eq. (95)] by (red) solid line/square. The
theoretical line captures all the DMRG data points, which appear to
form three different curves. The (red) squares show the Sz(x) values
at discrete lattice site positions x, as obtained from Eq. (95).

�0 = 0 at the edges. Examination of the interaction term in
Eq. (85) shows that there are apparently two other minimum
solutions, � = π and �2 = ±β/√6. In the infinite system,
these are equivalent to the one we have chosen, insofar as
they give identical results for all operators if we make a
suitable translation of �0. However, the choice of boundary
condition for �0 prevents this translation and results in a
broken-symmetry state. By a different choice of the otherwise
equivalent saddle points, we can obtain formulas analogous to
Eq. (95) but with the y = 1 or 3 chains independent of �. In
principle, for a finite system, even the discrete translational
symmetry should be unbroken, but the restoration of this
symmetry is probably only at extremely low energies at which
tunneling occurs between these minima, and indeed we find
the symmetry to be spontaneously broken in our DMRG
simulations.

In the decoupled regime L̃ < L̃min, it is more appropriate to
just calculate the spin expectation value using the free theory
[Eq. (84)] for all three fields �0,�1,�2. Then, we obtain,
instead of Eq. (95), the result that〈

Szy(x)
〉 = M̃ + A1

Xηdc
sin[(π − 2δ̃)x], (98)

where the “decoupled chains” exponent is

ηdc = π (κ0 + κ1 + κ2)

3β2
. (99)

In the same small-J ′ approximation, this gives ηdc ≈ 3ηSDW,
so that ηdc ≈ 0.610. Note that there is a much more rapid decay
of the spin density profile from the boundary in this regime.

We compare the spin density profile in Eq. (95) with our
DMRG data and find reasonable agreement. Figure 14 shows
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FIG. 15. Sz profile of DMRG result for SDW state atM/Ms = 1
2 ,

R = 0.7 for frustrated chains, (a) y = 1 and (b) y = 3. We can see
from these plots that the translational symmetry is spontaneously
broken, and that the SDW is strongly affected by boundaries. The
DMRG data are seen to obey the symmetry 〈Sz1(x)〉 = 〈Sz3(L+ 1 −
x)〉, which follows from Eq. (95).

a comparison of numerical data with magnetization profile of
the nonfrustrated chain, i.e., the y = 2 result of Eq. (95), while
Fig. 15 shows that of frustrated chains y = 1,3.

We can also measure in DMRG the central charge via
entanglement entropy, which yields c = 1 for the SDW phase
as opposed to c = 3 for decoupled chains. This is shown
in Fig. 16, where the plots show that at magnetizations
M/Ms = 1

6 ,
1
2 for R = 0.5, the central charges obtained from

numerics are c = 0.9,0.95, respectively. These values are very
close to the predicted c = 1, which gives evidence for the
SDW.

Another measurement we can perform is the transverse
spin-spin correlation function, which should decay exponen-
tially to support the SDW state. We observe exactly this
behavior from our simulations, as shown in Fig. 17. Finally,
power-law behavior is expected for the “octupolar” correlation
function7

〈[
 3
y=1S

+
y (x)

][
 3
y=1S

−
y (x ′)

]〉 ∼ Cη3 (x,x ′). (100)

The operator  3
y=1S

+
y (x) may be thought of as inserting

a soliton, an extra period, into the SDW. This correlation
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FIG. 16. (Color online) Entanglement entropy for SDW phase
for R = 0.5 at (a)M/Ms = 1

6 below the 1
3 plateau and (b)M/Ms =

1
2 above the 1

3 plateau. Due to large finite-size effects of this
measurement, we chose to run our simulations on a larger system
size Nx = 180 in (a), to compare to a smaller size Nx = 120 in (b).
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FIG. 17. (Color online) The transverse spin-spin correlation
function on a log-linear scale for R = 0.7 and at magnetizations
(a)M/Ms = 1

6 and (b)M/Ms = 1
2 , both in the SDW state for system

size Nx = 120 and x ′ = Nx/2. Data points are shown as (black)
circles, while the (red) line is a fit to a pure exponential function.

function decays in the thermodynamic limit with the power-
law exponent

η3 = 3β2

2πκ0
= 1

2ηSDW
. (101)

We indeed observe such power-law behavior in the DMRG,
as shown in Fig. 18. Fitting these data (for M/Ms = 1

2 ,
R = 0.7) gives η3 = 3.1 ± 0.2, while the Sz profile in Fig. 14
for the same parameters is fit to ηSDW = 0.2 ± 0.1, yielding
the product η3ηSDW = 0.62 ± 0.31. The uncertainties for each
exponent are crudely estimated by tracing out the boundary
values when the fitting starts to mismatch the DMRG result.
The slow decay of the Sz profile and strong boundary effects as
seen in Fig. 14 induce significant uncertainties in the estimate
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FIG. 18. (Color online) The “octupolar” correlation function
〈[ 3

y=1S
+
y (x)][ 3

y=1S
−
y (x ′)]〉 with x ′ = Nx/2, shown on a log-log

scale. We show for R = 0.7 at magnetizations (a) M/Ms = 1
6 and

(b)M/Ms = 1
2 in the SDW state. Our DMRG data points are plotted

in (black) circles, while the theoretical fit to Eq. (100) is shown as
(blue) line.

for ηSDW, so we consider the degree of agreement to the
expected value η3ηSDW = 1

2 satisfactory.

VI. M = Msat/3 PLATEAU

Magnetization plateaux are observed frequently in models
of frustrated magnetism and in a number of experiments
on such materials. Theoretically, we define a magnetization
plateau as a ground state of a spin system in a magnetic field h,
such that for a range of fields h1 < h < h2, the magnetization
(along the field) M(h) = Mp is constant. This implies that
the magnetization is a good quantum number, and, since by
assumption the only term in the Hamiltonian coupling to the
applied field is hM , that the ground-state wave function itself
is independent of the field in this range. Moreover, since the
magnetization M is just the total spin Sztot along the field
direction, the symmetry under rotations generated by Sztot
is unbroken. Thus, there can be no spin expectation values
normal to the field. Furthermore, no other nearby states must
cross the ground state (in energy) in this field range since it
remains the ground state, and thus, since states with different
magnetization must have energy depending linearly on the
field, there must be a spin gap to excitations which carry
nonzero spin Sz relative to the plateau state.

There are restrictions on such gapped states, following from
the Lieb-Schultz-Mattis theorem and related arguments.37 One
way to understand them is to map the spins to hard-core bosons,
where the boson number ni = Szi + 1

2 . A gapped, insulating
ground state of bosons in one dimension must have an integer
number of bosons per unit cell. This implies that the total spin∑
i∈u.c.〈Szi 〉 per unit cell must be an integer if the unit cell

contains an even number of sites, and must instead be a half
integer if the unit cell contains an odd number of sites. Often,
such gapped plateau states may be considered as ordered states
with spins arranged in some pattern parallel and antiparallel to
the field within a unit cell.

A prominent feature in the phase diagram we obtain
is a magnetization plateau at one third of the saturation
magnetizationM = Msat/3. This has been extensively studied
in the literature for the isotropic model9,10 R = 0, where it is
usually regarded as a result of quantum “order by disorder.”
The structure of the plateau state in that case is indeed in
agreement with a semiclassical approach3 and has a unit
cell consisting of two up and one down spin, forming a
three-sublattice enlargement of the primitive triangular lattice
unit cell. Based on a combination of our DMRG studies and
an analytic analysis of the quasi-1D limit J ′/J � 1 (below),
we show that, in the 2D system, the plateau state persists in
the full range of anisotropies 0 < R � 1 and forms a single
phase throughout. For the one-dimensional TST, however, we
find that the plateau, while present in the isotropic regime,
terminates before reaching the decoupled chains limit. Both
these results can be understood from the relation between the
plateau state and the SDW phase, as will be explained in the
next section.

A. Plateau states from SDW

The collinear SDW state shares many of the expected
elements of the plateau phase. It has an unbroken U(1)

165123-19



CHEN, JU, JIANG, STARYKH, AND BALENTS PHYSICAL REVIEW B 87, 165123 (2013)

symmetry, even in the 2D limit, and exponentially decaying
transverse correlations in the TST. It has rather long-range
oscillating correlations of the component of the spin parallel
to the field, and consequently a markedly modulated 〈Szy(x)〉
profile in finite systems. The distinction between the SDW
and the plateau phase is that the former is generically
incommensurate and gapless.

Both these differences may be removed due to further
interactions neglected up to now, which pin the gapless phason
mode ϕ at specific discrete values. This has been discussed at
length already in Ref. 11 for the two-dimensional case. There,
it was argued that an infinite sequence of plateaux occur at
T = 0 within the SDW phase, the strongest of these being the
1
3 plateau, and that all these plateaux exist at arbitrarily small
J ′/J . In the two-dimensional system, the plateau width (in a
magnetic field) can be estimated to scale as J (J ′/J )9/2 (see
Ref. 11). Here, we will restrict the discussion to the TST, and
find that one-dimensional fluctuations suppress most of these
plateaux, including the 1

3 plateau for sufficiently small J ′/J .
The plateau formation is due to additional interactions

neglected in the sine-Gordon Hamiltonian presented so far
in Eqs. (84) and (85), which involve higher harmonics of
the phason mode ϕ. The allowed terms are obtained directly
from a symmetry analysis. The action of the symmetries
of the problem on ϕ may be understood directly from the
expression for the spin operator in the SDW phase of the TST in
Eq. (82). Under each symmetry, which is a lattice space-group
operation, ϕ must be chosen to transform appropriately so that
Szy(x) is a scalar. This dictates the following transformation
rules:

(1) translation along x, x → x + 1: ϕ → ϕ + π − 2δ;
(2) translation along y, y → y + 1: ϕ → ϕ − 2π/3;
(3) 2D inversion, x → −x, y → 2 − y: ϕ → −π/3 − ϕ.

In addition, there is a “gauge invariance” arising because of
the ambiguity of ϕ due its definition as a phase variable, which
forces the invariance of the Hamiltonian under local shifts of
ϕ by 2π . Note that in this section, we always consider the
infinite-L limit, and neglect the difference between δ̃ and δ.

Using the local gauge invariance, we seek terms of the form

Hpin =
∑
n

∫
dxtn sin(nϕ + αn), (102)

where tn and αn are arbitrary parameters. (In general, we can
also allow αn to be a slowly varying linear function of x,
which is important for a full analysis of commensurate to
incommensurate transitions, but we do not require this here
for the more limited purpose of just identifying the relevant
plateau states.) Using the translational symmetry along y, we
immediately obtain the constraint that tn = 0 unless n is a
multiple of 3, and so we set n = 3k. The inversion symmetry
then forces αn = 0 (mod 2π ), so finally, we find

Hpin =
∑
k∈Z

∫
dxtk sin 3kϕ, (103)

where we have redefined the tk appropriately. Now, it remains
to apply translation symmetry along x. This simply gives the
condition that 3k(π − 2δ) is an integer multiple of 2π . Writing

δ = πM = (π/2)M/Msat, we have

M

Msat
= 3k − 2p

3k
, (104)

with k,p integers. This gives a rational family of potential
magnetization plateaux, the strength of which decreases with
increasing k.

An actual plateau occurs for a given value of magnetization
characterized by integers k,p only if the associated term tk is
relevant,7 when considered as a perturbation to the low-energy
Hamiltonian of the SDW state, which is just the free massless
field theory for ϕ. The scaling dimension of the operator in
Eq. (103) is easily obtained as 
3k = 9k2ηSDW = 3πk2κ0/β

2

[cf. Eq. (97)] and, therefore, under RG, we find

tk(b) = tkb2−
3k = tkb2−9k2ηSDW . (105)

Here, tk is relevant, and a magnetization plateau appears when

3k < 2. Consider the case k = 1, which corresponds to the
case M = Msat/3 and small J ′/J . There (recall Sec. V D),
ηSDW ≈ 0.23 so 
3 ≈ 2.07 > 2, and thus t1 is irrelevant.
Because 
3k increases quadratically with k, clearly all other
potential plateaux with larger k are absent in the quasi-1D limit.
Thus, we expect that for J ′/J � 1, the SDW state remains
stable, and there are no magnetization plateaux.

With increasing J ′, however, ηSDW decreases, owing to
its dependence on κ0 in Eq. (97). Including this dependence,
and using the quasi-1D formula for κ0 [in the text following
Eq. (84)], we obtain the condition that t1 becomes relevant,
i.e.,
3 < 2, when J ′/J > 0.17. We believe that this is still in
the domain where the quasi-1D approach is valid. The result
predicts that the 1

3 plateau appears only for R < 0.83 in the
TST. At fixed M = Msat/3, the transition from the gapless
SDW to gapped plateau state at this value ofR or J ′/J is in the
Kosterlitz-Thouless universality class, as is well known for the
quantum sine-Gordon model. Consequently, the gap vanishes
exponentially on approaching the transition from the more
isotropic side, and the ground-state energy itself shows only
an unobservably weak essential singularity at the transition.
We note that other potential plateaux with n = 3k � 6 are so
strongly suppressed by fluctuations that we do not expect any
to occur, at least in the quasi-1D regime.

It is interesting to consider the spin structure on the plateau.
This depends on the sign of t ≡ t1. For t > 0, the sin 3ϕ
pinning term in Eq. (103) is minimized by three values with
equal energy, ϕ = −π/6 + 2πn/3, with n = 0,1,2. For these
values, using Eq. (82), the spin density profile takes the form

〈
Szy(x)

〉
t>0 = M̃ + A1 sin

[
π

6
+ 2π

3
(x − y − n)

]
. (106)

This equation describes a three-sublattice structure with
two spins “up,” i.e., with 〈Szy(x)〉 > M̃ , when x − y −
n = 0,1 (mod 3) and one spin “down,” when x − y − n =
2 (mod 3). This is the semiclassical up-up-down state, and
has precisely the same qualitative structure as predicted
semiclassically in the isotropic limit J ′ = J .

For the other case t < 0, the minima occur for ϕ = +π/6 +
2πn/3, and the spin density profile becomes

〈
Szy(x)

〉
t<0 = M̃ − A1 sin

[
π

6
− 2π

3
(x − y − n)

]
. (107)
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FIG. 19. Entanglement entropy at (a)R = 0, (b)R = 0.2, and (c)
R = 0.4 in the 1

3 plateau state. We see that the entanglement entropy
approaches a constant for large x ′, which corresponds to a central
charge of c = 0 in the ordered state.

This describes instead a three-sublattice structure with two
spins nominally “down,” with x − y − n = 0,2 (mod 3), and
the remaining one up. This state does not have a natural
semiclassical picture, and instead corresponds to the “quan-
tum” version of the plateau, discussed for the two-dimensional
lattice in Ref. 11. A caricature of this state is a three-site unit
cell with two sites forming a spin-singlet entangled pair, and
the third (the “up” site) polarized along the field. Our DMRG
results are consistent with the up-up-down configuration
[Eq. (106)], suggesting that t > 0 case is realized.

We should stress that, apart from the quantitative estimate
of κ0, nothing in this section depends upon the quasi-1D
approach. The conditions for the existence and stability of the
plateaux arising out of the SDW state are otherwise completely
general results based only on symmetries of the TST and
general arguments.

B. DMRG results for plateau

In this section, we discuss how we use DMRG to probe
into the 1

3 plateau. The first observation of its existence is the
constant entanglement entropy for the ranges of R on the 1

3
plateau, as shown in Fig. 19. This shows an ordered state which
corresponds to central charge c = 0, in Eq. (12). Furthermore,
we can measure the transverse spin-spin correlations, which
should decay exponentially in the 1

3 plateau. We show this
measurement in Fig. 20, for R = 0.2 as well as the isotropic
case R = 0.

In Figs. 21(a) and 21(b), we plot the Sz profile of the
spins forming the three sublattices on the 1

3 plateau. Near
x = L/2, we see a perfect up-up-down structure, with some
boundary effects on the edges of the chain. This gives definitive
evidence of the robustness of the 1

3 plateau in these ranges of
anisotropies. Moreover, in Fig. 21(c), we see that the plateau
persists up untilR ≈ 0.8, at which point, the system undergoes
a Kosterlitz-Thouless transition that destroys the 1

3 plateau. As
described in the previous sections, this is a signature of the 1D
TST only: in 2D, the plateau is even more robust, extending
down to R = 1. This is further discussed in Sec. VIII A.
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FIG. 20. (Color online) Log plot for transverse spin-spin corre-
lation function at (a) R = 0 and (b) R = 0.2 in the 1

3 plateau state
for system size Nx = 120 and x ′ = Nx/2. Data points are shown as
(black) circles, while the (red) line is a fit to the exponential function.

S
z x
,y

x

(a)

(b)

(c)

0.4

0.2

0

0.2

0.4

0 20 40 60 80 100 120
0.4

0.2

0

0.2

0.4

M/Ms = 1/3, R = 0

M/Ms = 1/3, R = 0.2

0.0 0.2 0.4 0.6 0.8 1.0
-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

R

 Sz(A)
 Sz(B)
 Sz(C)

M/Ms=1/3

S
z

M/Ms = 1/3

Sz(A)
Sz(B)
Sz(C)

FIG. 21. (Color online) Sz profile for the 1
3 plateau state at

(a) R = 0.0 and (b) R = 0.2. We show data for the three sublattices,
showing the up-up-down structure, as square (black), circle (red), and
triangles (blue). There are slight boundary effects near the end of the
chains, near x = 0,120; however, the chains are well ordered toward
the center. (c) Shows the Sz profile at M/Ms = 1

3 as a function of
R. We observe that the width of the plateau decreases and eventually
vanishes near R ≈ 0.8.
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To characterize the properties of the plateau as well as
its width, we will adopt the following method, which takes
advantage of the total spin conservation due to the presence of
the U(1) symmetry with a magnetic field along the z axis. In
this case, we can work in a given total spin sector Sz = ∑

i S
z
i ,

and get the corresponding ground-state energy E(Sz):

E(Sz,h) = E(Sz) − h · Sz. (108)

Then, the energy difference between two adjacent spin Sz

sectors is given by

δE(Sz,h) = E(Sz + 1,h) − E(Sz,h). (109)

Generally, at small magnetic field h, E(Sz + 1,h) > E(Sz,h),
so δE(Sz,h) > 0. However, E(Sz + 1,h) � E(Sz,h) when h
is large enough, so δE(Sz,h) � 0. Therefore, the boundaries of
the plateau can be determined when E(Sz + 1,h) = E(Sz,h),
with the upper boundary h2

c(S
z) and lower boundary h1

c(S
z) of

the plateau given by

h2
c(S

z) = E(Sz + 1) − E(Sz),
(110)

h1
c(S

z) = E(Sz) − E(Sz − 1).

Finally, the corresponding width of the plateau can also be
obtained as

W (Sz) = h2
c(S

z) − h1
c(S

z). (111)

In DMRG, the boundaries of the 1
3 plateau can be computed

using Eq. (110) by fixing the total spin to Sz = NMs
3 . Here,

Ms = 1
2 is the saturation magnetization, and N is the total

number of sites. As shown in Figs. 22(a) and 22(b), both the
upper and lower boundaries of the 1

3 plateau are determined us-
ing different system sizes and anisotropies. The corresponding
width of the plateau is also given in Fig. 22(c) using Eq. (111).
From this, we can see that the plateau is very robust and
remains finite when the anisotropy R is small, and decreases
with increasingR. Interestingly, the plateau still remains finite
even R is very large, i.e., R = 0.7, although the width W is
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FIG. 22. (Color online) Finite-size scaling of the boundaries of
the 1

3 plateau for Ly = 3 TST for different anisotropies (a) R =
0.0,0.2,0.4 and (b) R = 0.6,0.7,1.0. (c) Width of the 1

3 plateau as a
function of R.

very small. In the region 0.7 < R � 1, finite-size scaling of
the data shows that the width of the plateau is zero within
the numerical error, for example, at the decoupled chain limit
R = 1.

VII. LOW-FIELD REGIME

At zero field, there is already considerable work on the spa-
tially anisotropic Heisenberg model in two dimensions.10,38–43

Away from the quasi-1D region, i.e., for 0 < R � 0.8, the
ground state of the 2D model is unambiguously magnetically
ordered, in a coplanar spiral with an incommensurate wave
vector that varies continuously with R. With increasing
anisotropy, the ground state is less clear, and is quite difficult
to resolve numerically, owing to the fact that correlations
between chains set in only at extremely long length scales
for small J ′/J . A controlled renormalization group approach
predicts, however, that in the limit 0 < J ′/J � 1, the system
develops a collinear magnetic state instead of the spiral one.12

Such a collinear state is qualitatively distinguished from the
spiral one by its pattern of symmetry breaking, which leaves
a residual U(1) spin rotation symmetry about the ordering
axis, in contrast to the spiral state which fully breaks SU(2)
symmetry with no residual continuous invariance remaining.

Here, we turn to the situation in the one-dimensional
TST. We argue that in this case the spiral order is converted
by 1D quantum fluctuations into a fully gapped state with
spontaneous staggered dimerization. The argument is quite
general and is expected to hold for any 1D system with
local noncollinear order and a half-integer spin per unit
cell. Furthermore, specifically for the TST, we show that the
tendency to short-range spiral order is more robust than in 2D,
and unlike in 2D, it prevails over collinear order even in the
limit of arbitrarily small J ′/J . Thus, staggered dimerization
is predicted at zero field for all 0 � R < 1 for the TST. See
Appendix C 1 for an alternative calculation that leads to the
same conclusion as the one presented below.

Given the presence of dimerization in zero field, we can
discuss the behavior in low fields, or more properly for small
magnetization, in terms of the elementary excitations of the
symmetry-broken dimerized state, which are domain-wall
solitons. We obtain in this way different gapless phases at
low field, including the SDW state discussed previously from
the quasi-1D point of view.

A. Zero-field dimerization from spiral order

In the following, we assume that on short space and time
scales, the spins establish a similar spiral order to that of
the 2D system. This notion can be made more systematic
by considering spin tubes made by wrapping the triangular
lattice into cylinders with larger circumference. Once the
circumference is large enough compared to the correlation
length of the spiral order, the latter should become well
established. It seems reasonable to regard this as being the
case already for the circumference-three TST studied here.
This is corroborated also by the close correspondence of
the phase diagram in the weakly anisotropic limit R � 1 and
the expected semiclassical one, as discussed already in Sec. III.
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With this assumption, the description of the TST should
be that of a nonlinear σ model (NLσM) for the spiral order,
confined to the finite-width cylinder. This starting point is
similar to the one of Haldane44 applied to unfrustrated spin
chains of spin S, which locally establish collinear Néel order.
From this formulation, Haldane established the existence of a
featureless gapped state for integer S, while it is known that
chains with half-integral S harbor a gapless Bethe chainlike
phase instead. The case of the TST is distinct from Haldane’s
analysis, however, owing to the different symmetry of the
order. While the collinear Néel case is described by a vector
O(3) NLσM, the spiral case is instead described by a NLσM
with a matrix SO(3) order parameter.45 Here, the matrix may
be constructed from the local spin order

Si ∼ m(n̂1 cos q · ri + n̂2 sin q · ri), (112)

where n̂1 and n̂2 specify the plane of the spiral, with n̂1 ·
n̂2 = 0, q the spiral wave vector, and m the amplitude of the
quasistatic moment. One can construct from this the SO(3)
matrix

O = (n̂1|n̂2|n̂3) , (113)

with n̂3 = n̂1 × n̂2.
If on short space and time scales, spiral order is present, we

expect that an appropriate effective NLσM action is given by

SNLσM = 1

2g

∫
dx dτ

{
1

v
Tr[∂τOT ∂τO] + v Tr[∂xOT ∂xO]

}
.

(114)

Note that, for a quasi-1D system with circumference Ly , the
effective coupling constant g ∼ c/Ly � 1 for large Ly , with
some constant two-dimensional coupling constant c.

Famously, in Haldane’s analysis of spin chains with a
vector O(3) order parameter, the naive NLσM action must
be supplemented by a topological term.44 Topology of the
order parameter is also important here, but its nature is
rather distinct from Haldane’s case. For clarity, we compare
and contrast the two situations here. The vector O(3) order
parameter comprises a manifold isomorphic to the sphere
S2. Its topology is summarized by the homotopy groups
 1(S2) = 0 and  2(S2) = Z. The former implies that there
are no nontrivial loops on the sphere and, correspondingly,
no singular point defects in two dimensions. The latter,
second homotopy group implies that there are classes of
nontrivial smooth configurations of the order parameter in two
dimensions, parametrized by an integer. These configurations
are skyrmions, lacking any singularity. Because of the lack of
any singularity, the skyrmions appear in a continuum limit of
the O(3) vector NLσM, and modify the physics of the NLσM
through a topological θ term, which gives a phase factor to
configurations with nonzero skyrmion number. Based on this
NLσM with θ term, Haldane postulated distinctly different
behavior for integer and half-integer spin chains.

In the matrix SO(3) case, the order-parameter manifold
is S3/Z2, and the corresponding homotopy groups are
 1(S3/Z2) = Z2 and  2(S3/Z2) = 0. The trivial second
fundamental group means that nonsingular configurations of
the order parameter have no topological distinctions. This
implies that a continuum limit exists in which there are no

topological defects and there is no topological term. Instead,
the nonvanishing first homotopy group implies that there
are singular point defects in two dimensions, with an Ising
character. Note that in our theory, these are point defects
in space-time, or instantons. Such defects are well known
in classical two-dimensional noncollinear magnets, and are
known as Z2 vortices.46 They do not appear in the continuum
NLσM, but are allowed in a lattice theory. Instead, the proper
way to treat them is to embed the continuum theory in a
larger one in which the defects appear as operator insertions,
with some fugacity and selection rules. This situation is
familiar from the Kosterlitz-Thouless analysis of the classical
XY model, in which the naive continuum theory is just the
Gaussian spin-wave line, and the defects are point vortices
which are treated as a kind of Coulomb gas.36 It occurs
also in the quantum analysis of (2 + 1)-dimensional collinear
antiferromagnets, where the singular defects are hedgehogs or
monopoles. The separation of these defects and the continuum
theory is the basis of the theory of deconfined quantum
criticality.47

With this understanding, we may first consider the SO(3)
matrix NLσM without any Z2 vortices, which is simply
described by Eq. (112). There is no topological term. This
SO(3) NLσM is, like all NLσM’s in two dimensions for non-
Abelian groups, asymptotically free. Lacking any quantum
phase factors, we expect simply that it develops a gap at
a length scale ξ ∼ eg0/g ∼ e g0c Ly , and that order-parameter
(hence spin) correlations decay exponentially beyond this
scale. The gap itself behaves as 
 ∼ v/ξ . Note the difference
from Haldane’s case, where the θ term, which is nontrivial
for half-integer spin, fundamentally alters the behavior of
the continuum NLσM, leading to gapless behavior in the
half-integer spin case. Here, there is no topological term, and
the system is always gapped with exponential spin correlations.

Now, we can consider the role of the Z2 vortex instantons.
Such a vortex is described in the field theory by an operatorψ ,
which inserts the vortex at a particular space-time point. It is
crucial to consider the quantum numbers of a Z2 vortex, i.e.,
how the operatorψ transforms under physical symmetries. The
relevant operations are time reversal, translation, and inversion.
It can be argued (we discuss this in Appendix D) that the vortex
operator is invariant under time reversal and translations along
y, and transforms under the other two operations, translation
along x, Tx and inversion P according to

Tx : x → x + 1, ψ → (−1)Lyψ, (115)

P : x → −x,y → −y, ψ → (−1)Lyψ. (116)

From the above properties, we see that for odd Ly , ψ has
the transformation properties of a staggered dimerization
operator. In general, two operators with the same symmetry
are expected to have nonzero overlap in the operator sense, and
their correlations will be proportional. Thus, for oddLy , theZ2

vortex operator ψ can be viewed as a staggered dimerization
order parameter.

Let us consider the correlations of ψ . Its two-point
correlation function is obtained by inserting two Z2 vortices
in the system at separated space-time points. When they are
widely separated, the result should be just the product of

165123-23



CHEN, JU, JIANG, STARYKH, AND BALENTS PHYSICAL REVIEW B 87, 165123 (2013)

1.3

1.6

1.9
1.2

1.5

2. 2.5 3. 3.5
2.

2.4

2.8

En
ta

ng
le

m
en

t E
nt

ro
py

, S

x′

(a)

(b)

(c)

M = 0, R = 0

M = 0, R = 0.2

M = 0, R = 0.7

FIG. 23. Entanglement entropy at (a) R = 0, (b) R = 0.2, and
(c) R = 0.7 at zero field. The oscillatory behavior with periodicity 2
shows the dimerized ground state.

two independent Z2 vortices. Naively, using Eq. (112), such
a vortex has an action which diverges logarithmically with
the system size. However, its effective action is expected to
be finite, due to the vanishing order and stiffness beyond the
scale ξ . Roughly, the effective action for a single vortex is thus
obtained by replacing the system size by ξ , so Sv ∼ 1

g
ln ξ ∼

g0/g
2. Then, we expect that

lim
x→∞〈ψ(x)ψ(0)〉 ∼ e−2Sv ∼ e−g0/g

2 ∼ e−cL2
y , (117)

with some constant c. The saturation to a finite value as x →
∞ implies 〈ψ〉 
= 0, and hence, for odd Ly , the existence of
staggered dimer order. For even Ly , there is no connection of
Z2 vortices to dimerization, so although the former are present,
the system forms simply a featureless gapped state.

We can probe into this state by measuring the entanglement
entropy in DMRG for a range of anisotropies at zero field. We
show this in Fig. 23, where an oscillatory behavior of period 2
gives clear evidence of the dimerized phase described above.

B. Gapless states in low but nonzero field

As argued in the previous section, the ground state in
zero field is a nonmagnetic dimerized state with a gap to all
excitations. As a consequence of the gap, the ground state
is unchanged by application of a sufficiently small field. The
ground state changes when the field is large enough that a
state with nonzero spin crosses the energy of the spin-zero
ground state. Generally, if the transition to a state of nonzero
magnetization occurs continuously, we can think that the
state with nonzero magnetization consists of a dilute set of
elementary excitations above the zero-field ground state.

We must consider therefore the elementary excitations of
the dimerized state, and in particular those which carry nonzero
spin (as these couple to the field). The most important such
excitations are the topological soliton excitations which are
characteristic of the broken Ising symmetry of the dimerized
state. Such solitons are domain walls, connecting the two
distinct dimerized ground states. As is well known from the
study of the Majumdar-Gosh chain,48 solitons of this type
carry spin, and in particular for the TST, one can readily argue

=
1√
2

(| ↑↓ )

(a) Sz = 1/2 solitons (b) Sz = 3/2 solitons

= |m

FIG. 24. (Color online) Toy picture of solitons. The blue shade,
covering three sites, in (a) corresponds to the Sz = 1

2 soliton in
Eq. (118), while the three blue arrows in (b) correspond to a single
Sz = 3

2 soliton.

that the solitons carry half-integer spin, namely, Sz = 1
2 , 3

2 ,
as shown in Fig. 24. Both values of the spin are possible,
and generally differ in energy. The solitons are topological
excitations insofar as they are nonlocal: they can not be
created by the action of any local operator on a dimerized
ground state. In addition to the topological soliton excitations,
nontopological excitations carrying spin Sz = 1 also exist.
They can be visualized either by replacing a singlet dimer
by a triplet of aligned spins, or as a bound pair of Sz = 1

2
solitons.

Generally, if the magnetized state is realized as a dilute sys-
tem of nontopological Sz = 1 triplons, then the dimerization
is not disrupted and must persist for M > 0. Numerically,
however, the dimerization appears to be disrupted at all
nonzero M . We will assume henceforth that the magnetized
state (at small M > 0) should be regarded as a collection of
topological soliton excitations, and neglect the Sz = 1 triplons.

In general, the excitations can be characterized by spatial
quantum numbers in addition to spin. For an excitation
localized in x in the TST, we may consider the transformations
under translations along y, Ty , and under inversion P . From
Fig. 24, it is clear that the Sz = 3

2 soliton is invariant under
both. However, this is not the case for the Sz = 1

2 soliton,
which has additional structure. In general, out of the three
nondimerized spins in the “core” of the domain wall, we can
form three linearly independent states with Sz = 1

2 :

|m〉 = 1√
3

⎡
⎣ζm

⎛
⎝↓

↑
↑

⎞
⎠+

⎛
⎝↑

↓
↑

⎞
⎠+ 1

ζm

⎛
⎝↑

↑
↓

⎞
⎠
⎤
⎦ , (118)

where ζ = e2π/3 andm = 0,±1. These are simply momentum
eigenstates along the three-site chain. The state |0〉 is invariant
under the Ty and P operations, while the chirality eigenstates
|±〉 form a two-dimensional irreducible representation. In
general, the chirality states would differ in energy from
the scalar one. If we crudely model the soliton core as
a three-site antiferromagnetic Heisenberg chain, then we see
that the chirality states have lower energy, so we expect that
the elementary solitons take this form. Consequently, there
are two chirality “flavors” to the Sz = 1

2 solitons.
To understand the impact of the solitons, we will need the

relation between the microscopic lattice operators and those
which describe the solitons. The simplest to consider is the
dimerization operator, or the bond kinetic energyBx,y = �Sx,y ·
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�Sx+1,y . This is negative on singlet bonds and has zero average
on bonds with uncorrelated spins. In a ground state, it oscillates
with period 2 in the x direction. However, the singlets are
shifted over by one sublattice on crossing a soliton, so

Bx,y ∼ B + (−1)x+N(x)ε0, (119)

where B is the nonzero average, and ε0 is the ampli-
tude of the bond modulation. We have defined N (x) =∑
x ′<x a

†
+,x ′a+,x ′ + a†−,x ′a−,x ′ + a†3,x ′a3,x ′ , which is the number

of solitons to the left of the position x. The N (x) factor
accounts for the shift in the singlet position on crossing each
domain wall.

Next, we turn to the spin density operator Szx,y . We are
interested in its action on states which consist of a low density
of solitons. It is helpful to consider a caricature of these states
in which solitons are described by a wave function which
is a product of columns of singlets, spaced by occasional
nonsinglet columns with either the chiral Sz = 1

2 form, or fully
aligned Sz = 3

2 spins, as shown in Fig. 24. If the operator Szx,y
acts on a column x which is part of a singlet, it converts
that singlet to an Sz = 0 triplet state. This triplet costs a
nonzero energy equal to the zero-field spin gap, and having
Sz = 0 gains no energy back from the magnetic field. Thus,
if we restrict our description to a low-energy one, below the
zero-field spin gap, we can simply take Szx,y to annihilate the
state in this case. If, however, x is located at the position of a
soliton, then Szx,y gives back a low-energy state, which consists
either of the original soliton or one with reversed chirality.
Notably, in moving down the 1D system, solitons alternate
between odd and even columns of the lattice. Thus, a nonzero
spin is only measured when Szx,y acts on an even or odd site, if
the number of solitons to the left of the position x is fixed. This
lets us write the following expression for the spin operator:

Szx,y ∼ [1 + (−1)x+N(x)][a†+,xa+,x + a†−,xa−,x

+ ζ ya†+,xa−,x + ζ−ya†−,xa+,x + a†3,xa3,x], (120)

where a+,x,a−,x are annihilation operators for chiral Sz = 1
2

solitons, and a3,x is an annihilation operator for an Sz = 3
2

soliton.
Finally, we consider the spin-raising operator S+

x,y , contain-
ing the XY components of the spin. Acting on a site which is
part of a singlet bond, the raising operator converts the singlet
to an Sz = 1 triplet, with amplitude ∓1/

√
2 depending upon

whether the site is the left or right member of that singlet. The
triplet with Sz = 1 has overlap with the state of two adjacent
Sz = 1

2 solitons (as well as other states not in the low-energy
sector). Simple algebra shows that, for instance,⎛
⎝ |s〉
|↑↑〉
|s〉

⎞
⎠= 1

3

[|+〉|+〉+ |−〉|−〉− 1
2 (|+〉|−〉+ |−〉|+〉)]+ · · · ,

(121)

where on the left-hand side, |s〉 represents the singlet state,
and the columns represent the three columns in the TST. On
the right-hand side, the state has been decomposed into soliton
states, and the ellipsis represents higher-energy states. Here,
we took the triplet to reside in the middle row. The other
triplets can be obtained by translation, as the chirality states

are translational eigenstates. From this construction, we obtain
the analogous relation to Eq. (120),

S+
x,y ∼ (−1)x+N(x)

∑
m=±

[ζmya†m,xa
†
m,x+(−1)x+N(x)

+ a†m,xa†−m,x+(−1)x+N(x) ]. (122)

The low-energy excited eigenstates will not consist of
localized quasiparticles but delocalized ones, as solitons may
hop between columns of the same sublattice, i.e., even or
odd x. As a consequence, the states are eigenstates of the
x momentum kx , which is defined modulo π rather than
the usual 2π , due to the doubled background unit cell
of the dimerization. In the dilute limit, we should consider
only the states near the minimum energy of the corresponding
energy bands. For the Sz = 3

2 solitons, which are inversion
symmetric, if this minimum is nondegenerate, it must occur
at kx = 0 or kx = π/2. We expect it to occur at the latter
kx = π/2 value, owing to the dominant antiferromagnetic
spin correlations. For the Sz = 1

2 solitons, inversion symmetry
implies instead that if the positive chirality (q = +1) soliton
has minimum energy at kx = q0, then the negative chirality
soliton has its minimum energy at kx = −q0. We are not aware
of a general argument to fix the momentum q0, however,
and expect it is generically nonzero. We have checked this
by a crude and uncontrolled variational calculation of the
soliton dispersion, which indeed gives minimum energy states
with opposite nonzero momenta for opposite chirality (this
calculation gives q0 = π/6, but we do not expect this to be
accurate).

With this in mind, we focus only on the minimum energy
states and take a continuum limit, writing

a±,x ∼ ψ±(x)e±iq0x, (123)

a3,x ∼ �(x)ei
π
2 x, (124)

where ψm(x) and�(x) are taken as slowly varying continuum
boson fields. Then, Eqs. (120) and (122) become

Szx,y ∼ [1 + (−1)x+N(x)]

[∑
m=±

ψ†
mψm

+
∑
m

eim(2q0x+ 2π
3 y)ψ†

mψ−m +�†�

]
, (125)

S+
x,y ∼ 2i sin q0

∑
m

eim(2q0x+ 4π
3 y)m(ψ†

m)2

+ 2 cos q0(−1)x+N(x)
∑
m

eim(2q0x+ 4π
3 y)(ψ†

m)2

+ 2 cos q0(−1)x+N(x)ψ
†
+ψ

†
−. (126)

We are now in a position to write an effective continuum
theory to describe the low magnetization state in terms of
bosonic field operators ψm for Sz = 1

2 solitons with chirality
m and �m for the Sz = 3

2 solitons, all taken near their band
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minima. By symmetry, it takes the form

Hlow =
∫
dx

{∑
m=±

ψ†
m

(
− 1

2m1
∂2
x + ε1/2 − h/2

)
ψm

+�†
(

− 1

2m2
∂2
x + ε3/2 − 3h/2

)
�

+ V [ψ†
+ψ+,ψ

†
−ψ−,�

†� ]

}
. (127)

Here, V is a general potential of quartic order and higher in
the fields, representing interactions of the solitons. We have
dropped terms above which mix the different soliton species,
e.g., ones which might annihilate one Sz = 3

2 soliton while
creating three Sz = 1

2 solitons. Most such terms, at least at low
order, are prohibited by various symmetries, such as translation
and inversion symmetry, at least for a generic incommensurate
wave vector q0 for the Sz = 1

2 solitons.
Consider increasing the magnetic field h from zero. The

ground state remains the soliton vacuum, i.e., the dimerized
state, until the energy of a state with nonzero solitons crosses
the energy of the vacuum. Assuming repulsive interactions
between solitons, this occurs when the energy of a single
soliton vanishes, and this type of soliton will enter the system.
We must compare the energies ε1/2 − h/2 and ε3/2 − 3h/2,
and see which vanishes first on increasing h. If the Sz = 3

2
soliton energy is large, ε3/2 > 3ε1/2, then the Sz = 1

2 solitons
will appear, at h = 2ε1/2. Conversely, if ε3/2 < 3ε1/2, then
the Sz = 3

2 solitons will appear at h = 2ε3/2/3. The critical
ratio ε3/2/ε1/2 = 3 is valid at infinitesimal soliton density,
i.e., M → 0+. At larger magnetization, interactions amongst
solitons may become important, and will probably tend to
disfavor the Sz = 1

2 solitons further, since these must occur at
a higher density and hence interact more strongly. Since in any
case we do not know the energies ε3/2,ε1/2, we can not actually
use this criteria quantitatively. Instead, we simply consider
both types of soliton liquids as possibilities, and determine
their properties at a phenomenological level.

Let us consider first the Sz = 1
2 case. Then, we can neglect

the � particle, which has an energy gap even when the ψq
solitons enter the system. The structure of the solitonic state
is determined to a degree by the potential V in Eq. (127). By
symmetry, it has the form

V [n+,n−,0] = a

2
(n2

+ + n2
−) + bn+n−. (128)

With a > 0 for stability, the state depends upon the coefficient
b. If we assume b < a, then it is favorable for both solitons
to enter the system in equal amounts, and the system forms
a one-dimensional Bose liquid of particles with two flavors.
Owing to the strong quantum fluctuations in one dimension,
this is a Luttinger liquid phase with two independent massless
bosonic modes, associated to the two conserved densities. In
the CFT terminology, this is a state with central charge c = 2.
If instead b > a, it is preferable for the system to choose one
state of soliton only. In this case, there is a spontaneously
broken discrete symmetry (inversion P ), and only a single
massless bosonic mode, or c = 1. We focus on the former

case b < a, which we argue describes the same phase as the
semiclassical incommensurate planar state.

To see this, we show that the spin correlations in the
two-flavor Sz = 1

2 soliton liquid have the same form as those in
the 1D incommensurate planar phase, described in Sec. III E. In
the soliton liquid, we can use the usual bosonization of bosons
for each of the two species ψm ∼ √

n̄s/2e−iθm , ψ†
mψm ∼

n̄s/2 + ∂xφm/π (and �†� = 0), where φm is the dual field to
the boson phase θm. With this, we may conveniently represent
the nonlocal operator N (x) = n̄sx +∑

m φm/π , where n̄s
is the mean soliton density. Note since each soliton carriesSz =
1
2 spread over the TST of width 3, the average magnetization
per site isM = 1

3 n̄s/2 = n̄s/6. Then,

Bx,y ∼ B + ε0 cos[(π + 2δ)x + ϕ], (129)

Szx,y ∼ {1 + cos[(π + 2δ)x + ϕ]}

×
(
M + ∂xϕ

6π
+ ns cos

[
θ+ − θ− + 2q0x + 2π

3
y

])
,

(130)

S+
x,y ∼ 2i sin q0

∑
m

eim(2q0x+ 2π
3 y)me2iθm

+ 2 cos q0 cos[(π + 2δ)x + ϕ]

×
(
ei(θ++θ−) +

∑
m

eim(2q0x+ 2π
3 y)e2iθm

)
. (131)

Here, 2δ = πn̄s = 2πM/3 and ϕ = φ+ + φ−. We can com-
pare the above to the semiclassical result. In the semiclassical
limit, the bosonic phases θ± are weakly fluctuating, while
φ± and hence ϕ are strongly fluctuating. Then, the dominant
terms in the spin operators, with smallest scaling dimension,
are those which do not contain any of the strongly fluctuating
phases,

Szx,y ∼ M + ns cos

[
θ̃ + 2q0x + 2π

3
y

]
, (132)

S+
x,y ∼ −4 sin q0 e

iθ sin

[
θ̃ + 2q0x + 2π

3
y

]
, (133)

where we defined θ = θ+ + θ− and θ̃ = θ+ − θ−. This can
be directly compared to Eqs. (20) of Sec. III E. We see
that the form of the spin operators is identical to that in
the incommensurate coplanar state. Thus, we can regard the
Sz = 1

2 chiral soliton liquid as another limit of the same phase.
Let us turn to the case of the Sz = 3

2 soliton liquid. As
there is no chirality quantum number in this case, the state
can be simply viewed as a Luttinger liquid without spin, and
is expected to be described by a c = 1 theory of a single
massless boson. We argue that this Sz = 3

2 soliton liquid is in
fact another SDW phase very similar to the one obtained by
the quasi-one-dimensional approach of Sec. V C. While one
might have expected to find the identical SDW phase in this
way, we instead find that the Sz = 3

2 soliton liquid is a SDW
state with a different SDW wave vector, in particular with
Qy = 0, contrasting with the value Qy = 2π/3 obtain from
the quasi-1D approach. If the Sz = 3

2 liquid indeed occurs,
therefore, we presumably require a phase transition to the
other SDW state upon increasing magnetization.
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To observe the SDW structure of the Sz = 3
2 soliton liquid,

we again consider the spin correlations. Now we have no chiral
solitons, ψ†

mψm = 0. This immediately implies that there are
no low-energy excitations with spin Sz = 1 and hence no
low-energy content to the S± operators. Thus,XY correlations
decay exponentially in this phase, exactly as in the the SDW
phase. To examine the Sz correlations, we can bosonize
the nonchiral bosons. This gives � ∼ √

nse
iϑ , �†� ∼ ns +

∂xϕ/π , with dual phases ϕ,ϑ . Now, N (x) = nsx + ϕ/π , and
we note the relation between the magnetization and soliton
density is changed to M = ns/2 since the solitons have spin
Sz = 3

2 . We see then that

Szx,y ∼ {1 + cos[(π + 2δ)x + ϕ]}
(
M + ∂xϕ

2π

)
. (134)

Higher harmonics of the above cosine also appear in a
more careful treatment. Note that the incommensurability
is different in this case: 2δ = πns = 2πM . Equation (134)
can be compared to the corresponding formula (82) for the
quasi-1D SDW state in the TST. We see that it is identical,
save for the presence of a factor 2πy/3 inside the cosine in the
quasi-1D case. This shows that the two states have the same
structure, save for a difference in the SDW wave vector, as
mentioned above.

VIII. DISCUSSION

In this paper, we have presented a comprehensive analysis
of the field-anisotropy phase diagram of the three-leg spin- 1

2
triangular spin tube, of interest primarily as an approximation
to the corresponding two-dimensional Heisenberg model on
the anisotropic triangular lattice. Pronounced quantum effects,
strongly deviating from the expectations based on classical
analysis, occur throughout the phase diagram. In this section,
we will discuss the implications of our results for two
dimensions, and how robust these quantum effects are to other
modifications to the model.

A. Implications for two dimensions

Throughout the paper, we have commented on how results
obtained in the one-dimensional TST geometry apply to the
two-dimensional spin- 1

2 system. Here, we summarize these
connections, with particular attention to the phase diagram in
2D. With a few exceptions, the phases we obtained for the
TST have straightforward analogs in 2D and consequently we
expect the 2D diagram to be only slightly modified.

For example, on the isotropic line R = 0, away from very
small field, all the phases we found are precisely those expected
from the semiclassical analysis of Refs. 3 and 4. We expect the
semiclassical analysis to only work better in 2D, so the same
coplanar and plateau states, and their incommensurate analogs
for small anisotropy 0 < R � 1 should occur there as well.
We note that all coplanar states are intrinsically stabilized by
quantum effects.

Perhaps the most striking feature amongst these states
is the 1

3 magnetization plateau, which extends well beyond
the semiclassical regime in our phase diagram for the TST
(Fig. 22). In addition to the TST, we have also studied the
1
3 magnetization plateau for Ly = 6 cylinders (see Fig. 25).
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FIG. 25. (Color online) Finite-size scaling of the boundaries of
the 1

3 plateau for cylinders of widthLy = 6, and different anistropies:
(a) R = 0.0, 0.2, 0.4, 0.6. (b) Width of the 1

3 plateau as a function of
R for cylinder of width Ly = 6, shown as (black) squares. The data
points at R > 0.6 (hollow square) are based on a preliminary finite-
size scaling for quasi-2D system with Lx ∼ Ly . The plateau width
for Ly = 3 (blue circles), from Fig. 22, is shown for comparison.

Close to the isotropic limit R � 1, the plateau width is
only slightly changed by the increase in width from Ly = 3
to 6, and its value 
h ≈ 0.7J agrees well with previous
numerical studies.9,10,49,50 This trend in width is consistent
with our picture that for small R, the phases proximate to
the plateau are commensurate planar ordered ones in the 2D
limit. The broken U(1) symmetry of these phases makes them
sensitive to infrared quantum fluctuations in the 1D geometry
since of course continuous symmetries are unbroken in 1D.
Hence, in the thinner cylinders, the commensurate plateau state
competes slightly more effectively against the planar phases
than in two dimensions, leading to a wider plateau for smaller
circumference.

In the intermediate region 0.2 � R � 0.7, the trend is much
more striking and opposite to that for small R: the plateau
width is seen to increase significantly compared with that
for Ly = 3. The same is true in the larger anisotropy limit
0.7 � R < 1, for which our preliminary results, based on the
finite-size scaling for quasi-2D systems with Lx ≈ Ly (for
such highly anisotropic systems, we were unable to converge
the Lx → ∞ limit), still suggests a finite 1

3 plateau, consistent
with analytical arguments put forward in Ref. 11 and in
Sec. VI. The increase of the plateau width is understood
as being due to a greater stability of crystal phases in two
dimensions. Our DMRG results strongly support existence of
the 2D magnetization plateau state for all values of spatial
anisotropy 0 < R < 1.
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Several experimental spin- 1
2 materials with the triangular

lattice structure have indeed been observed to support a 1
3 mag-

netization plateau, including the well-documented material
Cs2CuBr4 (Refs. 51 and 52) as well as Ba3CoSb2O9, studied
more recently.53 A notable exception is Cs2CuCl4, which is
isostructural to Cs2CuBr4, but does not exhibit a magnetization
plateau.54 In our opinion, as explained in detail in Ref. 11,
the plateau is destabilized in this case by three-dimensional
coupling, which is stronger (relative to the appropriate J ) in
the Cs-based magnet in comparison with the Br-based one,55

with perhaps strong Dzyaloshinskii-Moriya (DM) interactions
in Cs2CuCl4 playing an additional role.56

The SDW phase dominates a large fraction of the phase
diagram for the TST. This is an entirely quantum phase (since
it requires modulation of the length of the static moments),
which in 2D exhibits incommensurate collinear long-range
order along the field direction. Being of quantum origin,
one may wonder whether the SDW persists into 2D. Based
on renormalization group arguments, discussed extensively
in Ref. 11, we know that the SDW indeed must exist in
the quasi-1D regime J ′ � J , when interchain correlations
are relatively weak. We expect that the region occupied by
the SDW may be somewhat curtailed in 2D relative to that
in the TST, but that it still is quite large. This is based on
intuition and numerical evidence that interchain correlations
remain suppressed for relatively large J ′ due to frustration.

Experimental verification of this magnetic state is clearly
called for. In this regard, we would like to point out a recent
series of experiments on quasi-1D spin- 1

2 material LiCuVO4.
While much of the interest in this material stems from the
high-field nematic phase predicted57 and observed58 to occur
near the saturation field, several experimental studies59–62

have found strong evidence in favor of an incommensurate
longitudinal SDW phase in the intermediate range of magnetic
fields. To understand this finding better, it is important to
realize that the interchain exchange in this material is of zigzag
(triangular) type albeit of predominantly ferromagnetic sign.63

The considerations of Sec. V make it clear that the SDW
phase is not sensitive to the sign of interchain J ′ and should
appear in the model with ferromagnetic J ′ as well (see for
example Ref. 64 for explicit calculations). We thus would
like to posit that a recent neutron scattering study,65 which
observed longitudinal spin fluctuations but no transverse ones,
is very much consistent with SDW phase scenario. Like the
spin nematic phase, which is expected to occur at much higher
magnetic fields, the SDW phase does not support low-energy
transverse spin excitations. It would also be interesting to seek
evidence of a SDW state in Cs2CuBr4.

The above aspects of the TST and 2D phase diagrams are
qualitatively similar. Qualitative differences are expected at
low and high fields. At zero field, the TST exhibits a dimerized
phase, which we attribute (Sec. VII) to quantum fluctuation
effects specific to one dimension. In 2D, most of the zero-field
line should exhibit incommensurate spiral order, with a small
region of collinear antiferromagnet at small J ′/J , as argued in
Ref. 12. At high field, near saturation, where the TST shows
both coplanar and cone phases, we saw in Sec. IV D2 that in 2D
only the coplanar state occurs. This is a rather surprising result
since the coplanar state might be considered more quantum
than the cone. This observation poses a tricky problem of
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FIG. 26. (Color online) Schematic phase diagrams for the two-
dimensional S = 1

2 system. The shaded regions and boundaries
containing full circles are based on preliminary DMRG results
for circumference Ly = 6,9 systems in addition to the TST with
Ly = 3. Other boundaries are drawn by hand using the considerations
described in the text. Two possible schematics are drawn, differing
in the extent of the cone phase. In (a), it is limited to the quasi-1D
regime, while in (b), it extends to enclose the SDW state. The latter
possibility is more classical. Intermediate or more complex cases are
also possible. See text for further explanations.

connecting the limit of field approaching saturation at fixed
small J ′, where the coplanar state is expected, to the limit of
vanishing J ′ at fixed field slightly below saturation, where we
instead expect a cone state. In 2D, therefore, a phase boundary
must emanate from the saturation point at J ′ = 0, and we do
not presently understand where this boundary extends to.

Putting together all these considerations, we can construct
schematic phase diagrams for two dimensions. The two
simplest possibilities we could construct are shown in Fig. 26.
The quasi-1D analysis, which was carried out directly in 2D
in Ref. 11, demands the cone, SDW, and plateau phases at
nonzero field and small J ′/J . It also requires a collinear
antiferromagnetic state at zero field and small J ′/J . This
collinear state is expected to be rapidly destroyed in favor of
the SDW as the field is imposed. It is likely to become canted
as it does so, but in the absence of a detailed description of this
narrow region descending from the collinear antiferromagnet
at zero field, we label it “quasicollinear” in the figures.
Near the isotropic line, the semiclassical description requires
commensurate (C) planar and incommensurate (IC) planar
states, as well as the 1

3 plateau. Finally, near saturation, the
dilute spin-flip approach becomes exact, and the solution of
the BS equation required the IC planar phase. The shaded
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phases and the boundaries containing circles are taken from
preliminary DMRG results for more two-dimensional systems
with Ly = 6,9 lattice spacings around the circumference. The
remaining phase boundaries are drawn arbitrarily to connect
the known regions demanded by the above reasoning in
the simplest possible manner consistent with scaling. The
principal uncertainty in the diagrams is the extent of the cone
phase. We expect it to occupy a relatively small portion of
the phase space, despite the fact that it is the classical ground
state everywhere below saturation except on the R = 0 line!
In the first schematic, Fig. 26(a), the cone state occupies the
minimum possible area, while a more semiclassical situation
might be as shown in Fig. 26(b).

1. Comparison to other work

It is interesting to compare our results to those of Tay and
Motrunich,10 which is the only other comprehensive study
of the full anisotropy-field phase diagram of which we are
aware. We caution that a strict comparison is not possible
because both their and our predictions for 2D are somewhat
schematic, being based on conjectural extrapolation of results
for the 1D TST (us) and finite clusters (them). Nevertheless,
one notices immediately similarities between their schematic
2D phase diagram, Fig. 10 of their paper, and our Fig. 3.
First, the region near the isotropic line is in both cases quite
close to semiclassical predictions. Small differences appear at
low fields, where indeed quantum effects of the finite systems
studied in both works are probably maximal. Second, near the
saturation field, they also find a wide range of incommensurate
planar phase (called incommensurate V in their study). Our
analytical BS analysis indicates that this phase in fact extends
over the full range of anisotropy, a fact which was not resolved
in their diagram. Third, both studies indicate the robustness of
the 1

3 plateau. As already mentioned above, our results for the
width of the plateau 
h ≈ 0.8J at the isotropic point R = 0
agree well with those of Refs. 9 and 10. The more recent exact
diagonalization study49 predicts smaller width, about 0.5J ,
but this is based on extrapolating
h from small-size clusters.
For R > 0, Ref. 10 is the only one we can compare with,
and qualitative agreement is quite good. Our DMRG work
completes the phase diagram, demonstrating the 1

3 plateau
existence for all J ′ > 0.

The major distinction between the two works is in our
finding of the SDW state in a wide field anisotropy range,
where Tay and Motrunich postulate separate spin liquid, spiral
(corresponding to our cone state), and quasi-1D regimes. In our
work, renormalization group arguments rather clearly establish
the SDW phase in the small J ′/J regime in 2D, which is the
quasi-1D region of Tay and Motrunich. We think it likely that
even in 2D, the SDW phase extends to R ≈ 0.5.

B. Suppressing the quantum effects

As remarked above, we predict two types of quantum states,
coplanar phases and collinear SDWs, in the 2D S = 1

2 model.
While remarkably robust in this case, these quantum phases
can be suppressed by other changes to the model: larger
spins S > 1

2 , three-dimensional coupling, and Dzyaloshinskii-
Moriya (DM) interactions.

1. Higher spin

We first consider S > 1
2 , and find that the quantum phases

are strongly suppressed. We begin with the vicinity of the
saturation field. In Sec. IV D2, we showed that for S = 1

2
the system forms a coplanar state in this limit for all 0 <
J ′/J � 1. This is surprising since except for the isotropic
case, the coplanar phase is not a classical ground state. Using
the calculations sketched below, we find that with increasing
S, the classical results are recovered, with the coplanar phase
restricted to increasingly narrow region near the isotropic limit,
where it occurs due to classical degeneracy.

To do so, we use the representation below,22 which is more
convenient than the Holstein-Primakoff one:

S
†
r =

√
2S[1 + (Ks − 1)b†rbr]br, Szr = S − b†rbr, (135)

where Ks = √
1 − 1/(2S). This expression reproduces the

matrix elements of spin-raising and -lowering operators
between states with different magnetization exactly within
the two-magnon (two-spin-flip) subspace. The advantage of
this form is that it requires no 1/S expansion. Note that for
S = 1

2 , Eq. (135) reduces to Eq. (26), thanks to the hard-
core condition (br)2 = 0, while for large S � 1, we recover
Holstein-Primakov asymptote Ks ∼ −1/(4S). Note that for
S � 1, the hard-core constraint is not required and as a result
the U term is absent from the two-magnon Hamiltonian.25

The Hamiltonian within the two-magnon subspace retains the
form in Eq. (28), but now the interaction term is a bit more
complicated:

V (k,k′,q) = 1

2
(J (q) + J (k + q − k′)) − SKs(J (k + q)

+ J (k′ − q) + J (k) + J (k′)),

J (k) = 2J cos[kx] + 4J ′ cos

[
kx
2

]
cos

[√
3ky
2

]
.

(136)

Numerical solution of the BS equation (44) for the two-
dimensional triangular lattice, which proceeds along the same
lines as in Sec. IV D, finds that for higher spins S � 1, near the
saturation field the coplanar phase near the isotropic limit is
limited to a region J ′ > J ′

cr > 0, with a cone phase obtaining
instead for J ′ < J ′

cr. The critical value monotonically increases
with S, taking the values J ′

cr/J ≈ 0.1,0.5,0.61 for S = 1, 3
2 ,

and 2, respectively. These findings show that the absence
of the cone state for S = 1

2 found here is a very unusual
feature of the most quantum case. Larger, more classical spins
do recover the classically expected state, although still in a
limited range of J ′/J .

We next turn to the SDW phase. Since this state is rooted in
the one-dimensional limit, we consider just the limit of weakly
coupled chains for S > 1

2 and in particular S = 1. We find that
the SDW is completely absent in this case.

To see this, we consider a magnetic field above the lower
critical field h
 needed to overcome the nonzero Haldane
gap (
s=1 ≈ 0.41J for J ′ � J ). This turns the gapped [and,
essentially, decoupled (see Refs. 40, and 66)] spin-1 chains
into critical Luttinger liquids.27,67,68 It turns out that these
critical chains are characterized by a Luttinger parameter
K = 1/(4πR2) � 1 for all values of the magnetic field above
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the gap closing h
.67,68 This immediately implies that the
scaling dimension of the longitudinal spin density operator
Szπ−2δ(x) in Eq. (72) isK > 1 as well, which makes interchain
SDW coupling in Eq. (76) (which has twice this scaling
dimension) strictly irrelevant. As a consequence, the SDW
phase does not occur in the quasi-1D limit. Since this was its
most stable regime in the S = 1

2 case, it may well be that the
SDW phase is totally absent for S = 1! It would be interesting
to check this in future simulations.

What replaces the SDW? The large value of K implies
an increased tendency to spin ordering transverse to the field
direction, and indeed the twist term [fourth term in Eq. (75)]
is instead always relevant, leading to stabilization of the cone
state. This result is supported by analytical27 and numerical69

studies of the spin-1 zigzag ladder. For example, Ref. 69 finds
a finite vector chirality (that is, a cone state) for all values of
the magnetization in the case of J1 − J2 spin-1 chain, along
the J1 = J2 line.

Note that above we found that the cone state was also
stabilized for small J ′/J in the vicinity of saturation. It is likely
then that the cone phase evolves smoothly between the 1D
limit J ′/J = 0+ and the approach to saturation at finite J ′/J .
Moreover, the presence of the cone state at small J ′ implies
the absence of any magnetization plateau in that regime. The
predictions appear quite similar to those of the semiclassical
analysis of Ref. 4, which suggests that the full phase diagram
for S = 1 might be well described semiclassically. It is clear
that in particular the 1

3 plateau must terminate at some finite
(and perhaps not particularly small) value of the J ′/J ratio in
this case.

2. Three-dimensional coupling

Another experimentally relevant modification of the spin- 1
2

Hamiltonian is three-dimensional coupling. We consider the
simplest case of unfrustrated antiferromagnetic interplane
exchange interaction J ′′ between identical triangular layers.
Provided the three-dimensional coupling is unfrustrated, we
expect that the particular form is not too important. Such an
interaction is expected to make the spin system more classical
and thus to promote the classical cone state over the coplanar
one.

Considering again the regime near saturation, one may
readily solve the BS equation, appropriately modified to the
three-dimensional situation. We indeed find that high-field
coplanar configuration changes to the cone one for sufficiently
large J ′′/J ratio. When the triangular lattice is isotropic,
J ′ = J , this occurs for (J ′′/J )cr ≈ 0.2, in agreement with
the calculation in Ref. 23. Not unexpectedly, the critical
J ′′ becomes smaller for weaker inter-chain exchange J ′.
For example, for J ′/J = 0.75, as perhaps appropriate for
Cs2CuBr4, we find (J ′′/J )cr ≈ 0.15, while for J ′/J = 0.34
(the Cs2CuCl4 case), (J ′′/J )cr ≈ 0.034. One-dimensional
scaling arguments, described in Appendix B 3, suggest that
(J ′′/J )cr ∼ (J ′/J )2 when J ′/J � 1, in agreement with the
numerical values listed above.

In the 1D limit J ′/J � 1, introduction of unfrustrated
J ′′/J � 1 disfavors SDW order in favor of a cone phase.
This is discussed in detail in Sec. V of Ref. 11. Thus,
three-dimensional coupling, if unfrustrated, tends to remove
all quantum features of the phase diagram.

3. Dzyaloshinskii-Moriya interactions

A variety of DM interactions can be present in anistotropic
triangular lattice systems, depending upon the crystal symme-
try and microscopic details. This can lead to diverse effects
which are difficult to discuss without being more specific. For
the materials Cs2CuCl4 and Cs2CuBr4, the symmetry-allowed
DM interactions were obtained and discussed in detail in
Ref. 11. Here, we describe only the effects of the dominant
DM term in those materials, which can be written as

HDM =
∑
x,y

D · Sx,y × (Sx−1,y+1 − Sx,y+1) (137)

in the notation of this paper, with the DM vector D = Dâ
oriented along the crystallographic a axis, normal to the
triangular planes.

Although small, a nonzeroD has significant effects in both
zero field and when a magnetic field is applied normal to
the triangular plane, i.e., parallel to the DM vector. In these
situations, unlike the J ′ interchain coupling, it is not frustrated
either by the dominant chain interactions J or by the applied
magnetic field. It tends to favor the cone state (or a spiral in zero
field), and can obliterate the more quantum coplanar and SDW
phases completely if sufficiently strong in this field orientation.
Indeed, with this field orientation, an arbitrarily weak DM
coupling inevitably forces the state in immediate proximity to
the saturated state to be a cone phase, for all values of J ′/J .
This occurs because the DM coupling splits the degeneracy
of the two minimum energy spin wave modes, already at the
single spin wave level, making a two-component condensate
impossible when the spin-flip magnons are sufficiently dilute.

We note, however, that when the magnetic field is applied
normal to the a axis, i.e., in the triangular plane, it itself frus-
trates the DM interaction. In this situation, the DM interaction
is largely ineffective and has only minimal perturbative effects
on the spin correlations. These field orientations are therefore
optimal for observing quantum effects.

C. Experimental implications and future directions

Our study indicates that a number of “quantum” ordered
states may be found in S = 1

2 anisotropic triangular lattice
systems. These states are not so exotic as quantum spin
liquids, and are well characterized by their symmetries and
associated order parameters. They are instead quantum in the
weaker sense that they can not be obtained in the classical
limit. Most notably, we obtained a SDW state whose order
involves (quasi)periodic modulation of the length of the spin
expectation value, along the field direction. We suggest this
state occupies a wide swath of the field-anisotropy phase
diagram, provided perturbations to our model are not too
strong.

The particular material Cs2CuBr4 appears a good candidate
for the observation of the SDW state since three-dimensional
coupling is known to be relatively weak there, and experiments
have already identified the 1

3 magnetization plateau. Direct
observation of the SDW would consist of observing the incom-
mensurate ordering wave vector evolving monotonically with
field, for fields above and below the plateau, and correlating
this wave vector with the average magnetization. We expect it
to approximately follow the 1D relation q = π (1 −M/Ms),
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away from the plateau. Given its 1D origin, one might well
also expect that the inelastic spectra retain 1D features, such as
spinon continua, in the SDW state and even in the plateau state
above the gap. Of course, at low energy, in the vicinity of the
SDW wave vector, we expect the collective phason mode to
dominate. There must therefore be significant rearrangement
of the spectra on passing from low to high energy. A more
detailed understanding of the spectral evolution with energy,
field, and anisotropy may make an interesting subject for future
study.

In Cs2CuBr4, many additional features suggestive of phase
transitions were identified above the 1

3 plateau in the magne-
tization process with an in-plane field.52 Our study indicates
that few such transitions should be expected in the pure J -J ′
model. Likely, additional DM interactions [beyond the one
given in Eq. (137)] and perhaps further neighbor couplings are
at play. Study of their effects is a possible avenue for more
research.

More generally, the richness and surprisingly quantum
nature of field-anisotropy phase diagram of the relatively
weakly frustrated triangular lattice suggests that the behavior
on more frustrated lattices such as the kagome and pyrochlore
may be even more interesting. The methods used here should
be helpful in attacking these problems.
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APPENDIX A: SINE-GORDON MODEL AND
COMMENSURATE-INCOMMENSURATE TRANSITIONS

In this Appendix, we summarize the commensurate-
incommensurate transition (CIT) within the sine-Gordon
model, which appears in multiple places throughout the paper.
We consider the sine-Gordon action in d + 1 dimensions, with
the form

Ssg =
∫
ddx dτ

{
κ

2
(∂τϑ)2 +

∑
μ

ρμ

2
(∂μϑ)2

− λ cos [n(ϑ − qx)]

}
, (A1)

where ϑ is the sine-Gordon field. We can write an alternative
expression in terms of the shifted field ϑ̂ = ϑ − qx so that

Ssg =
∫
ddx dτ

{
κ

2
(∂τ ϑ̂)2 +

∑
μ

ρμ

2
(∂μϑ̂)2

+ δ∂xϑ̂ − λ cos[nϑ̂]

}
, (A2)

with δ = ρxq. In general, large δ prefers an incommensurate
state, where the field ϑ̂ is nonuniform and unpinned, while for
small δ, a commensurate phase occurs, where ϑ̂ is pinned to
a fixed value by the cosine term. The detailed nature of the
sine-Gordon model depends upon dimensionality, so we treat
the d = 1 and d � 2 cases separately.

1. d � 2: Mean-field transition

For d � 2, the fluctuations of the phase field ϑ̂ are small
even in the absence of the sine-Gordon term, i.e., for λ = 0.
This can be seen from the fact that, already at the Gaussian
level, the free boson propagator is nondivergent at small
momentum for d � 2. This implies that the fluctuations of
ϑ are bounded, and one can therefore treat the entire problem
by a saddle-point approximation. Moreover, one can show
that fluctuation effects are negligible in the (quantum) CIT
for d � 2. More formally, D = d + 1 = 2 + 1 is the upper
critical dimension for the CIT.

Therefore, in this case we may proceed by simply minimiz-
ing the action in Eq. (A2). The minimum action configuration
is independent of the d − 1 coordinates normal to x and τ .
This gives

Ssg = Ld−1
⊥ βE1D, (A3)

where L⊥ is the system width in the directions normal to x,
and β is the length of the imaginary-time integration. The
one-dimensional energy is then

E1D =
∫
dx

{
ρ

2
(∂xϑ̂)2 + δ∂xϑ̂ − λ cos(nϑ̂)

}
, (A4)

where ρ = ρx . Notice that δ only appears as a boundary
term, which means that the energy depends on δ only
through the winding numberN = (ϑ̂(x = L) − ϑ̂(x = 0)) n2π .
Consider the case N = 0. Then, the solution is uniform, i.e.,
ϑ̂ = 2πk/n, with k = 0,1,2, . . . . With N = 1, one obtains
a well-known soliton solution of the sine-Gordon model,36

which reads as

ϑ̂(x) = 4

n
arctan

{
e
±n
√
λ
ρ

(x−x0)}
, (A5)

where x0 is the location of the center of the soliton. Note that
the soliton has a widthw ∼ √

ρ/λ and energyE ∼ √
ρλ. This

gives a critical value

δc = 4
√
ρλ/π, (A6)

such that, for δ < δc, domain-wall solitons cost positive energy
and so, are unfavorable, resulting in a commensurate wave
vector. For δ > δc, it is favorable for solitons to be present,
and the minimum energy configuration will be an array of
solitons which characterize an incommensurate phase.

Equation (A6) defines the location of the CIT phase
boundary. We may also discuss its critical properties. On the
commensurate side, no solitons are present, which implies
the winding number N = 0 precisely, and the ground-state
energy and field configuration are independent of δ. Thus,
there is no visible critical behavior in the ground state (hence
in equal-time correlations) in the commensurate phase. On
the incommensurate side, however, the minimum energy
configuration of ϕ̂(x) depends upon δ. It can be considered as
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an array of solitons, whose main characteristic is the spacing
! between solitons. This spacing is determined by the balance
of the negative energy to introduce a soliton (which favors
many solitons with a short spacing) and the repulsive energy of
interaction between solitons (which favors large spacing). The
repulsive interaction is exponentially small in the separation !
in units of the width w. Hence, the energy of the array is

E1D = EC1D − (δ − δc)2πL

n!
+ c

√
ρλ
L

!
e−!/w, (A7)

where c is an unimportant constant, andL/! is the total number
of solitons. Minimizing this over !, one finds the critical
behavior, to leading logarithmic accuracy,

! ∼ w ln

[
δc

δ − δc

]
(A8)

for 0 < δ − δc � δc. The presence of the soliton array implies
that the average gradient of the phase ϑ̂ is nonzero, which
defines the incommensurability wave vector q:

q = ∂xϑ̂ = 2π

n!
∼ 1

w| ln[δ − δc|/δc]|�(δ − δc). (A9)

The incommensurability q in the incommensurate phase gives
the shift of the ordering wave vector from its commensurate
value. Other critical properties at the CIT in d � 2 are readily
obtained from the results above. For example, the ground-state
energy density is simply the saddle-point value of E1D, which
scales as

E

L
∼ − δ − δc

| ln(δ − δc)|�(δ − δc). (A10)

2. d = 1: Quantum fluctuations

In the case d = 1, fluctuations of the phase field can not
be neglected. This can be anticipated from the Gaussian level
result that, in the absence of a sine-Gordon term, the free
boson Green’s function is logarithmically divergent at small
momentum, signaling large fluctuations of ϑ . Hence, we must
deal directly with the (1 + 1)-dimensional action

Ssg =
∫
dxdτ

{
κ

2
(∂τ ϑ̂)2 + ρ

2
(∂xϑ̂)2 + δ∂xϑ̂ − λ cos nϑ̂

}
.

(A11)

Once again, δ is the coefficient of a pure boundary term, which
simply counts the number of solitons in the system. A finite
density of solitons will be generated, provided the energy of
a soliton for δ = 0 is compensated by this boundary energy,
which equals 2πδ/n. Thus, we need the energy of a soliton at
δ = 0, i.e., in the pure quantum sine-Gordon model.

We estimate this as follows. The scaling dimension of the
cosine term 
n is easily calculated, and is equal to


n = n2

4π
√
κρ
. (A12)

The cosine is relevant when
n < 2, and irrelevant if
n > 2.
When it is irrelevant, there is no pinning of the phase field
at low energies. A state of this type is known as a “floating
phase,” and because of the lack of pinning, the state becomes

immediately incommensurate for any nonzero δ, i.e., δc = 0,
and there is no CIT.

When the cosine is relevant, then when δ = 0, the phase is
pinned at low energies, and the energy of a soliton is nonzero.
We need to estimate this energy to locate the value δc which
defines the CIT. We do this by renormalization group (RG)
arguments. Renormalizing out to a length ξ , the cosine is
reduced by fluctuations by an amount proportional to ξ−
n ,
so λeff ∼ λξ−
n . For a possible soliton of width ξ , the energy
cost is of order

εs ∼ ρ

ξ

(
2π

n

)2

− λeffξ. (A13)

The actual soliton size is determined by optimizing this over
ξ , which gives

ξ ∼
(
ρ

λn2

) 1
2−
n
, (A14)

and thus an energy cost for the soliton of order

εs ∼ λ 1
2−
n

(
ρ

n2

) 1−
n
2−
n
. (A15)

This energy should equal the energy gain 2πδc/n from the
boundary term at the CIT, which gives

δc ∼
√
λρ

(
λ

ρ

) 
n
4−2
n

. (A16)

Note that this approaches the mean-field result of the previous
section when 
n → 0, and becomes very suppressed when

n → 2− (since we must assume λ < ρ for consistency of the
treatment).

We now turn to the critical behavior, which in 1 + 1
dimensions is a storied problem in critical phenomena. It is
sometimes referred to as a Pokrovsky-Talapov transition, due
to the solution by those authors.70 We recapitulate the essence
of the argument. As in the mean-field case, for δ < δc, there
are no solitons in the system, and the ground-state energy is
independent of δ, i.e., there is no sign of criticality in any static
quantity. However, the excitation gap for creating a soliton
vanishes linearly with δc − δ. For 0 < δ − δc � δc, we expect
a low density of solitons to be present in the system, again
determined by the balance of the (negative) single-soliton
energy and the repulsive soliton-soliton interactions.

We must, however, in this case treat the problem quantum
mechanically. In particular, we must consider the effects of
interactions properly in the low-density limit. In this limit,
the kinetic energy and momentum of individual solitons is
vanishingly small, and well-known results for low-energy
scattering apply. In particular, for short-range repulsively
interacting particles in one dimension, the probability of trans-
mission vanishes in the low-energy limit. Thus, effectively,
regardless of the microscopic strength of the interaction or of
its short-distance structure, the solitons behave at low densities
as though they were hard-core particles, which can not pass
one another. To model this behavior, we can treat the solitons as
fermions. Interactions at longer distances beyond the local hard
core are weak and unimportant, so the fermions are effectively
free.
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The free fermion problem is trivially soluble, so we can
easily obtain the critical behavior. When δ > δc, we simply fill
the negative-energy fermion states to form a Fermi sea. The
sine-Gordon model has Lorentz invariance, so the dispersion
of the solitons must be relativistic, hence the energy for a single
soliton is

Esol =
√
ε2
s + v2k2 − 2π

n
δ, (A17)

where the velocity v = √
ρ/κ , and εs = 2πδc/n. The Fermi

momentum kF is determined by the condition Esol = 0. It
will be small near the CIT, so we may expand the relativistic
dispersion into its nonrelativistic limit

Esol(kF ) = −2π

n
(δ − δc) + k2

F

2m
= 0, (A18)

with m = εs/v2. This determines the Fermi momentum

kF =
[

4πm

n
(δ − δc)

]1/2

∼
√
δ − δc. (A19)

The density of solitons is just kF /π , as usual for spinless
fermions, so the incommensurability is thus

q = 2π

n

kF

π
= 2kF

n
∼
√
δ − δc. (A20)

The square-root behavior is quite distinct from the logarithmic
one in d � 2. We may also easily obtain the behavior of the
ground-state energy density, as the total energy of the Fermi
sea,

E

L
=
∫ kF

−kF

dk

2π

[
k2

2m
− 2π

n
(δ − δc)

]
∼ −(δ − δc)3/2�(δ − δc). (A21)

Many more results, e.g., for correlations in the incommen-
surate phase, can be readily obtained from the free fermion
formulation, but we leave this to the reader to discover for
themselves in the literature.

APPENDIX B: DETAILED CALCULATIONS OF BS

In this Appendix, we present our solutions to the Bethe-
Salpeter (BS) equation in Eq. (44). This equation applies only
near saturation field, where the system can be modeled as
dilute (hard-core) bosons. We substitute our ansatz, Eq. (46),
into the BS equation. With the constraint equation (45),
which enforces s = 1

2 , we obtain a set of linear equations
for the constants Ai , which can be written in a matrix
form as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ11 τ12 τ13 τ14 τ15 τ16 τ17

2Jτ21 2Jτ22 + 1 2Jτ23 2Jτ24 2Jτ25 2Jτ26 2Jτ27

2Jτ31 2Jτ32 2Jτ33 + 1 2Jτ34 2Jτ35 2Jτ36 2Jτ37

2J ′τ41 2J ′τ42 2J ′τ43 2J ′τ44 + 1 2J ′τ45 2J ′τ46 2J ′τ47

2J ′τ51 2J ′τ52 2J ′τ53 2J ′τ54 2J ′τ55 + 1 2J ′τ56 2J ′τ57

2J ′τ61 2J ′τ62 2J ′τ63 2J ′τ64 2J ′τ65 2J ′τ66 + 1 2J ′τ67

2J ′τ71 2J ′τ72 2J ′τ73 2J ′τ74 2J ′τ75 2J ′τ76 2J ′τ77 + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A0

A1

A2

A3

A4

A5

A6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2J
0

2J ′
0

2J ′
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (B1)

where we have defined

τlm(k,k′;�) ≡
∫
q

Tl(q)Tm(q)

ε(k + q) + ε(k′ − q) +�, (B2)

T(q) = [1, cos qx, sin qx, cos qy, sin qy,

cos(qx − qy), sin(qx − qy)], (B3)

and� ∝ |h− hsat|. Although the τ ′
lms are integrals over simple

trigonometric functions and other known quantities, e.g., the
dispersion, these integrals are divergent in both one and two
dimensions and must be treated with care. It is possible,
however, to analyze them asymptotically. Once these integrals
are evaluated, we can solve for the constantsAi to obtain �(q)
from our ansatz (46). In the next two sections, we take the
reader through our asymptotic analysis.

1. Asymptotic behavior of τlm for the 2D case

In this section, we calculate the τlm’s for the 2D case. As
aforementioned, we are interested in performing asymptotic
analysis in the limit �→ 0, as the full integrals are too
complicated to evaluate fully. We can partition the integrals

into the the first two subleading terms Blm ln(�) + Clm, where
the constants B,C are independent of�. We can consider two
cases: one with the same incoming momenta, i.e., the cone
phase with �1 = �(Q,Q,0) = �(−Q,−Q,0), and the other
with different incoming momenta, i.e., the coplanar phase with
�2 = �(Q,−Q,0) + �(Q,−Q,−2Q). Here, the wave vector Q
minimizes the dispersion relation in Eq. (29), which can now be
substituted into Eq. (B2). After some algebraic simplifications,
we obtain

τlm = 1

4π2

∫ 2π

0
dqx

∫ 2π

0
dqy

Tl(p)Tm(p)

a + b cos qy
. (B4)

The exact forms of a,b will depend on whether the incoming
momenta are the same or different. In this Appendix, we will
only present our results for l = m = 1, in which case, we
can integrate analytically over qy in Eq. (B4), and obtain the
following:

τ11 =
∫ 2π

0
dqx

1√
a2 − b2

. (B5)

To proceed further, we need to specify the exact form of a
and b.
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(1) Same incoming momenta: For the same incoming
momenta, a,b take on the form

a = �+ J [2 + j 2 − (2 − j 2) cos qx],

b = J [−2j 2 cos(qx/2)], (B6)

where we define j ≡ J ′/J . The integrand diverges near
qx = 0 like 1/qx in the limit �→ 0, and thus, the integral
is logarithmically divergent. After some analysis, the integral
takes on the form

τ11 ∼ − 1

2πj
√

4 − j 2
ln(�) + ln[2j (4 − j 2)]

πj
√

4 − j 2
. (B7)

(2) Different incoming momenta: For this case, a,b are as
follows:

a = �+ J [2 + j 2 + (−2 + j 2) cos(qx)

+j
√

4 − j 2 sin(qx)]

b = −2Jj [j cos(qx/2) +
√

4 − j 2 sin(qx/2)]. (B8)

The integrand now has two divergent points at qx = 0 and
qx = −2 arccos(1 − j 2/2). Therefore, in comparison with the
previous case, the logarithmic term doubles, and the integral
takes on the form

τ11 ∼ − 1

πj
√

4 − j 2
ln(�) + 2 ln[j (4 − j 2)]

πj
√

4 − j 2
. (B9)

2. τlm for the TST case

In computing the τlm’s for the TST, we turn the two-
dimensional integral in the previous section into a single
integral over qx and a sum over qy . As one can imagine, the
asymptotic behaviors differ in the TST from the 2D in that,
in the limit�→ 0, the integrals diverge as 1/

√
�. Therefore,

the two subleading terms of the integrals are Blm/
√
�+ Clm,

where again B,C are independent of�. We present our results
for l = m = 1 for the two cases of the same and differing
incoming momenta.

(1) For the same incoming momenta, we obtain the follow-
ing expression:

τ11 = 1

6 4
√
j 2 − j + 1

√
�

+ 4

3
√

9j 2 + 24
√

(j − 1)j + 1j − 24j + 36(j−1)
(j−1)j+1 + 36

+O(
√
�), (B10)

where again j ≡ J ′/J .
(2) We now compute τ11 for the case of differing incoming

momenta, in which case the integral evaluates to

τ11 = 1

3 4
√

(j − 1)j + 1
√
�

+ 1

3
√

3
√
j (3j + 4

√
(j − 1)j + 1 − 4)

+O(
√
�).

(B11)

3. Weakly coupled chains limit

In this section, we analytically check the results of
Sec. IV D2 in the limit of weakly coupled chains J ′ � J .
Recall that the calculation was done for a full two-dimensional
lattice. Hereafter, we will use Cartesian coordinates (x,y)
for convenience. In this limit, we can express the spin-flip
operator as a continuous function of x, which is along the chain
direction, while keeping the chain index y ∈ Z discrete. Then,
from Eq. (71), we write this operator as�y(x) ∼ S+

y,π (x), where
its low-energy theory is described by the following action:

S1D =
∑

y

∫
dx dτ

{
�

†
y

(
∂τ − 1

2m
∂2

x − μ
)
�y

− t(�†
yi∂x�y+1 + H.c.) + u�†

y�
†
y�y�y

+ v�†
y�

†
y+1�y+1�y

}
. (B12)

The spin-flip (magnon) mass m = 1/J follows from the
quadratic dispersion of the magnon mode near momentumπ in
a fully polarized chain. Additional interaction terms describe
the hard-core constraint (u term) as well as the transverse
(t = J ′

xy/2) and longitudinal (v = 2J ′
z) parts of the interchain

exchange interaction J ′. Note that the t term contains a spatial
derivative with respect to x, which reflects the frustration
of the interchain exchange by the triangular geometry. In
addition, this term contains a factor of i from the staggered
factor (−1)x = eiπx in Eq. (71), and from the fact that x takes
half-integer values on odd chains [see Eq. (2), Fig. 1(a), and
Appendix D6 of Ref. 11].

We can analyze each term of Eq. (B12) through simple
dimensional analysis, which will deem all these terms to be
relevant under RG. Denoting the spatial scale along x as L,
we can conclude that τ ∼ L2, �y scale as 1/

√
L, while the

three interaction terms t, u, and v scale as L. Hence, these are
relevant interactions and must be included in our analysis of
the low-energy theory.

We can Fourier transform Eq. (B12) and write the Hamil-
tonian that corresponds to this action

H1D =
∑

k

�
†
k

(
k2
x

2m
+ 2tkx cos[ky] − μ

)
�k

+ 1

2N

∑
k,k′,q

V (k,k′,q)�†
k+q�

†
k′−q�k′�k. (B13)

Here, V (k,k′,q) = V (q) = 2u+ 2v cos[qy]. Note that while
the range of kx is not restricted, −∞ < kx <∞, that of ky
is limited by the lattice −π � ky � π . This single-particle
dispersion contains two degenerate moment at Q1 = (−2tm,0)
and Q2 = (2tm,π ).

The single-particle dispersion has two degenerate minima,
at Q1 = (−2tm,0) and Q2 = (2tm,π ). We can now compute
the renormalized couplings �1,�2 in a similar manner as
the previous sections. However, we alter our ansatz of the
BS equation (44) to take the form �(q) = A0 + A1 cos[qy]
because the odd contribution ∝ sin[qy] vanishes under the
integral as the denominator in Eq. (44) is even for all
combinations of incoming and transferred momenta.
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Computing�1,�2 requires one to solve two linear equations
for A0,A1, which involve 2D integrals over functions with
denominators such as [k2

x/m+ 16mt2 sin2[ky/2] +�] (for
�1) and [(kx − 4mt sin2[ky/2])/m+ 4mt2 sin2[ky] +�] (for
�2). We first evaluate these integrals analytically by separating
out the leading terms in ln[�/(mt2)], then taking the limit u→
∞ to, again, enforce the s = 1

2 constraint. The expressions are
as follows:

�1

8πt
= 1 + 4

3γ(
1 + 4

3γ
)

lnϒ + 4 ln 2 + 4γ
(

4
3 ln 2 − 1

) , (B14)

�2

8πt
= 1

lnϒ + 2 ln 2
, (B15)

where γ = v/(πt) andϒ = 16mt2/�. Given these forms, we
can conclude that �1 > �2 for γ � γc = 3 ln 2/(6 − 4 ln 2) ≈
0.644. Since we are considering the isotropic Heisenberg
model, where γ = 4/π > γc, we observe that the coplanar
fan state prevails over the cone state in the J ′ � J limit, in
agreement with the full lattice approach in Eq. (48), once the
parametersm,t ,v are expressed in terms of exchange integrals.

With this approach, we can also estimate the width of the
planar fan state near saturation field through simple dimen-
sional analysis of Eq. (B12). Since the chemical potential μ =
hsat − h scales asL2 and the t interaction scales asL, the phase
boundary between the planar and the lower-field phases must
scale as 
h ∼ (J ′)2/J . This boundary separates the planar
fan phase from the cone phase, a region in which a standard
bosonization description of Sec. V becomes appropriate.
Details of this analysis are presented in Appendix C 2.

Similar reasoning allows one to estimate the stability
of the planar fan state with respect to interlayer coupling
J ′′, which is always present in real materials. It is clear
that (nonfrustrated) interlayer coupling corresponds to adding
a simple single-particle hopping term between layers with
a different z-coordinated

∫
dτdx

∑
z J

′′(�†
y,z�y,z+1 + H.c.)

term to the action in Eq. (B12). Such a term also scales as L2,
which implies that the phase boundary between the planar and
the cone phases in the J ′-J ′′ plane takes on a quadratic shape,
J ′′ ∼ (J ′)2/J .

APPENDIX C: ADDITIONAL ONE-DIMENSIONAL
ANALYSIS

The purpose of this Appendix is to show that the TST geom-
etry with three legs is unique in that the renormalized couplings
generated through RG produce significantly different physics
for N = 3 compared to that of N > 3, in the limit J ′ � J .
Moreover, we show that the arguments given below further
support our claims in Sec. VII for the existence of a dimerized
state near low field. Finally, we conclude this Appendix with
a more thorough analysis of the cone state near high fields.

1. Zero-field analysis by quasi-1D methods

We start with the zero-field case of Eq. (1) in the limit of
decoupled chains J ′ � J , where each Heisenberg chain can
be bosonized using the Wess-Zumino-Witten SU(2)1 theory,
with central charge c = 1. In this theory, the spin operator can
be decomposed into its uniform My(x) = JR,y(x) + JL,y(x)

and staggered Ny(x) magnetizations

Sx,y → a0[My(x) + (−1)xNy(x)], (C1)

and its scalar product can be written in the continuum limit

Sx,y · Sx+1,y → (−1)xεy(x), (C2)

where εy(x) is the staggered dimerization. With J ′ = 0,
this theory describes the Luttinger liquid fixed point of the
decoupled chains. The scaling dimensions of these con-
tinuum operators M, N, and ε determine the relevance of
each operator as it perturbs this fixed point. The uniform
magnetization has scaling dimension 1, whereas both the
staggered spin magnetization and the staggered dimerization
have scaling dimension 1

2 . These three continuum operators
form a closed operator algebra with well-defined operator
product expansions (OPEs) used widely in literature.11–13,71–74

For instance, the product of JR and N can be expanded as

J a(x,τ )Nb(x ′,τ ′) = iεabcNc(x,τ ) − iδabε(x,τ )

4π [v(τ − τ ′) − i(x − x ′) + a0στ ]
,

(C3)

where τ is the imaginary time, v = πJa0/2 is the spin velocity,
and a0 is the short-distance cutoff.

Let us now consider interchain Hamiltonian perturbing the
decoupled Heisenberg chains

V = J ′
3∑
y=1

∑
x

Sy(x)[(Sy+1(x) + Sy+1(x − 1)]. (C4)

Perturbation theory is formulated by expanding the partition
function Z = ∫

e−S0−
∫
dτV up to quadratic order, i.e.,

Z �
∫
e−S0

[
1 −

∫
τ

V + 1

2
T
∫
τ1

∫
τ2

V (τ1)V (τ2)

]
, (C5)

with an implied short-time cutoff α = a0/v. Here, T is the
time-ordering operator. To utilize this perturbation theory and
the OPEs, we express Eq. (C4) in terms of continuum operators
[Eqs. (C1) and (C2)]:

V1 = 2a2
0J

′
3∑
y=1

∑
x

My(x) · My+1(x), (C6)

V2 = −a2
0J

′
3∑
y=1

∑
x

My(x) · ∂xMy+1(x), (C7)

V3 = a2
0J

′
3∑
y=1

∑
x

Ny(x) · ∂xNy+1(x), (C8)

V4 = −a2
0J

′
3∑
y=1

∑
x

Ny(x) · 1

2
∂2
xNy+1(x), (C9)

where V = V1 + V2 + V3 + V4. It is crucial to realize that the
periodic boundary conditions enforced in the y direction by
the TST system (cf. Fig. 2) allows us to rewrite any operator
O as

3∑
y=1

∑
x

OyOy+1 =
3∑
y=1

∑
x

OyOy+2. (C10)
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Using OPEs, one can show that the nearest-neighbor chain
couplings of the staggered magnetization and dimerization
enter in the third power of J ′:

V = J3

3∑
y=1

∑
x

(
Ny(x) · Ny+1(x) − 3

2
εy(x)εy+1(x)

)
, (C11)

where J3 > 0 and J3 ∝ (J ′)3. This is done by first generating
∂xNy−1∂xNy+1 by quadratic in V3 + V4 terms. Next, this term
is fused with V1 to generate the J3 ∝ (J ′)3 interaction. The
calculations are similar to those described in Refs. 11–13 and
73 and 74, and refer the reader to these papers for more details.

In a 2D system,11,12 however, we find that the generated
term is instead quartic in J ′, with interaction constant J4 ∼
(J ′)4/J 3 and is of the opposite (negative) sign J4 < 0 in
comparison with J3 above. It turns out that J3 ∼ (J ′)3 > 0
is a feature of the N = 3 TST model only: wider tubes with
N > 3 are analogous to the 2D case, where the renormalized
couplings ∼(J ′)4/J 3 < 0. Note that this difference is impor-
tant as it implies that spin tubes with N > 3 are not frustrated
by the periodic BC along the y direction.

Going back to the N = 3 TST, both of the generated inter-
actions in Eq. (C11) are strongly relevant (scaling dimension
1) and scale to strong coupling under RG transformations. It
would appear that because of the greater numerical coefficient
of εyεy+1 in Eq. (C11), it is the dimerized ground state that
emerges from the competition in the strong coupling. However,
this argument is not complete as it neglects the crucially im-
portant effect of marginally irrelevant in-chain backscattering
term ∝JR · JL, which in fact breaks the symmetry between
the Ny · Ny+1 and εyεy+1 interactions in favor of the first
one.12 This outcome is not unexpected as it is well known
that in-chain marginal current-current interaction spoils the
extended SU(2)R × SU(2)L symmetry of the Heisenberg chain
by subleading logarithmic corrections which modify chain spin
correlations as follows:75,76

〈Ny(x)Ny(0)〉 = (ln[x])1/2x−1,
(C12)

〈εy(x)εy(0)〉 = (ln[x])−3/2x−1.

Essentially, the same mechanism promotes interchain Ny ·
Ny+1 interaction over that of staggered dimerizations. In the
infinite 2D lattice, this leads to the stabilization of the collinear
antiferromagnetic phase,12 which, however, is not possible in
the TST geometry.

It is important to realize at this point that the relevant
J3
∑
y Ny · Ny+1 interaction, which describes nonfrustrated

coupling of staggered magnetizations on neighboring chains,
changes the geometry of the system into that of a rectangular
spin tube. The renormalized, relevant coupling J3 becomes
comparable to the intrachain exchange J under RG and forces
Néel vectors N1,2,3 to order into the familiar 120◦ pattern on
every rung. Our 1D reasoning stops at this scale, but further
progress can be made by assuming that the spin tube with
J3 ∼ J can be accessed from the opposite limit of the strong
rung exchange J⊥ � J .77 In this limit, the spins on each rung
form three-spin triangles that interact via J⊥ = J3, and are
coupled to neighboring triangles by a weak exchange J . The
ground state of each triangle is fourfold degenerate and is
characterized by two quantum numbers, total spin srung = 1

2

and chirality τ , which is itself another pseudo-spin- 1
2 object.

The physical meaning of τ is just a sense of either a clockwise
or a counterclockwise rotation of the “unpaired” spin- 1

2 in the
ground state of the individual triangle. In other words, in addi-
tion to spin 1

2 , the ground state now carries finite momentum
±2π/3 due to chirality. Focusing on this low-energy subset of
triangle’s states, one can derive spin-orbital Hamiltonian78

Hso = J⊥
N

∑
x

srung(x) · srung(x + 1)

× [1 + αN (τ+
x τ

−
x+1 + τ−

x τ
+
x+1)] (C13)

describing correlated dynamics of spins and chiralities. For
the triangular ladder considered here,N = 3 and αN = 4. The
presented arguments remain valid for any odd N , however.
See Ref. 78 for N = 5 and Ref. 79 for N > 5. Analytical77,80

and numerical78,81,82 studies of the model (C13) find
dimerized ground state, in agreement with our consideration
in Sec. VII A. Figure 23, which shows oscillatory behavior of
the entanglement entropy for different values of R, represents
clear evidence of the dimerized ground state.

Finally, we conclude by discussing the way to generate
an interaction of the uniform magnetizations from the next-
neighboring chains. This is done by fusing V1 in Eq. (C6) with
itself, which yields, under Eq. (C5),

δHMM = − (2J ′)2

2

∑
y

∫
x

∫
x ′

〈
Mz
y(x,τ )Mz

y(x
′,τ ′)

〉
×Mz

y−1M
z
y+1. (C14)

Because the result is converging, the integral of the yth chain
correlation function can be extended to the full x − vτ plane.
This, using important short-distance cut-off ∼ a0sign(τ ) and
y = vτ (see Ref. 74 for detailed discussion), leads to∫ ∞

−∞
dx

∫ ∞

−∞
dy

(
1

[y + ix + a0sign(y)]2
+ H.c.

)
= 4π.

(C15)

As a result, we obtain for the amplitude of δγMM = (J ′)2/(πv),
where v is magnetization-dependent spin velocity.

2. Cone state

Now, turn on the magnetic field. When a large enough
magnetic field is applied to the TST, the “twist” order, the
fourth term in Eq. (75), becomes more relevant than the
SDW. This was discussed in previous papers for the two-chain
ladder27 as well as the 2D triangular lattice.11,12 As both the
SDW and the cone interaction amplitudes in Eq. (75) are of the
order J ′, the relative importance of the two interactions can
be estimated12 from a comparison of their scaling dimensions

saw = 1/(2πR2) and
cone = 1 + 2πR2. These two dimen-
sions are equal when 2πR2 = (

√
5 − 1)/2, which takes place

at sufficiently high magnetization M ≈ 0.6Msat. Because of
rather steep dependence M(h) of the magnetization on the
magnetic field near the saturation, this value of magnetization
corresponds to h ≈ 0.9hsat (see Fig. 2 in Ref. 12). A similar
conclusion is obtained by comparing mean-field transition
temperatures of these two ordered states as functions of
magnetization (see Ref. 11).
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These arguments, however, are not complete because they
do not take into account the fluctuation-generated interactions
between spin densities on next-nearest chains. The most
important of these in the presence of an external magnetic
field is given by

V ′
cone = δγcone

∑
y

∫
dxS+

π,yS−
π,y+2 + H.c. (C16)

Even though the generated coupling constant is small δγcone �
J ′/J � 1, this interaction does not involve spatial derivatives
and has scaling dimension 2πR2 which approaches 1

2 as h→
hsat. Thus, this is a strongly relevant term.

In a 2D system,11,12 δγcone ∼ (J ′)4/J 3 < 0 as discussed
in the previous section. [Note that Eq. (C16) is written in
the “sheared” system of coordinates.] When translated into
Cartesian coordinates, it implies antiferromagnetic (positive)
exchange interactions between spins on next-nearest chains at
the same position x along the chain.12 Crucially, as emphasized
in the previous section, the TST geometry allows for a
stronger renormalized coupling, of the order of δγcone ≡ J3 ∼
(J ′)3/J 2 > 0.

The difference is due to slightly different routes to (C16) in
2D andN = 3 TST geometries. One can first show that, when
you start from the original cone interaction

Vcone = γcone

∑
y

∫
dxS+

π,y∂xS−
π,y+1 + H.c., (C17)

one can couple the derivatives ∂xS±
π on the next-nearest chains

y and y + 2,

V ′′
cone ∼ γ 2

cone

v

∑
y

∫
dx∂xS+

π,y∂xS−
π,y+2 + H.c. (C18)

This step parallels calculations leading to Eq. (C11) with minor
variation due to U(1) symmetry of the system in the presence
of an external magnetic field. In this situation, the scaling
dimension of the Sπ field is smaller than 1

2 which leads to a
slightly different numerical prefactor in the renormalization.
However, the functional dependence on J ′ remains the same.
Second, for all N > 3 one also needs to generate

V ′
MM = −δγMM

∑
y

∫
dxMz

yM
z
y+2, (C19)

which was described in the end of the previous section
(Appendix C 1). Here, δγMM ∼ (J ′)2/J . Fusing next (C18)
and (C19) together leads to the result (C16). In the N = 3
TST, however, the second step is not required due to Eq. (C10),
and we end up with a larger coupling of the order δγcone ∼
(J ′)3/J 2 > 0 in Eq. (C16).

To compare the original Vcone with the generated V ′
cone

quantitatively, we can estimate the RG scale ! at which the
coupling constant of the interaction becomes of the order one
(in units of spin velocity v). For Eq. (C17) this is, with logarith-
mic accuracy, !cone ∼ − ln(J ′)/(2 −
cone) = − ln(J ′)/(1 −
2πR2), while for Eq. (C16) it is !3 ∼ −3 ln(J ′)/(2 − 2πR2).
We immediately conclude that !3 < !cone for all values of
2πR2 ∈ (1, 1

2 ), i.e., that the generated cone interaction term
Eq. (C16) is more relevant than the bare one for all values of
magnetization in the case ofN = 3 TST. Similar consideration

allows us to analyze the competition between the generated
coneV ′

cone interaction and the SDW one, which is characterized
by the RG scale !SDW ∼ −2πR2 ln(J ′ sin[δ])/(4πR2 − 1).
We find that !SDW < !3 for 1 � 2πR2 �

√
7 − 2 ≈ 0.65,

which corresponds to low-to-intermediate range of magne-
tization M � 0.25. At higher M , however, the modified cone
interaction takes over the SDW one. (For the 2D case, the
comparison is less conclusive as the result sensitively depends
on numerical factors inside the argument of the logarithm.11)

We now investigate the consequences of the strong J3 ≡
δγcone interaction in Eq. (C16) for the TST problem. In the
high-field region where SDW fluctuations are suppressed, the
Hamiltonian of the system is given by the sum of H0 in
Eq. (69), the generated direct coupling V ′

cone in Eq. (C16), and
the original cone interaction Vcone in Eq. (C17), which now
is a subleading one in comparison with (C16). With this, we
perform Abelian bosonization form of the interaction potential
and arrive at the following expression:

H TST
cone = J3

∫
dx{cos[β(θ1 − θ2)] + cos[β(θ2 − θ3)]

+ cos[β(θ3 − θ1)]} + βJ
′

2

∫
dx{∂x(θ1 + θ2)

× sin[β(θ1 − θ2)] + ∂x(θ2 + θ3) sin[β(θ2 − θ3)]

+ ∂x(θ3 + θ1) sin[β(θ3 − θ1)]}. (C20)

For J3 � J ′, which is the appropriate regime according to
our RG arguments above, this potential is minimized by
configurations with cos[β(θy − θy+1)] = −1/2 for all y. This
allows for two different values of sine terms sin[β(θy −
θy+1)] = ±√

3/2. In fact, different signs describe states with
different vector chiralities defined as

κzy = (Sy × Sy+1)z ∼ sin[β(θy − θy+1)]. (C21)

Thus, different signs of κzy correspond to different senses of
rotation (clockwise or counterclockwise) of eiβθy as we go from
one chain to the next. These chiralities also represent useful
order parameter describing two degenerate cone states.83

To account for the subleading twist terms with spatial
derivatives in Eq. (C20), we shift θy → θy + υx, where υ
is determined by the requirement that in the new ground state,
the bosonic field θ is twistless, i.e., 〈∂xθy〉 = 0. Minimizing
H0 +H TST

cone over υ, we find

υ = −βJ ′〈sin[β(θy − θy+1)]〉 ∼ −J ′κzy . (C22)

This shows that the doubly degenerate cone state is character-
ized by incommensurate transverse spin correlations, by virtue
of the relation S+

y = (−1)xeiβθy → exp[i(π + υ)x + iβθy].
Depending on the spontaneously chosen vector chirality,
Eq. (C21), transverse spin correlations are picked at either
Q1,x = π + υ (for κzy > 0) or Q2,x = −π + υ (for κzy < 0)
along the chain.

APPENDIX D: TRANSFORMATION PROPERTIES
OF Z2 VORTICES

In this Appendix, we address the transformation properties
of the Z2 vortex instanton operator ψ . We give several
arguments. First, these properties have been implicitly
obtained in the case of a three-leg spin tube, slightly different
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from the one studied here, in Ref. 84. There, the authors
explicitly evaluate the Berry phase contribution to the action
for instantons on the lattice. Microscopically, the instantons
are associated with columns of spatial links along the x
direction of the cylinder (see below how this arises in another
formulation). They showed that, due to the Berry phase, a
single pair of instantons (an odd number of instantons can not
occur) is accompanied by a weight

eiSBP = e2πiS(x−x ′), (D1)

where x and x ′ are the locations of the instantons. For
half-integer spins, this gives an oscillating factor equal to +1 or
−1 if the separation between instantons is even or odd, respec-
tively. From this we can extract the transformation properties.
If we translate one of the instantons, x → x + 1, we see that
the weight in Eq. (D1) changes sign. This requires ψ → −ψ ,
in agreement with Eq. (115). Under inversion P about a lattice
site, the instantons, which live on the links, change from the
even to odd sublattice of bonds and vice versa. Inverting a
single instanton, therefore, changes the parity of x, and hence
also the sign of the weight in Eq. (D1). Thus, again, ψ is odd
under inversion, in agreement with Eq. (116). Since the instan-
tons do not move under time reversal or translation along y, the
invariance ofψ under these operations is obvious. Thus, for the
case Ly = 3, for the model studied in Ref. 84, the symmetry
of the instanton operator is determined as shown in the text.

We turn now to an alternative derivation of the transfor-
mation laws, which gives the general result, and clarifies its
generality. Here, we follow the general strategy of Ref. 85, in
which the Z2 vortices are explicitly separated from the smooth
configurations of the SO(3) order parameter using a slave-
particle construction. This is achieved by writing the unit vec-
tors defining the SO(3) matrix in terms of a “slave spinon” zα:

n̂1 + in̂2 = εαβzβσ αγ zγ , (D2)

where the complex, two-component vector zα is constrained
to have unit norm

∑
α z

∗
αzα = 1. This representation faithfully

reproduces the orthonormality constraints on the n̂i , but is two
to one: the physical order parameter O is unchanged by the
transformation zα → −zα . This is actually a gauge invariance
since the transformation is made locally. The Z2 vortex is a
configuration in which, on encircling the center of the defect,
zα returns not to itself but to −zα .

As explained in Ref. 85, a low-energy effective theory,
appropriate to describe the regime with a local spiral order, as
well as a quantum disordered phase, is a (2 + 1)-dimensional
Z2 gauge theory coupled to the spinon variables zα . We
refer the reader to Ref. 85 for details. The Z2 vortex in this
theory appears as a configuration of a spinon field which
has a discontinuity zα → −zα across a semi-infinite “cut”
emanating from the vortex. This Z2 vortex is accompanied by

an Ising vortex, the so-called vison, which is itself a defect with
a nonzero Ising gauge field crossing the same semi-infinite cut.
In this way, the topological defects of the spiral magnet become
identified with the visons of the Z2 gauge theory.

The discussion in the previous paragraph applies to Z2

vortices in two-dimensional space, which are particles in the
(2 + 1)-dimensional theory. We need to go from this to the
description of instantons in the (1 + 1)-dimensional theory
obtained by applying periodic boundary conditions in the y
direction. A (1 + 1)-dimensional instanton can be viewed as
an event in which a pair of Z2 vortices is nucleated: one of
them winds around the cylinder and finally arrives back at the
other Z2 vortex and annihilates it. We can, by the previous
argument, consider the particles nucleated and annihilated to
be visons in the gauge theory.

Such a process was considered in Ref. 86 (in the Sup-
plemental Material), where it was shown that the operator
representing this process in the Ising gauge theory has the
transformation properties in Eqs. (115) and (116), i.e., this
operator can be viewed as a staggered dimerization operator
for odd Ly . There, a rectangular lattice gauge theory was
studied, but the basic physics is quite general. Let us consider
the translation. We ask about the amplitude to first wind
one vison around the cylinder at position x, and then wind
another at position x + 1. The overall phase of the amplitude
for both processes taken together gives the transformation
property of the instanton operator under translation. The
visons reside at the plaquette centers of the original lattice,
and the winding trajectories form closed circles at fixed x,
circumnavigating the cylinder. Together, these two events form
two such circles that enclose one column of sites in the lattice.
The fundamental property of a vison is that it has a mutual
statistical interaction with “electric” gauge charges, with the
wave function acquiring a phase of π whenever one encircles
the other. For a S = 1

2 system, a unit gauge charge is present at
every lattice site: this represents the physical spin at each site.
The net effect of the two events together is that one vison
is wound around each site of the lattice between the two
circles, leading to an overall amplitude of (−1)Ly for the two
processes together. Here, Ly is the number of sites contained
between the two circles. This gives the result in Eq. (115).
Note that we may also roughly understand this phase factor by
considering the smooth rotations of microscopic spins between
the two contours, all of which rotate by 2π , and due to their
s = 1

2 spinor transformation properties, each acquires a minus
sign. A similar argument shows that spatial inversion gives
the same phase factor. Explicit calculations for these factors
in the Ising gauge theory can be found in Ref. 86. Note that
these arguments do not depend at all on the interactions in the
model, just the presence of these symmetries and fundamental
statistics of the particles.
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A. K. Kolezhuk, Phys. Rev. B 77, 094404 (2008).
70V. L. Pokrovsky and A. L. Talapov, Phys. Rev. Lett. 42, 65 (1979).
71A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosonization

and Strongly Correlated Systems (Cambridge University Press,
Cambridge, UK, 2004).

72Theoretical Methods for Strongly Correlated Electrons, edited by
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