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In the recent paper, we explained why the maximum bulk resistivity of topological insulators (TIs) such as
Bi2Se3 is so small [B. Skinner, T. Chen, and B. I. Shklovskii, Phys. Rev. Lett. 109, 176801 (2012)]. Using the
model of completely compensated semiconductor we showed that when the Fermi level is pinned in the middle of
the gap the activation energy of resistivity is � = 0.3(Eg/2), where Eg is the semiconductor gap. In this paper, we
consider a strongly compensated n-type semiconductor. We find the position of the Fermi level μ calculated from
the bottom of the conduction band Ec and the activation energy of resistivity � as a function of compensation K ,
and show that � = 0.3(Ec − μ) holds at any 0 < 1 − K � 1. In the same range of relatively high temperatures,
the Peltier energy (heat) � is even smaller: � � �/2 = 0.15(Ec − μ). We also show that at low temperatures,
the activated conductivity crosses over to variable range hopping (VRH) and find the characteristic temperature
of VRH, TES, as a function of K .
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I. INTRODUCTION

The three-dimensional (3D) topological insulator (TI)1–5

has gapless surface states, which host a spectrum of quantum
transport phenomena.6,7 While a number of crystals have been
identified to be 3D TIs, most of them are poor insulators and
the bulk of TI crystals of substantial size (>10 μm) shunts
the surface conductivity. The current literature8–16 broadly
discusses how one can achieve a bulk-insulating state.

Typically as-grown TI crystals such as Bi2Se3 are heavily
doped n-type semiconductors. (It is believed that Bi2Se3 is
doped by Se vacancies.) To make them insulating, these TIs
are compensated by acceptors. With increasing compensation
K = NA/ND , where ND and NA are the concentrations of
monovalent donors and acceptors, the Fermi level shifts from
the conduction band to inside the gap and then into the valence
band at K > 1. When compensation of donors is complete,
K = 1, the Fermi level is in the middle of the gap and the
most insulating state of TI is achieved. For a TI with a gap
Eg ∼ 0.3 eV the resistivity is expected to obey the activation
law

ρ = ρ0 exp(�/kBT ) (1)

with activation energy � = Eg/2 ∼ 0.15 eV, so that the TI is
a good insulator at room temperatures and below.

However, the current experimental situation near K = 1 is
frustrating.15 In the temperature range from 100 to 300 K,
although resistivity is activated, the activation energy � ∼
50 meV, which is three times smaller than expected. At T ∼
100 K the activated transport crosses over to variable range
hopping (VRH). When temperature is further decreased, resis-
tivity grows even more slowly and below 50 K, resistivity satu-
rates around ρ(T ) < 10 �cm. This means that in spite of com-
plete compensation, even at helium temperatures conductance
of TI samples thicker than 10 μm is dominated by the bulk.

In the recent paper,17 we suggest an explanation of
anomalously large bulk conductivity of TI at K = 1. We
assume that both donors and acceptors are shallow and
randomly positioned in space and we use the theory of
completely compensated semiconductor (CCS).18,19 The idea

is that at K = 1, when almost all donors and acceptors are
charged, random spatial fluctuations in the local concentration
of impurities lead to large fluctuations of charge. Because
the average concentration of screening electrons n = ND −
NA � ND , the random potential is poorly screened and has
huge fluctuations. These fluctuations bend conduction and
valence band edges and in some places bring them to the
Fermi level, creating electron and hole puddles, which in
turn non-linearly screen the random potential. Therefore, the
amplitude of potential fluctuations is limited by Eg/2. The
ground state of the completely compensated semiconductor
shown in Fig. 1(a) therefore reminds a network of p-n
junctions.18,19 The characteristic size R of these p-n junctions
in Bi2Se3 with Eg � 0.3 eV, ND = 1019 cm−3, and dielectric
constant κ = 30 is R � 150 nm � N

−1/3
D = 4.6 nm,17 i.e.,

we deal with a very long-range potential. As a result, the
resistivity can be dramatically different from the one for the
flat bands picture of TI.17 First, at relatively high temperatures,
the activated conduction is due to the electrons and holes being
activated from the Fermi level to their corresponding classical
percolation levels (classical mobility edges), Ee and Eh, in
the conduction and the valence bands. According to numerical
modeling17 at K = 1 the activation energy is � � 0.15Eg ,
because Ee and Eh are substantially closer to the Fermi level
μ than the unperturbed by a random potential bottom of
the conduction band Ec and ceiling of the valence band Ev

[see Fig. 1(a)]. Second, at low enough temperatures, electrons
and holes can hop (tunnel) between puddles, so that variable
range hopping replaces activated transport. We showed that the
activated resistivity crosses over directly to Efros-Shklovskii
(ES) law of VRH,20

ρ = ρ0 exp(TES/T )1/2, (2)

where TES = Ce2/kBκξ , e is the electron charge, ξ is the
localization length of the states with the Fermi level energy,
and C = 4.4 is a numerical coefficient. Together, our results
for the activated and VRH resistivity established the universal
upper limit of resistivity ρ(T ) one can achieve for a 3D TI
compensated by shallow inpurities.
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FIG. 1. Energy diagram of (a) completely compensated semi-
conductor (K = 1) and (b) strongly compensated semiconductor
(1 − K � 1) with gap Eg . The upper and the lower straight lines
indicate the unperturbed positions of bottom of the conduction band,
Ec, and ceiling of the valence band, Ev; the middle straight line
corresponds to the Fermi level μ. Meandering lines represent the band
edges, which are modulated by the fluctuating potential of charged
impurities. R is the characteristic size of potential fluctuations.
Percolation levels Ee for electrons and Eh for holes are shown
by dashed lines. Puddles occupied by carriers are shaded. Shallow
impurities levels are not shown because they practically merge with
band edges.

In this paper, we change our focus from a possible
maximum bulk resistivity of a completely compensated
semiconductor at K = 1 to the more practical question of
the dependence of bulk resistivity of a strongly compensated
semiconductor (SCS) on K at 0 < 1 − K � 1. Indeed, with
existing methods of growth of TI samples one can not
get K = 1 exactly. It is important to know how stable the
resistivity results at K = 1 are for the case of 1 − K � 1.
For example, one can ask at which 1 − K the activation
energy � is twice smaller than at K = 1. For definiteness,
we consider n-type SCS, where the concentration of electrons
n = ND − NA � ND and 1 − K � 1. We model numerically
the ground state of such SCS and its resistivity using algorithms
similar to Ref. 17. We find that in agreement with the analytic
theory,18 when 1 − K grows, the screening of the random
potential improves and its correlation length R decreases.
The amplitude of the random potential decreases as well. As
a result, hole puddles shrink and eventually vanish and the
chemical potential μ moves up, so that Ec − μ decreases.
One can say that with increasing 1 − K , the screening due to
bending of the conduction band occurs only while all acceptors

remain occupied by electrons and negatively charged. All these
changes are illustrated by the transition from (a) to (b) in
Fig. 1.

As a result of these changes, the activation energy �

decreases with growing 1 − K . We find that the relation
� = 0.3(Ec − μ) obtained in Ref. 17 for K = 1 remains
valid for 1 − K � 1 (see Fig. 7 below) as well. [In p-type
semiconductor where K = ND/NA, a similar relationship
� = 0.3(μ − Ev) takes place.] By K = 0.97 the activation
energy � is about two times smaller than at K = 1. This result
shows that achieving maximum resistivity with � = 0.15Eg

is problematic. It also explains the origin of large scatter of
magnitude of � among TI samples.15

In principle, our prediction that � = 0.3(Ec − μ) can be
directly compared with experiments in TIs. Indeed, for each K ,
the position of the Fermi level can be found via measurements
of the surface concentration of electrons in the gapless surface
state using Shubnikov-de-Haas oscillations. On the other hand,
at low temperatures, we find numerically a direct crossover
from activation to ES VRH. We also find how TES being
correlated with � decreases with 1 − K .

Our assumption of random distribution of impurities is
crucial for this theory. Usually, for samples made by cooling
from melt, the distribution of impurities in space is a
snapshot of the distribution the impurities have at higher
temperatures when the diffusion of impurities practically
freezes. In semiconductors with a narrow enough gap at
this temperature, there is a concentration of intrinsic carriers
larger than the concentration of impurities. Intrinsic carriers
screen the Coulomb interaction between impurities, so that
impurities remain randomly distributed in space. At lower
temperatures, when intrinsic carriers recombine, impurities
are left in random positions.18,21 If diffusion freezes at T ∼
1000K , it is reasonable to assume that impurities are randomly
positioned in a semiconductor with Eg � 0.3 eV. This justifies
the use of this theory for typical TIs. Our results are
applicable to other narrow gap semiconductors, for example,
InSb. (Historically, large effort was made to make InSb
insulating via strong compensation. The goal was to improve
characteristics of InSb based photodetectors. Results were
again frustrating: the dark resistivity was too small. Our results
are in reasonable agreement with transport experiment data for
InSb.22,23)

The plan of the paper is as follows. In Sec. II, we formulate
the model, explain the algorithm of numerical simulation of
the pseudoground state and present results for the density
of states (DOS). In Sec. III, we present our algorithm for
computation of hopping conductivity, analyze our results
and arrive at a small activation energy for conduction band
resistivity � = 0.3(Ec − μ). We also evaluate the localization
length of states with energy close to Fermi energy and
estimate the characteristic temperature of ES law TES. In
Sec. IV, we estimate the thermopower of strongly compensated
semiconductor and show that the Peltier energy (heat) is
� � �/2 = 0.15(Ec − μ), in qualitative agreement with a
recent experimental paper.24 We conclude in In Sec. V,
where we comment on predictions of this model for the
Hall effect measurements and compare these predictions with
experimental data.15
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II. THE MODEL, PSEUDOGROUND STATES, AND THE
DENSITY OF STATES

To model a heavily doped SCS, we create a cube filled
with 20 000 donors and 20 000K acceptors that are randomly
positioned in space. We numerate all donors and acceptors by
index i and use ni = 0 or 1 for the number of electrons residing
on a donor or an acceptor. In addition, we use a variable fi

to discriminate between donors (fi = 1) and acceptors (fi =
−1). The Hamiltonian of our system is

H =
∑

i

Eg

2
fini +

∑
〈ij〉

V (rij )qiqj , (3)

where qi = (fi + 1)/2 − ni is the net charge of site i and all
energies are defined relative to the Fermi level. The first term
contains the energies of shallow donors and acceptors, which
is very close to the semiconductor gap Eg . The second term of
H is the sum of interaction energies of charged impurities. If
two impurities are at distance r � aB , where aB is the Bohr
radius of impurity states, one can use the Coulomb interaction
V (r) = e2/κr . For a pair of empty donors, one donor shifts
down the energy of the electron on the other by an energy
V (r) = −e2/κr . This classical form for V (r) is good for a
lightly doped SCS. But in a heavily doped SCS, where aB >

N
−1/3
D , most impurities have at least one neighbor at distance

r < aB and quantum-mechanical averaging over electron wave
function becomes important. (This is why an uncompensated
heavily doped semiconductor is a good metal). For example,
such a pair of donors cannot create a state deeper than that of
the heliumlike ion with a binding energy 4EB , where EB =
e2/2κaB is the binding energy of the shallow donor state. Here,
we deal with heavily doped SCS, where (Ec − μ) > 4EB and
quantum effects limit the role of a short-range potential. To
model such a case, we continue to use the classical Hamiltonian
(3), but truncate the Coulomb potential to V (r) = e2/κ(r2 +
a2

B)1/2. Note that Eq. (3) does not include the kinetic energy
of electrons and holes in conduction and valence bands and,
therefore, aims only at description of the low temperature
(kBT � Eg) physics of SCS.

Below, we use dimensionless units for r , aB , H , Eg , and
kBT , measuring all distances in units of N

−1/3
D and all energies

in units of e2N
1/3
D /κ . Thus Eq. (3) now can be understood

as dimensionless, where Eg � 1 and V (r) = (r2 + a2
B)−1/2.

For TI with Eg = 0.3 eV, κ = 30, and ND = 1019 cm−3, we
have N

−1/3
D = 4.6 nm and e2N

1/3
D /κ � 10 meV, so that the

dimensionless gap Eg = 30. We could not model Eg = 30,
because in this case, the very large correlation length of long-
range potential, R, leads to a large size effect. Instead, we
run more modest Eg = 15, for which the size effect requires
extrapolation only at K = 1.17 Our goal is to find the activation
energy � and estimate TES as a function of K or μ.

We search for the set {ni,fi} that minimizes H and use such
a set to calculate the DOS and the conductivity. We start from
the neutral system of all populated by electrons (negatively
charged) acceptors (ni = 1,qi = −1), of equal number of
randomly chosen 20000K empty (positively charged) donors
(ni = 0,qi = 1), and of 20000(1 − K) filled (neutral) donors
(ni = 1,qi = 0). Charged donors and acceptors create a
random potential whose magnitude exceeds Eg . In order to

screen the Coulomb potential fluctuations, some electrons
leave acceptors for donors. At any stage of this process,
there are two types of occupied states—neutral donors and
negatively charged acceptors, and two types of empty states—
positively charged donors and neutral acceptors, respectively.
Electrons may hop from an occupied impurity to an empty
one. If the proposed move lowers the total system energy H ,
then it is accepted, otherwise it is rejected. To check whether
H goes down, for a given set of electron occupation numbers
{ni,fi}, it is convenient to introduce the single-electron energy
state, εi , at a given impurity i:

εi = Eg

2
fi −

∑
j �=i

V (rij )qj . (4)

For all i, j with ni = 1 and nj = 0, we check that ES
pseudoground state stability criterion is satisfied:

εj − εi − V (rij ) > 0. (5)

If this criterion is not satisfied, we move the electron from
impurity i to j and recalculate all εi . This process is done by
looping all possible pairs of impurities i,j with ni = 1 and
nj = 0 and is continued until no single-electron transfers can
be made to lower H . The final arrangement of electrons can
be called a pseudoground state, because the higher stability
criteria of ground state are not checked. Pseudoground states
are known to describe the properties of the real ground state
pretty well.18,25 The results below are obtained at Eg = 15,
aB = 1 for K = 1,0.99,0.98,0.97,0.96, and 0.95 (averaged
over 100 realizations of impurities coordinates).

For a pseudoground state, we find the Fermi energy μ as
a half distance between the minimum empty and maximum
occupied energy ε. Figure 2 shows how the Fermi level μ(K)
shifts from the middle of the gap towards the conduction
band bottom with growing 1 − K . At 1 − K > 0.01, this
dependence is in reasonable agreement with the prediction
of single-band theory (the theory that ignores valence band

0 0.01 0.02 0.03 0.04 0.05

4

6

8

1−K

E
c −

 μ

(Ec − μ) ~ 1.4(1−K )−1/3

FIG. 2. (Color online) Fermi level μ as a function of 1 − K for
aB = 1 and Eg = 15. The size of dots characterizes the uncertainty.
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FIG. 3. (Color online) Dimensionless single-electron DOS g∗(ε)
in units of [(1 + K)ND/(e2N

1/3
D /κ)] as a function of ε calculated

from the Fermi level for aB = 1 and Eg = 15 at K = 0.95 (blue)
and 1 (red). Impurity states with ε < 0 are occupied and with ε > 0
are empty. At K = 1, the total DOS of impurities has donor-acceptor
symmetry, which is lost with growing 1 − K .

and acceptors)18 that Ec − μ = A(1 − K)−1/3. However, note
that for heavily doped SCS, the coefficient Ah � 1.4 is twice
smaller than the coefficient Al � 2.8 obtained in Ref. 18 for
a lightly doped SCS, where aB � 1. In this case, the short-
range Coulomb interaction at distance r � N

−1/3
D leads to an

additional contribution to μ of the same order of magnitude.
To confirm our understanding of results for 1 − K > 0.01,

we obtained the same results for the position of Fermi level
μ (and DOS of donors and conductivity, see below) using a
simplified one-band model where all acceptors are assumed to
be negative. Such program is similar to the classical impurity
band program used in Chap. 14 of Ref. 18, but uses the
redefined V (r).

The resulting DOS of impurities is shown in Fig. 3 for
K = 1 and 0.95. At K = 1, the almost constant symmetric
DOS between −Eg = −15 and Eg = 15 reflects a practically
uniform distribution of random potential from −Eg/2 to Eg/2,
and a corresponding uniform distribution of band edges Ec

between 0 and Eg and Ev between 0 and −Eg [see Fig. 1(a)]. In
the middle (at the Fermi level) one sees the ES Coulomb gap.20

At K < 1, the DOS of impurities loses the donor-acceptor
symmetry it has at K = 1. As mentioned in Introduction (see
Fig. 1), with growing 1 − K , acceptors become all filled and
disengaged from screening. Acceptor DOS (leftmost peak)
splits from the donor one, which in turn has two peaks
separated by the Fermi level. The large right peak belongs to
empty donors, while the small and narrow left peak belongs
to occupied donors. The donor peaks are separated by the ES
Coulomb gap.

Growing with 1 − K the disengagement of acceptors from
screening is also illustrated in Fig. 4, where we show the
DOS g∗(ε) for neutral donors and acceptors. If at K = 1,
the total number of electrons and holes in puddles are equal,
with growing 1 − K , the total number of electrons in electron
paddles grows, while the total number of holes in hole puddles
decreases. Thus, at 1 − K � 0.02, valence band practically
plays no role in screening.
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FIG. 4. (Color online) Dimensionless DOS g∗(ε) for neutral
(occupied by electrons) donors with ε < 0 and neutral (empty)
acceptors with ε > 0 for aB = 1 and Eg = 15 at K = 0.98 (blue)
and 1 (red).

III. NUMERICAL MODELING OF HOPPING
CONDUCTIVITY

Once the energies {εi} are known, we evaluate the resistivity
using the approach of the Miller-Abrahams resistor network.18

Each pair of impurities i,j is said to be connected by
the resistance Rij = R0 exp[2rij /ξ + εij /kBT ], where the
activation energy εij is defined18 as follows:

εij =
{ |εj − εi | − V (rij ), εj εi < 0,

max[|εi |,|εj |], εj εi > 0.
(6)

The resistivity of the system as a whole is found using a
percolation approach. Specifically, we find the minimum value
Rc such that if all resistances Rij with Rij < Rc are left intact,
while others are eliminated (replaced with R = ∞), then there
exists a percolation pathway connecting opposite faces of the
simulation cube. The system resistivity ρ(T ) is defined as
RcN

−1/3
D . Here, we concentrate on the exponential term of

resistivity ρ ignoring details of the prefactor.18

For K = 0.95, 0.97, 0.98, and 1 at aB = 1 and Eg = 15, the
computed dependence of (ln ρ)∗ = (ξ/2) ln(Rc/R0) is shown
as a function of (T ∗)−1/2 in the huge range of temperatures
0.03 < T ∗ < 200 in Fig. 5. Here, T ∗ = 2kBT /ξ is yet another
dimensionless temperature. These notations are introduced to
exclude any explicit dependence on ξ . One can see at low
temperatures 0.03 < T ∗ < 0.3 the resistivity is well described
by ES law Eq. (2) (with C � 4.4 at K = 1). The higher
temperature range 1 < T ∗ < 200 is plotted separately as a
function of 1/T ∗ in Fig. 6. We find two activated regimes of
hopping conductivity. At high temperatures 50 < T ∗ < 200,
we see the large activation energy Ea ∼ Ec − μ, while in
the range of intermediate temperatures 1 < T ∗ < Eg , we see
much smaller activation energy � = 0.3(Ec − μ).

The first activation energy Ea does not have any physical
meaning for a real SCS, because at kBT > Eg conductance
of SCS is actually not due to hopping but free carriers with
high energy, which are not taken into account by energy (3)
(see Ref. 17). In contrary to Ea , the second activation energy
� = 0.3(Ec − μ) makes full physical sense and should be
seen in real experiment. The origin of this activation energy

165119-4



ANOMALOUSLY SMALL RESISTIVITY AND THERMOPOWER . . . PHYSICAL REVIEW B 87, 165119 (2013)

0 1 2 3 4 5 6
0

4

8

12

(T*)−1/2

re
si

st
iv

ity
, (

ln
 ρ

)*

 

 

K = 0.95
K = 0.97
K = 0.98
K = 1

FIG. 5. (Color online) The temperature dependence of the resis-
tivity in the whole temperature range 0.03 < T ∗ < 200. The dimen-
sionless resistance (ln ρ)∗ is plotted against (T ∗)−1/2 to illustrate that
the resistivity follows the ES law at low temperatures. The dashed
lines are the best linear fits.

for the hopping transport is also explained in Chap. 8 of
Ref. 18. At T � Eg , electrons optimize their conductivity
by using for hopping impurities energetically close to the
Fermi level. Eventually, at very low temperatures, such
optimization leads to ES conductivity. However, when donor
energies are slowly modulated by the long-range potential,
there are large areas that do not have donors with energies
close to the Fermi level and the tunneling through them
is slow. Therefore there is a range of temperatures where
electrons use only nearest-neighbor donors for hopping, while
activating to donors is located at the percolation level of
nearest-neighbor percolation. We then find the activation
energy from the Fermi level to the nearest-neighbor percolation
level by studying the hopping activation energy �. In a heavily
doped semiconductor, this energy is indistinguishable from
the activation energy of electrons from the Fermi level to the
conduction band percolation level Ee. [Of course, holes are
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FIG. 6. (Color online) The temperature dependence of the resis-
tivity in the high temperature range 1 < T ∗ < 200. (ln ρ)∗ is plotted
against (T ∗)−1 to illustrate that the resistivity is activated at high
temperatures. The dashed lines are the best linear fits.
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FIG. 7. (Color online) The activation energy � at K =
1,0.99,0.98,0.97,0.96, and 0.95 (from right to left). The dashed line
is the best linear fit � � 0.3(Ec − μ).

activated from the Fermi level to their percolation Eh as well
so that � = 0.3(μ − Eh)].

We verified that hopping conduction modeling correctly
predicts the activation energy of the band transport by direct
calculation of the percolation level Ee. For this purpose, we
created a cubic lattice with a small lattice constant N

−1/3
D /3.

At every site of this lattice, we calculated the potential of
all charged impurities and then found the lowest energy
Ee at which the percolation over this lattice takes place.
The activation energy of the band transport was again close
to � = 0.3(Ec − μ). This result is also close to what was
obtained in Ref. 26 based on an estimate of percolation level
for a generic long-range random potential.18

In Fig. 7, we plot � as a function of Ec − μ for all the values
μ(K) obtained at K = 1,0.99,0.98,0.97,0.96, and 0.95. We
see that the relation � � 0.3(Ec − μ) holds well for all K in
this interval.

So far, we emphasized the results that do not explicitly
depend on ξ . Actually, a magnitude of ξ is necessary to
calculate TES. We argue now that in a TI ξ is quite large
leading to the prominent role of VRH. If an electron with
an energy close to the Fermi level were tunneling from an
electron puddle to a distant one along the straight line, it
would tunnel through high barriers and its wave function
would decay with ξ � aB . Actually, a tunneling electron
can use the same geometrical path as a classical percolating
electron with energy � above the Fermi level that avoids
large barriers. We assume that along such a path tunneling
barriers V are uniformly distributed in the range 0 � V � �

and neglect the contribution of curvature of this path to action.
Integration over V then gives (here we return to normal units)
ξ = h̄/(8m�/9)1/2 and kBTES = 4.2(e2/κh̄)(m�)1/2. For a TI
with aB = N

−1/3
D , we get TES = 4.2[(e2N

1/3
D /κ)�]1/2. For �

varying between 1 and 2.5 e2N
1/3
D /κ as shown in Fig. 7,

TES changes from 4.2 to 6.6 e2N
1/3
D /κ . For κ = 30, ND =

1019 cm−3, and e2N
1/3
D /κkB � 100 K, TES varies from 420 to

660 K. In order to study VRH in TI samples experimentally,
one has to deal with large enough samples, where the surface
conductance is smaller than the bulk one.27
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IV. THERMOPOWER

In the recent paper,24 the authors studied activation energy
of the bulk resistivity of series of samples of Bi2Te3−xSex with
different x and thereby different positions of the Fermi level in
the TI gap. They found that when the Fermi level sinks into the
gap, the activation energy of resistivity � grows and reaches
a maximum at 40 meV and then decreases. The increase
of the activation energy � on both sides of the maximum
is accompanied by the increase of the absolute value of
the thermopower S. However, near the maximum of �, the
thermopower abruptly changes its sign. These findings are in
agreement with what one can expect when a semiconductor
goes through the point of complete compensation. Here, we
would like to concentrate on the maximum absolute value
of the thermopower, for example, at n-type side of the
maximum.

It is known that for flat bands n-type semiconductor with
the Fermi level μ inside its gap the thermopower S = �/eT ,
where the activation energy � = Ec − μ. For bended bands of
a strongly compensated n-type semiconductor, one could think
that S = �/eT , where the activation energy � = Ee − μ

is determined by the activation to percolation level Ee.
Actually, it was argued28–30 that the Peltier energy (heat)
� = eT S is determined by the average potential energy of
electrons E (conduction band bottom) along most conducting
one-dimensional percolation paths, � = 〈E − μ〉. (We call
a percolation path any line where the potential energy of an
electron is smaller than Ee and we call a set of the least resistive
of these paths, which carry most of the current, the most
conducting percolation paths.) The thermopower of an open
circuit following an individual percolation path can be obtained
by integrating E − μ along this path. Among two parallel
paths connecting points A and B, the more resistive one has
a somewhat larger open circuit thermopower and, therefore,
drives circular current back through the least resistive one. This
current reduces thermopower of the resistive path so that the
voltage between A and B is determined by the more conducting
path.

If the probability distribution of potential energy E on
most conducting paths is the same as for the unconditional
probability distribution of E, which we call DOS g∗(E)
above, we can use g∗(E) to calculate � and S. For example,
in the case of a constant g∗(E) for μ < E < Ee, we get
ES = 〈E − μ〉 = �/2 = (Ee − μ)/2. This conclusion was
confirmed by the numerical experiment28 for the case of a
constant g∗(E).

In a strongly compensated semiconductor, one can use the
real g∗(E) found above. For example, at K = 0.95 one can use
Fig. 7 to find that � = Ee − μ � 1. Then using DOS shown
at Fig. 3 one can check that the average energy in the range
between in the interval 0 < E < 1 is < E − μ >� �/2 =
0.5. Thus our simple approximate prediction is that the largest
achievable � � �/2. This conclusion is valid for all K � 0.98
we studied.

For the data of the paper,24 our prediction means
that at T = 100 K the largest thermopower S = �/eT

observed should be of the order 25 mV/100 K =
0.25 mV/K in reasonable agreement with the observed value,
S = 0.4 mV/K.

In this paper, we are not considering the additional con-
tribution to thermopower of activated electrons from phonon
drag.31,32 This effect becomes significant only at temperature
T � TD/3, where TD is the Debye temperature, because at
larger temperatures, the low-energy phonons interacting with
electrons are strongly scattered by thermal phonons, which
in turn are strongly interacting with imperfections of the
crystal. In Bi2Se3, TD ∼ 150 K, so that phonon drag should get
important only below 50 K (where electron transport is already
via hopping), while the activated transport we are interested in
happens at T � 100 K.

In order to go beyond the above approximation that the
distribution of energies on paths contributing to � is given
by the density of states g(E), we calculate currents Iij in
every Miller-Abrahams resistor Rij and the total current
I (U ) for a small applied voltage U by solving Kirchhoff
equations for the ground state of impurities obtained by our
algorithm. Following Ref. 33, we then calculate the energy
flux through a cross-section of the sample Q(U ) as a sum
of energy fluxes carried by resistors qij = (Ei + Ej )Iij /2e

and find � = Qe/I . We simplify the implementation of
this procedure by modifying our algorithm in the following
way: instead of dealing with completely randomly positioned
donors and acceptors, we randomly position them on all sites
that are appropriate to their number cubic lattice. To find the
energies Ei , we use a simple Coulomb potential. (There is
no need in truncation at small distances via finite aB .) We
concentrate on the range of relatively high temperatures, where
the conductivity is characterized by activated behavior. We
checked that the conductance I/U has the same activation
energy � as obtained by the percolation algorithm. We found
that in the range of 0.95 � K � 0.98, where the asymmetry of
the density of states is large and donors dominate the transport,
the Peltier energy is �/� � 0.40 ± 0.05, not too far from the
simplified theories and the experimental data.24 For K > 0.98,
growing donor-acceptor symmetry reduces � and brings it to
zero at K = 1, in agreement with the data of the paper.24

V. CONCLUSION

In this paper, we applied the model of strongly compensated
semiconductor to a bulk TI with a narrow gap. We calculated
the activation energy of the bulk resistivity � and showed that
it grows as � = 0.3(Ec − μ), when the compensation degree
K → 1 and the Fermi level sinks into the gap. If one of the two
carriers still dominates and the thermopower is still monopolar,
the Peltier energy is � � �/2. Both predictions seem to agree
with most of the TI data.

We would like to mention that the same model is able
to interpret measurements of the Hall effect obtained for the
same samples. The Hall constant RH is expected to grow
exponentially with decreasing temperature with the same
activation energy � as the resistivity.28,34,35 The reason for
such growth is that RH is dominated by nodes of percolation
path network that occur at an energy close to the percolation
level. Such nodes are relatively rare at low temperatures.
Therefore RH (T ) = ρ(T )u(T )/c grows with decreasing T ,
where mobility u(T ) ∝ T m and m � 2. The observed behavior
of RH (T ) does not contradict this prediction.15 Indeed, the
largest activation energy of RH was found to be on average
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∼15 meV larger than the largest � ∼ 50 meV. This difference
is of the order of 1.5kBT at the characteristic measurement
temperature of activation law T = 100 K and, therefore, the
experimental data is compatible with a power law u(T ).
In future work, we plan to narrow the range of theoretical
predictions by a numerical evaluation of RH for the simulated
above potential of our model.
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25A. Möbius, M. Richter, and B. Drittler, Phys. Rev. B 45, 11568

(1992).
26V. F. Mitin, J. Appl. Phys. 107, 033720 (2010).
27Historically VRH between puddles was studied in Ref. 36. This

paper was written before Ref. 20 and claimed Mott VRH. Now it
is clear that resistivity obeys Eq. (2). The theory36 of the transition
from activated transport to ES law is to be modified as well, but we
are not dwelling on this transition range, because it is difficult to
study the details of such a transition in experiment.

28H. Overhof and W. Beyer, Philos. Mag. B 43, 433 (1981).
29D. Quicker and J. Kakalios, Phys. Rev. B 60, 2449 (1999).
30H. Overhof and M. Schmidtke, Phys. Rev. B 61, 12977 (2000).
31L. Gurevich, J. Phys. (U.S.S.R) 9, 477 (1945); 10, 67 (1946).
32C. Herring, Phys. Rev. 96, 1163 (1954).
33 I. P. Zvyagin, Phys. Status Solidi B 58, 443 (1973).
34V. G. Karpov, A. Y. Shik, and B. I. Shklovskii, Sov. Phys. Semicond

16, 901 (1982).
35A. Y. Shik, Electronic Properties of Inhomogeneous Semiconduc-

tors (Gordon and Breach, New York, 1995).
36B. I. Shklovskii, Sov. Phys. Semicond 7, 77 (1973).

165119-7

http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1126/science.1189792
http://dx.doi.org/10.1126/science.1189792
http://dx.doi.org/10.1038/nphys1861
http://dx.doi.org/10.1103/PhysRevLett.103.246601
http://dx.doi.org/10.1103/PhysRevB.81.241301
http://dx.doi.org/10.1103/PhysRevB.81.205407
http://dx.doi.org/10.1103/PhysRevB.81.195309
http://dx.doi.org/10.1103/PhysRevB.81.195309
http://dx.doi.org/10.1103/PhysRevB.84.075316
http://dx.doi.org/10.1103/PhysRevB.84.075316
http://dx.doi.org/10.1103/PhysRevB.84.165311
http://dx.doi.org/10.1103/PhysRevB.84.165311
http://dx.doi.org/10.1103/PhysRevB.85.155301
http://dx.doi.org/10.1103/PhysRevB.85.155301
http://dx.doi.org/10.1103/PhysRevLett.109.176801
http://dx.doi.org/10.1103/PhysRevLett.109.176801
http://dx.doi.org/10.1088/0022-3719/8/4/003
http://dx.doi.org/10.1088/0022-3719/8/4/003
http://arXiv.org/abs/arXiv:1210.3901
http://dx.doi.org/10.1103/PhysRevB.45.11568
http://dx.doi.org/10.1103/PhysRevB.45.11568
http://dx.doi.org/10.1063/1.3290967
http://dx.doi.org/10.1080/01418638108222108
http://dx.doi.org/10.1103/PhysRevB.60.2449
http://dx.doi.org/10.1103/PhysRevB.61.12977
http://dx.doi.org/10.1103/PhysRev.96.1163
http://dx.doi.org/10.1002/pssb.2220580203



