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Anomalous energy transport across topological insulator superconductor junctions
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We study the nonequilibrium energy transport across a topological insulator superconductor junction by
deriving an interfacial heat current formula through the scattering wave approach. Several anomalous thermal
properties are uncovered, such as thermal energy’s Klein tunneling, asymmetric Kapitza resistance, and negative
differential thermal resistance. We expect these findings will have potential applications for energy control in
various hybridized mesoscopic systems.
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Topological insulators (TIs), characterized by a bulk gap
and a gapless surface mode with a Dirac-like linear dispersion,
are presently one of the most interesting topics in condensed-
matter physics.1,2 Their conducting surface states in the
insulating gap are topologically protected by time-reversal
symmetry, hence they are robust to disorders and pertur-
bations, potentially leading to various device applications.
With the help of doping-induced superconductivity in TIs3

or by depositing superconducting materials on TIs due to the
proximity effect,4–6 the interplay between the superconducting
ordering and the gapless chiral surface state has triggered much
interest.2

On the one hand, such topological insulator superconductor
(TI/S) junctions have been used to create chiral Majorana
fermions for topological quantum computations and for the
study of their impacts on electronic tunneling properties.7–11

However, the thermal properties of such systems have not
yet attracted an equal amount of attention. On the other
hand, hybrid superconducting circuits are widely used for
quantum computing and simulations,12,13 where managing
heat dissipation at cryogenic temperatures becomes important
for the right device operation. Thus, in view of the fact
that hybrid topological superconductor junctions could be a
natural candidate for quantum simulations and computing,
the bottleneck in the future will be efficiently managing heat
dissipation/refrigeration and controlling energy transport
in such systems. Therefore, understanding the thermal
properties of such hybrid mesoscopic structures at cryo-
genic temperatures will be crucial for future quantum and
nanotechnology.14,15 It even has the potential to open up a
rich variety of thermal device concepts in superconducting-
circuit-based hybrid systems, just like thermal diodes, thermal
transistors, thermal logic gates, and thermal memories in
dielectric phononics.16

In this paper, we study the nonequilibrium energy transport
across a TI/S junction interface and uncover its anomalous
thermal properties, such as thermal energy’s Klein tunneling,
asymmetric Kapitza resistance, and negative differential ther-
mal conductance (NDTC). Among them, Kapitza resistance
measures the interfacial thermal resistance when thermal
energy flows through the interface between two different
materials.17,18 Asymmetric Kapitza resistance is one unusual
thermal property by which the interface acts as a good thermal
conductor if a positive thermal bias is applied, while with a
negative thermal bias it exhibits poor thermal conduction, thus

effectively acting as a thermal insulator. As such, it functions as
a thermal rectifier or diode (for a review, see Refs. 16 and 19).
The NDTC, another unusual thermal transport phenomenon in
which the heat current across a thermal conductor decreases
when the temperature bias increases (for a review, see
Ref. 16), is an essential element for the construction of thermal
transistors and thermal logic gates, and it has been shown to
exist in many anharmonic lattice systems. These concepts were
usually restricted to pure phononic systems, where the thermal
energy is carried by quantized lattice vibrations, i.e., phonons.
Here, we report similar findings in superconducting hybridized
mesoscopic junctions, which could extend the conceptual
thermal devices in dielectrics into superconductor-based hy-
brid systems and could have great potential applications at
cryogenic temperatures20 in the near future.

As depicted in Fig. 1, we consider a two-dimensional (2D)
TI/S junction attached to the respective thermal reservoirs at
TL and TR , with an insulating barrier locating at x ∈ [0,d]. The
2D TI junction part (x < 0) could be formed on the surface
of 3D topological insulators, the S junction part (x > d) could
be induced via the proximity effect, and the barrier (B) part
could be constructed by gating voltage or doping. The bulk
of TI is a bad insulator of electrons, and when doped or with
other disorders, both electrons and phonons will be strongly
scattered but with the surface electronic state unaffected (so
called topologically protected). Thus, the bulk contribution
to the energy transport will be seriously suppressed and
negligible. Moreover, the phonon contribution is not only
suppressed seriously by the doping and disorders in the bulk,
but also blocked by the barrier layer located at the interface
between the TI and S sides. When the TI and S sides have a
large lattice mismatch, the phonon contribution will be further
reduced. Therefore, in the present work we only focus on the
thermal transport contributed by the surface metallic states.

We assume the same Fermi level in both TI and S, and em-
ploy the Bogoliubov–de Gennes (BdG) equation Ĥψ = Eψ to
study the thermal transport properties. The Hamiltonian of the
surface state on the topological superconductor is given by1,2

Ĥ =
(

Ĥ0(k) − EF �̂

−�̂∗ −Ĥ ∗
0 (−k) + EF

)
(1)

acting on a Nambu basis (ψe↑,ψe↓,ψh↑,ψh↓), with Ĥ0(k) =
h̄vF (kxσ̂y − kyσ̂x) + U0�(x)�(d − x) and �̂ = iσ̂y�(θ,T )
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FIG. 1. (Color online) Schematic illustration of the reflections
and transmissions at the TI/S interfaces.

�(x − d). Here, vF is the Fermi velocity, σ̂x(y) denote Pauli
matrices, U0 is the barrier potential, and �(θ,T ) depicts
the order parameter with a given pairing symmetry and
temperature dependencies. Throughout the work, we consider
EF � (|�|,E) to satisfy the mean-field nature of the BdG
approach, i.e., the superconducting coherence length h̄vF /|�|
is much larger compared to the Fermi wavelength h̄vF /EF .
Adjusting EF can be achieved via doping or gate voltage.

Since in superconductor junctions the quasiparticles are
carriers of thermal energy, we need to obtain the transmission
(equivalently the reflection) coefficients of quasiparticles in
order to investigate the thermal transport properties. Con-
sidering the conservation law for particle current, we can
simplify the problem by merely considering the particle
(including both electron and hole) current in the side of TI.
Defining f = ( ψe↑

ψe↓ ) and its hole counterpart g = ( ψh↑
ψh↓ ), we

have the probability density for finding either an electron or a
hole, P = |f |2 + |g|2. By using the BdG equation ih̄∂t (

f

g ) =
Ĥ ( f

g ) with Eq. (1), and considering the continuity equation
∂tP + ∇ · JP = 0, we obtain the x component of the particle
current:

J x
P = vF (f †σ̂yf − g†σ̂yg). (2)

Note that the hole current is a time-reversed counterpart of the
electron contribution so that it naturally obtains an opposite
sign compared with the electron current. If we express the
whole wave function at the TI side, �TI := ( f

g ), in terms of

the normal reflection amplitude b and Andreev reflection21 (for
electron-hole conversion) amplitude a, which will be defined
explicitly below, and substitute ( f

g ) into Eq. (2), we then obtain
the particle current as

J x
P (E,θ ) = 2vF cos θ [1 − |a(E,θ )|2 − |b(E,θ )|2]. (3)

This expression of the particle current has a clear physics
picture that κ̃(E,θ ) := 1 − |a(E,θ )|2 − |b(E,θ )|2 denotes the
transmission of energy carriers with energy E and incident an-
gle θ , vF cos θ denotes the effective velocity in the x direction,
and 2 is the spin degeneracy. Considering the carrier’s energy
E, the Fermi occupation difference between two sides of the in-
terface fL − fR = 1

eE/kB TL+1 − 1
eE/kB TR +1 , and summation over

all possible incidence angles and momenta
∑

k

∫ π/2
−π/2 dθ =

1
2π

∫
dE

∫ π/2
−π/2 dθ (dE/dk)−1 = ∫

dE
∫ π/2
−π/2 dθ 1

2πh̄vF
, we

arrive at the energy current expression:

JQ = 2

h

∫ ∞

−∞
dE Eκ(E)[fL − fR], (4)

with κ(E) = ∫ π/2
−π/2 dθ cos θκ̃(E,θ ) = ∫ π/2

−π/2 dθ cos θ (1 −
|a|2 − |b|2). Note that this expression is general and is obtained
before solving the reflection coefficients a,b. In fact, similar
expressions of the energy current in 1D topological-trivial
metal superconductor junctions have been obtained by a rigor-
ous derivation through linear response of entropy production22

or by a heuristic argument.23 The latter was then applied
to the superconducting graphene systems.24,25 It is worth
emphasizing that all the transports considered in this work are
charge-neutral, i.e., the carriers transport only thermal energy
without charge current. In fact, if we follow the same procedure
for charge transport, we will arrive at a similar expression for
electric current: Je = 2e

h

∫
dE

∫
dθ cos θσ̃ (E,θ )[fL − fR],

with σ̃ = 1 + |a|2 − |b|2, similar to the BTK formula.21,26

One can then see that due to the even symmetry of σ̃

[σ̃ (E,θ ) = σ̃ (−E,θ )] and the odd symmetry of fL − fR with
respect to E, Je vanishes as zero. This is also a consequence
of the particle-hole symmetry in our system.

We now proceed to determine the scattering coefficients
of Andreev reflection amplitude a and normal reflection
amplitude b by imposing the boundary conditions on the wave
functions at the interfaces of the barrier. Diagonalizing Eq. (1)
straightforwardly yields the wave functions in the TI, barrier,
and S regions. In the TI region (x < 0), for electrons and
holes traveling in the ±x direction with a conserved transverse
momentum ky and energy E measured from EF , the wave
functions are given as

ψe±
TI = (1,±ie±iθ ,0,0)ei(±kxx+kyy),

ψh±
TI = (0,0,i,±e±iθ )ei(∓kxx+kyy),

where kx = EF cos θ/(h̄vF ) and θ = arcsin(h̄vF ky/EF ) is the
angle of incidence. Note that we have used the mean-field
condition EF � E. In the barrier region (0 < x < d), we
employ the thin barrier limit:27 d → 0, U0 → ∞ but with a
constant product Z ≡ U0d/(h̄vF ), characterizing the strength
of the insulating barrier. We then obtain

ψe±
B = (1,±i,0,0)ei(±Zx/d+kyy),

ψh±
B = (0,0,i,±1)ei(∓Zx/d+kyy).

In the S region (x > d), the electron (hole) -like quasiparticles
are mixtures of electrons and holes. Thus, the transmitted wave
functions have the forms

ψe+
S = (1,ieiθ ,−i�+ei(θ−φ+),�+e−iφ+ )ei(kxx+kyy),

ψh+
S = (�−,−i�−e−iθ ,ie−i(θ+φ−),e−iφ− )ei(−kxx+kyy),

where eiφ± = �(θ±,T )/|�(θ±,T )| with θ+ = θ, θ− = π − θ ,
and �± = v±/u±, with u2

± = 1
2 [1 +

√
E2 − |�(θ±,T )|2/

|E|] = 1 − v2
±. For a d-wave pairing symmetry, �(θ,T ) =

�(T ) cos(2θ − 2α) with �(T ) = �0 tanh[(πkBTc/�0)√
0.953(Tc/T − 1)].28 Here Tc is the critical temperature, �0

denotes the superconducting gap at zero temperature, and α is
the angle between the normal direction of the barrier interface
and the x axis of the dx2−y2 -wave superconductor. By taking
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into account the boundary conditions

�TI|x=0 = �B|x=0, �B|x=d = �S|x=d ,

with �TI = ψe+
TI + bψe−

TI + aψh−
TI , �S = teψ

e+
S + thψ

h+
S , and

�B = r1ψ
e+
B + r2ψ

e−
B + r3ψ

h+
B + r4ψ

h−
B , the Andreev and

normal reflection coefficients are found to be

a = − cos2 θ�+ei(θ−φ+)

cos2 θ + sin2 Z sin2 θ (1 − �+�−ei(φ−−φ+))
,

b = sin Z sin θ (cos Z cos θ − i sin Z)(1 − �+�−ei(φ−−φ+))

−e−iθ [cos2 θ + sin2 Z sin2 θ (1 − �+�−ei(φ−−φ+))]
.

Finally, using the obtained coefficients a and b, we get

κ̃(E,θ ) : = 1 − |a(E,θ )|2 − |b(E,θ )|2

= κ̃TI
1 − κ̃TI|�+|2 + (κ̃TI − 1)|�+�−|2
|1 + (κ̃TI − 1)�+�−ei(φ−−φ+)|2 , (5)

where

κ̃TI := κ̃(|E| � �0,θ ) = cos2 θ

cos2 θ + sin2 Z sin2 θ
(6)

is reminiscent of the relativistic Klein tunneling,29 as a
consequence of the spin-orbit coupling in TIs. The barrier
becomes transparent for the thermal energy transport at the res-
onance condition, Z := U0d

h̄vF
= nπ,n = 0,±1, . . . (such that

sin Z = 0), or at the normal incidence (θ = 0). Equations (5)
and (6) are one of the main results, which enable us to
uncover in the following the anomalous thermal properties,
such as thermal energy’s Klein tunneling, asymmetric Kapitza
resistance, and NDTC.

In the linear-response regime, TL = T + δT /2,TR = T −
δT /2,δT → 0, we have the thermal conductance:

G := JQ

δT
= 2

h

∫ ∞

−∞
dE

∫ π/2

−π/2
dθ

E2 cos θκ̃(E,θ )

4kBT 2 cosh2
(

E
2kBT

) . (7)

As illustrated in Fig. 2(a), the oscillatory dependence of G

on the barrier strength Z shows the Klein tunneling behavior
of energy: thermal conductance anomalously increases when
the barrier increases within [(n + 1/2)π,(n + 1)π ], consistent
with the behavior of sin2 Z in Eq. (6). G also has an oscillatory
dependence on α, the rotation angle of the superconducting
order parameter. As detailed in Fig. 2(b), when Z = 0, G

monotonically decreases as α rotates from 0 to π/4, but when
Z increases to π/2, G first increases and then decreases. This
nonmonotonic behavior is due to the competition of Klein
tunneling and the superconducting order parameter (gap),
which we explain below.

In the S part, thermal energy is carried by the quasiparticles,
which only transport beyond the gap �, so that the smaller �

is, the larger is the thermal conductance. In other words, the
rotation angle α adjusts G through adjusting the angle depen-
dence of the superconducting gap. To further understand the
competition between Klein tunneling and the order parameter
�, we define the angle-resolved thermal conductance Gθ as
G = ∫ π/2

−π/2 dθGθ and plot it as a function of the incidence angle
θ in Figs. 2 (c1)–(c3). For the case of Z = 0, when α = 0,
Gθ has two peaks around θ = ±π/4 where � is gapless,
while when α rotates to π/4, two peaks becomes a single
peak around θ = 0. As a result, G, the angle integration of
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FIG. 2. (Color online) Thermal energy’s Klein tunneling.
(a) Thermal conductance as a function of the barrier strength Z and
the rotation angle α of the d-wave order parameter. (b) Intersections
of (a) for Z = 0, and π/2. (c) Angle-resolved thermal conductance
Gθ for different α and Z. Solid lines are for Z = 0 while dashed
ones are for Z = π/2. Parameters are T = 70 K, Tc = 116 K, and
�0 = 30 meV. Thermal conductance G is in the unit of �0kB/h.

Gθ , decreases as α increases from 0 to π/4. For α changing
from π/4 to π/2, the behavior is symmetrically reversed.
When the barrier Z increases, the Klein tunneling comes into
play. For the case of Z = π/2, when α = 0, although there
are still two peaks for thermal conductance, their intensity
is suppressed dramatically. When α = π/4, the gapless angle
coincides with the normal incidence angle, the barrier becomes
transparent. Therefore, the Klein tunneling helps to keep the
single conductance peak (at θ = 0) intensity unchanged. At
the intermediate regime α = π/8, one peak near θ = 0 is
preserved while the other peak far from θ = 0 is repressed.
As a consequence, the thermal conductance G increases first
and then decreases within α ∈ [0,π/4] [see Fig. 2(b)]. It is also
interesting to notice that at certain angles, the angle-resolved
thermal conductance Gθ can be even enhanced by the nonzero
barrier strength [see Fig. 2 (c2)]. This anomalous behavior is
a consequence of the competition of thermal Klein tunneling
and the orientation angle of the d-wave superconductor. We
note that these predictions would be validated by the present
techniques of angle-resolved thermal transport measurements
(for a review, see Ref. 30).

The asymmetric Kapitza resistance is essentially a non-
linear response behavior. It is a consequence of different
temperature responses of different materials at two sides of
the interface.16 The inset of Fig. 3 shows typical JQ behaviors
at T = 70 K for Z = 0 (solid line) and π/2 (dashed line), via
varying temperature bias. As a measure of the asymmetry, we
define the rectification ratio R = |J−/J+|, where J+ refers to
thermal current when δT = TL − TR > 0 while J− refers to
thermal current after switching the temperature bias TL ↔ TR .
As shown in Fig. 3, when temperature bias is apart from 0,
R deviates further from 1. Except for the low-temperature
case (e.g., T = 35 K), the other three examples show that
increasing bias does not always increase the rectification
ratio at the large bias regime. The results also indicate
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FIG. 3. (Color online) Rectification ratios as a function of
temperatures. Values apart from 1 indicate asymmetric Kapitza
resistances. � (T = 35 K), (T = 70 K), (T = 104 K), (T = 140
K) are denoted for Z = 0. Their hollow counterparts are for cases of
Z = π/2. Inset shows one example of the JQ profiles depending on
temperature bias for Z = 0 (solid) and π/2 (dashed), at T = 70 K.
α = 0. Other parameters are the same as in Fig. 2. The energy current
JQ is in the unit of �2

0/h.

that although the insulating barrier changes the JQ profiles
quite noticeably, it does not change the rectification ratio
significantly, which is even slightly enhanced by the barrier.
In addition, R has a nonmonotonic temperature dependence
so that increasing T first increases and then decreases R, as
exemplified by the highest curves for T = 70 K in Fig. 3.
This is reasonable that the asymmetric Kapitza resistance in
our system results from the different temperature responses of
the topological insulator and superconductor at the sides of
the interface: At higher temperature, the superconducting gap
diminishes so that the superconductor tends to the topological
insulator and both sides of the interface tend to have the same
temperature response, which explains the reduction in R. At
lower temperatures, although two sides of the interface have
distinct temperature responses, the bias δT cannot be larger
than T such that small bias reduces R. Therefore, the optimal
R appears at intermediate temperature.

The superconductor is usually a bad thermal conductor
since its gap � forbids the existence of quasiparticles, which
are responsible for the energy transport. Increasing the temper-
ature TR at the S part could increase the energy transmission
κ(E) [in Eq. (4)] by diminishing the superconducting gap
to allow more thermal energy carriers, while simultaneously
decreasing the temperature bias δT = TL − TR as well as the
occupation difference fL − fR = 1

eE/kB TL +1 − 1
eE/kB TR +1 . Once

the increased κ(E) is able to compensate for the loss in
fL − fR due to the decreased δT , we expect to observe NDTC,
i.e., the energy current increases as the bias δT decreases. To
characterize this anomalous behavior, we define the differential
thermal conductance (DTC): dJQ/dδT , for given finite δT .
Note that this is a nonlinear quantity similar to the nonlinear
differential electrical conductance dI/dV , and it is different
from the previously defined thermal conductance G in Eq. (7),
which is a linear quantity at δT → 0.

As a showcase, we calculate DTC in Fig. 4 with varying
TR in the S region but fixing TL as a reference temperature.
Indeed, NDTC appears as we expect, although it is absent
for the low TL case (e.g., TL = 70 K > TR). Increasing TL
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dJ
Q
/d

δT

T
R

(K)

T
L

70K
104K
139K
209K
278K

FIG. 4. (Color online) NDTC for various temperatures at α =
0 (filled symbols) and α = π/4 (hollow symbols). Z = 0. Other
parameters are the same as in Fig. 2. The DTC dJQ/dδT is in the
unit of �0kB/h.

enhances the regime of NDTC. In addition, tuning the angle of
superconducting pairing symmetry α can also slightly enhance
NDTC, as shown in Fig. 4. However, when TR increases
across a threshold and approaches TL, NDTC disappears.
When the superconducting part is replaced with a topological
insulator, there exists no NDTC. In fact, when TR > Tc

(see 116 K in Fig. 4), the S part fades into nonsupercon-
ducting TI, which causes the collapse of DTC beyond Tc.
In this case, we can have a constant thermal transmission
κ(E) ≈ κ , where κ depends on the barrier strength. Then
from Eq. (4), we have DTC: dJQ/dδT = −dJQ/dTR =
2κ
h

∫
dE E2

4kBT 2
R cosh2[E/(2kBTR )]

= 2π2k2
B

3h
κTR , which explains the

linear behavior beyond the critical temperature in Fig. 4.
Finally, we would like to point out that although we

exemplified the anomalous thermal transport by a d-wave
superconductor, in principle, when replaced with an s-
wave superconductor, the results will be qualitatively the same.
The asymmetric Kapitza and NDTC are consequences of the
different temperature responses of both the nonsuperconduct-
ing TI side and the superconducting side. The thermal energy’s
Klein tunneling results from the Dirac-like linear dispersion of
the materials. When competing with the orientation angle of
the d-wave symmetry, the behavior of angle-resolved thermal
transport becomes rich.

In summary, using the scattering wave approach, we
have derived an interfacial heat current formula in a TI/S
junction. With the help of this formula, we have studied the
nonequilibrium energy transport across this interfacial system
and have uncovered several anomalous thermal properties for
the TI/S interface, such as thermal energy’s Klein tunneling,
asymmetric Kapitza resistance, and negative differential ther-
mal resistance.

The asymmetric Kapitza resistance and NDTC have already
been discussed in dielectric phonon systems at high (room)
temperatures.16 But previous studies about the asymmetric
resistance and NDTC focus on pure phononic systems and
do not involve any superconductors or topological insulators.
Here, we have uncovered the anomalous thermal transport in
a hybrid topological insulator superconductor system.

One immediate advantage of this kind of hybrid system
is that the thermal energy’s Klein tunneling renders highly
efficient heat dissipation even when the TI/S interface is
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not perfect so as to produce a large barrier. However, in
a normal metal superconductor system, the heat dissipating
ability will be severely reduced by the large barrier induced by
the imperfect interface.

Since hybrid superconductor and topological insulator
systems are crucial for future quantum and nanotechnology
at cryogenic temperatures, we believe that understanding
the anomalous heat transport in such hybrid systems would
be useful for managing heat dissipation in future cryogenic

devices and might even reveal the potential applications of
such hybrid systems for the smart energy control at mesoscopic
scales.
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14F. Giazotto, T. T. Heikkilä, A. Luukanen, A. M. Savin, and J. P.

Pekola, Rev. Mod. Phys. 78, 217 (2006).
15V. Chandrasekhar, Supercond. Sci. Technol. 22, 083001 (2009).

16N. Li, J. Ren, L. Wang, G. Zhang, P. Hänngi, and B. Li, Rev. Mod.
Phys. 84, 1045 (2012).

17G. L. Pollack, Rev. Mod. Phys. 41, 48 (1969).
18E. T. Swartz and R. O. Pohl, Rev. Mod. Phys. 61, 605 (1989).
19N. A. Roberts and D. G. Walker, Int. J. Therm. Sci. 50, 648

(2011).
20M. Nahum et al., Appl. Phys. Lett. 65, 3123 (1994); A. M. Clark

et al., ibid. 86, 173508 (2005).
21G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25,

4515 (1982).
22R. A. Riedel and P. F. Bagwell, Phys. Rev. B 48, 15198 (1993).
23A. Bardas and D. Averin, Phys. Rev. B 52, 12873 (1995).
24T. Yokoyama, J. Linder, and A. Sudbø, Phys. Rev. B 77, 132503

(2008).
25M. Salehi, M. Alidoust, and G. Rashedi, J. Appl. Phys. 107, 123916

(2010); M. Salehi, M. Alidoust, Y. Rahnavard, and G. Rashediibid,
ibid. 108, 083917 (2010).

26Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett. 74, 3451 (1995).
27S. Bhattacharjee and K. Sengupta, Phys. Rev. Lett. 97, 217001

(2006).
28J. Tao, R. P. Prasankumar, E. E. M. Chia, A. J. Taylor, and J.-X.

Zhu, Phys. Rev. B 85, 144302 (2012).
29O. Klein, Z. Phys. 53, 157 (1929); M. I. Katsnelson, K. S.

Novoselov, and A. K. Geim, Nat. Phys. 2, 620 (2006).
30Y. Matsuda, K. Izawa, and I. Vekhter, J. Phys.: Condens. Matter 18,

R705 (2006).

165121-5

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevLett.104.057001
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.102.216403
http://dx.doi.org/10.1103/PhysRevB.82.184516
http://dx.doi.org/10.1103/PhysRevB.82.184516
http://dx.doi.org/10.1103/PhysRevLett.102.216404
http://dx.doi.org/10.1103/PhysRevLett.102.216404
http://dx.doi.org/10.1103/PhysRevLett.103.107002
http://dx.doi.org/10.1103/PhysRevLett.103.107002
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.104.067001
http://dx.doi.org/10.1103/PhysRevLett.106.077003
http://dx.doi.org/10.1103/PhysRevLett.106.077003
http://dx.doi.org/10.1063/1.2155757
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1103/RevModPhys.78.217
http://dx.doi.org/10.1088/0953-2048/22/8/083001
http://dx.doi.org/10.1103/RevModPhys.84.1045
http://dx.doi.org/10.1103/RevModPhys.84.1045
http://dx.doi.org/10.1103/RevModPhys.41.48
http://dx.doi.org/10.1103/RevModPhys.61.605
http://dx.doi.org/10.1016/j.ijthermalsci.2010.12.004
http://dx.doi.org/10.1016/j.ijthermalsci.2010.12.004
http://dx.doi.org/10.1063/1.112456
http://dx.doi.org/10.1063/1.1914966
http://dx.doi.org/10.1103/PhysRevB.25.4515
http://dx.doi.org/10.1103/PhysRevB.25.4515
http://dx.doi.org/10.1103/PhysRevB.48.15198
http://dx.doi.org/10.1103/PhysRevB.52.12873
http://dx.doi.org/10.1103/PhysRevB.77.132503
http://dx.doi.org/10.1103/PhysRevB.77.132503
http://dx.doi.org/10.1063/1.3452364
http://dx.doi.org/10.1063/1.3452364
http://dx.doi.org/10.1063/1.3494104
http://dx.doi.org/10.1103/PhysRevLett.74.3451
http://dx.doi.org/10.1103/PhysRevLett.97.217001
http://dx.doi.org/10.1103/PhysRevLett.97.217001
http://dx.doi.org/10.1103/PhysRevB.85.144302
http://dx.doi.org/10.1007/BF01339716
http://dx.doi.org/10.1038/nphys384
http://dx.doi.org/10.1088/0953-8984/18/44/R01
http://dx.doi.org/10.1088/0953-8984/18/44/R01



