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Berry phase mechanism for optical gyrotropy in stripe-ordered cuprates
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Optical gyrotropy, the lifting of degeneracy between left and right circularly polarized light, can be generated
by either time-reversal or chiral symmetry breaking. In the high-Tc superconductor La2−xBaxCuO4 (LBCO),
gyrotropy onsets at the same temperature as charge stripe order, suggesting that the rotation of the stripe direction
from one plane to the next generates a helical pattern that breaks chiral symmetry. In order to further test this
chiral stacking hypothesis it is necessary to develop an understanding of the physical mechanisms by which
chirality generates gyrotropy. In this paper we show that, in chiral metals, optical gyrotropy is a consequence
of Berry curvature in momentum space. We describe a physical picture showing that gyrotropy in chiral metals
is closely related to the anomalous Hall effect in itinerant ferromagnets. We then calculate the magnitude of
the gyrotropic response for a given Berry curvature using the semiclassical picture of anomalous velocity and
Boltzmann transport theory. To connect this physical picture with experiment, we calculate the Berry curvature
in two tight-binding models. The first model is motivated by the structure of LBCO and illustrates how gyrotropy
is created when stripe perturbations are added to a simple cubic model. In the second model, we examine the
dramatic enhancement of the gyrotropic coefficient when Rashba spin-orbit coupling is introduced. The magnitude
of the rotation of polarization on reflection expected based on these models is calculated and compared with
experimental data.
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I. SIGNIFICANCE OF OPTICAL GYROTROPY
IN CUPRATE SUPERCONDUCTORS

Optical gyrotropy is the breaking of degeneracy between
left and right circularly polarized light in media, giving
rise to phenomena such as the rotation of polarization with
propagation1 (Faraday effect and optical activity) and upon
reflection2 (Kerr effect). Such gyrotropic effects are among the
most sensitive and unambiguous probes of symmetry breaking
in condensed matter systems. Currently, measurements of
the Kerr effect in cuprate superconductors3 are playing a
central role in the effort to understand whether the properties
associated with the mysterious pseudogap derive from some
form of spontaneous symmetry breaking. The other time-
honored tests for symmetry-breaking phase transitions—for
example, sharp structure in the temperature dependence of
the resistivity, static magnetic susceptibility, and specific
heat—have, for the most part, found negative results despite
intensive searches. On the other hand, scattering experiments,
with neutrons4,5 and x rays6–8 as probes, find that magnetic
and charge-density wave correlations grow with decreasing
temperature, hinting at incipient symmetry breaking. However,
the finite energy resolution of scattering experiments places
limits on identifying truly static order, i.e., the correlation
length observed with energy resolution �E is insensitive to
fluctuations on time scales that are long compared with h̄/�E.

Coherent optical measurements such as Kerr rotation are
capable of discerning order with a time resolution limited
only by the patience of the experimenter. Unlike scattering
experiments that are based on particle counting, the Kerr
effect is sensitive to the sign of the order parameter. Thus,
signal from fluctuating order will be diminished by the factor
(τφ/τexpt)1/2, where τφ and τexpt are the experimental averaging
time and the order parameter correlation time, respectively. An
experimental averaging time of one second rejects fluctuations
on the scale of h̄/(1 meV) by a factor of about 106.

Kapitulnik and collaborators have reported the onset of
Kerr rotation at a temperature TK in a variety of underdoped
cuprates,3,9,10 indicating the appearance of truly static long-
range order. However, the question of which symmetry is
broken at TK remains an open one, as two fundamentally dif-
ferent types of symmetry breaking—time reversal and chiral—
can generate optical gyrotropy. Time-reversal breaking in
condensed matter is associated with some form of magnetism,
whereas chirality corresponds to a loss of mirror symmetries
and development of “handedness.” In transparent media these
two possible origins can be distinguished by performing a
pair of time-conjugate experiments, for example, comparing
the polarization state of beams of light that propagate through
a sample in opposite directions. Unfortunately, the cuprate
superconductors are highly opaque in the near-infrared regime,
and optical gyrotropy has been observed only in the reflection,
or Kerr effect, geometry. However, gyrotropy can still be linked
with time reversal if the sign of the rotation depends on the
direction of a magnetic field applied as a sample is cooled
through the symmetry-breaking temperature.

In all the systems studied thus far, cooling in a magnetic
field applied just above TK does not affect the sign of the
Kerr rotation.3 This observation tends to rule out the simplest
possible interpretation of the gyrotropic response, namely, that
ferromagnetic order appears at TK . However, it was reported
that in YBa2Cu3O7−δ the sign of the rotation angle θK reversed
when the field was applied at a temperature well above
TK , indicating that some form of magnetic order might be
involved.9 This observation suggests that the Kerr phenomena
could be related to the other piece of evidence for time-
reversal breaking in the cuprates, namely, the observation of
antiferromagnetic (AF) alignment within the unit cell through
measurements of spin-flip neutron scattering (SFNS).4,5 It was
pointed out recently that certain forms of AF order consistent
with SFNS also break inversion symmetry, giving rise to a
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magnetoelectric medium in which the Kerr effect is allowed.11

Such a state would be insensitive to applied magnetic fields
acting alone, but could be “trained” by magnetic fields acting
together with another perturbation, such as a surface electric
field, that couples to inversion breaking order.

Recently reported measurements10 on La2−xBaxCuO4

(LBCO) provide a different perspective for the interpretation
of Kerr phenomena in the cuprates. In contrast with most
members of the cuprate family, LBCO undergoes a series of
phase transitions with clearly resolved signatures in transport,
thermodynamic, and scattering probes.12,13 Upon cooling
LBCO exhibits a stripelike charge-density-wave state at TCO , a
spin-ordered state at TSO < TCO , and finally superconductivity
at TSC < TSO . The striking observation is that TK coincides
with the breaking, at TCO , of spatial, rather than time-reversal
symmetry. This observation, taken together with insensitivity
of the sign of the Kerr effect to magnetic field, has led to the
suggestion that the observed TK may reflect broken chiral
rather than time-reversal symmetry.14 A natural source of
handedness would be helical stacking of the charge-density
waves (or stripes) that form in each CuO2 layer. In fact,
evidence for breaking of chiral symmetry by a helical stacking
of layers containing one-dimensional charge-density waves
(CDWs) was recently reported in 1T -TiSe2 on the basis of
tunneling microscopy15 and x-ray scattering16 measurements,
and a driving mechanism for chiral symmetry breaking in
this system has been presented.17 In the hexagonal 1T -TiSe2

system, the relative orientation of the CDWs in adjacent layers
can differ by ±120◦, leading quite naturally to the possibility of
left- and right-handed helical stacking patterns. However, the
cuprates are tetragonal or orthorhombic, and thus the relative
orientation of adjacent CDWs is ±90◦. If the CDW preserves
the mirror symmetries of the plane, the symmetry of each
layer can be represented by a double-headed arrow and the
stacking of such arrows with 90◦ rotation does not form a
chiral structure. Breaking chiral symmetry in LBCO requires
additionally that stripes lower the symmetry of the plane, not
only by breaking fourfold rotation, but by removing one of the
mirror planes as well.

Although symmetry arguments dictate that a gyrotropic
response is allowed in the chiral structure described above, they
offer no insight as to the size of θK , nor its dependence on any
parameters of the electronic structure, such as the amplitude
of the charge-density modulation. In order to test the chiral
stacking hypothesis by experiment it is necessary to develop an
understanding of the underlying physical mechanisms for the
optical response. In this paper we show that optical gyrotropy
in chiral metals is a consequence of the Berry curvature in the
momentum space. In Sec. II we describe a physical picture that
links gyrotropy in chiral metals with the anomalous Hall effect
in itinerant ferromagnets. We then calculate the magnitude of
the gyrotropic response for a given Berry curvature using the
semiclassical picture of anomalous velocity and Boltzmann
transport theory. In Sec. III we present a calculation of the
Berry curvature in two tight-binding models. The first model
is motivated by the physics of LBCO and has no spin-orbit
coupling; the point is to show how the gyrotropic effect is
created when the stripe perturbations are added to a simple
cubic model. In the second model, we investigate the effect of
including Rashba spin-orbit coupling on the Berry curvature.

Finally, in Sec. IV we estimate the magnitude of the Kerr
rotation as a function of optical frequency expected based on
the calculated Berry curvature and compare with experimental
data.

II. BERRY MECHANISM FOR OPTICAL GYROTROPY
IN A CHIRAL METAL

The theory of electron transport based on the Fermi-liquid
picture of Landau was recently understood to be an incomplete
description, as it did not include the anomalous velocity18–21

associated with Berry curvature.22 It is now generally accepted
that the velocity of an electron wave packet in a band with
dispersion ε(k) is given by

v(k) = 1

h̄

∂ε(k)

∂k
− e

h̄
E × 	(k). (1)

The extra, “anomalous velocity” term is the cross product
of the electric field E with the Berry curvature �(k). The
anomalous velocity originates from the variation with wave
vector of the electron’s wave function within each unit cell,
that is, the dependence of the Wannier orbitals on k.

The Berry curvature is a time-odd, axial vector, transform-
ing under time reversal (T ) and inversion (I ) according to23

under T : �(k) → −�(−k), (2)

under I : �(k) → �(−k). (3)

Such transformation properties imply that �(k) vanishes in
systems that respect both symmetries. In metals that break
T but preserve I the flux of �(k) through a contour of constant
energy will be nonzero. This nonzero flux is responsible
for the intrinsic anomalous Hall effect (AHE) in magnetic
metals,24 where the off-diagonal conductivity is given by

σ AHE
xy = e2

h̄

∫
d3k 	z(k)f (εk), (4)

and f (εk) is the Fermi occupation function.
Lesser known, but potentially equally significant, are

phenomena associated with metals that preserve T symmetry
but break I . Figure 1 shows a sketch of the symmetry-
allowed Berry curvature on the Fermi surface (FS) of a

FIG. 1. (Color online) Filled momentum space eigenstates of
a two-dimensional metal shown as the shaded region. Red arrows
indicate the Berry curvature on the Fermi contour that marks the
boundary of occupied states. For a system that preserves time-
reversal, but breaks inversion symmetry, the Berry curvature is an
odd function of the electron wave vector.
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two-dimensional electron gas that breaks I but preserves T .
Because �(k) is an odd function of k, the anomalous velocity
generated by a uniform electric field is also odd and therefore
the linear response (AHE) vanishes. However, it was shown
recently25 that the Berry curvature and associated anomalous
velocity provide an intrinsic mechanism for the nonlinear
“photogalvanic effects” in metals.26 In these effects, excitation
with an oscillating electric field generates a dc photocurrent
in the absence of an applied voltage that is proportional to
the field amplitude squared and whose direction depends on
its polarization state. The photogalvanic current appears at
second order in E, as one power of E acts to shift the FS, and
the AHE of this shifted FS is nonzero.

Below we show that, in addition to nonlinear photogalvanic
currents, the Berry curvature generates a linear in E effect,
which is optical gyrotropy. We can then summarize the linear
response effects of metals generated by the Berry curvature as
follows:

T breaking: jx = σ AHE
xy Ey, (5)

I breaking: jx = λG
xyz

dEy

dz
. (6)

The transverse current that appears in Eq. (6), with linear
response coefficient λG

ijk , is proportional to the spatial variation
of the electric field, that is, it is a nonlocal effect. Propagation
of light through a medium with nonzero λG

ijk is described by
combining the nonlocal constitutive relation with Maxwell’s
equations. For propagation along the optic axis of a uniaxial
medium the normal modes of propagation are the two
transverse circularly polarized waves, with different indices
of refraction obtained for the left- and right-handed modes.1

This index difference is sufficient to yield polarization rotation
on reflection.2

To calculate λG
ijk we consider cuts at different values of

kz through a three-dimensional (3D) Fermi surface. The flux
of � through the surface defined by kz = 0 vanishes, as was
the case for the isolated two-dimensional (2D) layer shown
in Fig. 1. However, this restriction does not apply to Fermi
contours at nonzero kz because the points at kz, ± k, where
k is the wave vector in the xy plane, are not related by time
reversal. As a result, the flux �(kz) of the Berry curvature
through a Fermi contour with nonzero kz will in general
be nonzero, although it is required by time reversal to be
an odd function of kz. Thus, with the exception of kz = 0,
each horizontal slice through the Fermi surface contributes a
nonzero anomalous Hall conductivity. The vanishing of the
net Hall current required by T symmetry is restored with
integration on kz.

Although the AHE is zero, this system will manifest a
nonzero gyrotropic coefficient, as shown below. To focus
on the effects of the electric field gradient, we consider
the transport in position space, as illustrated in Fig. 2.
We assume an applied electric field of the form Ey(z,t) =
Re{E exp[i(qz − ωt)]} and follow a Boltzmann approach that
is valid in when qvzτz � 1, where vz and τz are the electron’s
velocity and mean-free time for transport in the z direction,
respectively. Nonlocality arises from the assumption that an
electron arriving at z from z′ without scattering retains the
anomalous velocity induced by E(z′). The crucial point is that

FIG. 2. (Color online) Representations in position and momen-
tum space of the origin of transverse nonlocal current in a chiral
metal. Jagged arrows indicate the diffusive motion of electrons in
real space. Ovals represent the 3D Fermi surface. The red and blue
slices in each oval indicate the regions of momentum space occupied
by electrons that reach a given z from z′ < z and z′ > z, respectively.

electrons arriving from z′ < z have positive vz, while electrons
that arrive from z′ > z have negative vz. As a result electrons
arriving at z from the left and right originate from regions of
the FS with opposite signs of kz and therefore with opposite
anomalous velocity. In the presence of an electric field gradient
the net anomalous Hall current at z will not cancel, and thus a
nonzero gyrotropic coefficient is obtained.

To calculate the gyrotropic coefficient within this model,
we first determine the transverse current carried by electrons
whose wave vectors lie in a slice of k space of thickness dkz

assuming local electrodynamics,

Jloc(kz,z,t) = −e2

h̄

dkz

4π2
E exp[i(qz − ωt)]�(kz), (7)

where

�(kz) =
∫ kF (kz)

0
d2k 	z(k,kz). (8)

The transverse nonlocal current Jnl(z,t) that results from
electrons accelerated at z′ > z is given by

Jnl(kz,z,t) =
∫ ∞

z

dz′ p(z − z′)Jloc[kz,z
′,t ′(z′)]), (9)

where t ′ ≡ t − |(z′ − z)/vz(kz)|. The same expression inte-
grated from z to −∞ applies to electrons with z′ < z. In
Eq. (9), p(z − z′) is the probability that an electron will
arrive at z if its last scattering event was at z′. Within
the relaxation-time approximation p(z − z′) ∝ e−|z−z′ |/|vzτz|.
Substituting this form of p(z − z′) into Eq. (9) and summing
the contributions from the left- and right-moving electrons
yields

Jnl(kz,z,t) = −e2

h̄

dkz

4π2
�(kz)

2iqvz(kz)τz

(1 − iωτz)2
E exp[i(qz − ωt)],

(10)

in the qvz(kz)τz � 1 limit. The net current is obtained by
integrating the above over kz, yielding a nonlocal response
coefficient

λG
xyz = e2

h

1

(1 − iωτz)2

∫ kFz

−kFz

dkz �(kz)vz(kz)τz. (11)

This result for the gyrotropic effect induced by Berry
curvature is different from that recently found by Mineev and
Yoshioka (MY)27 in a Kubo formula calculation of the optical
conductivity of metals with linear-in-wave-vector spin-orbit
coupling, σ · γ0k, which is allowed in noncentrosymmetric
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media. They obtained a gyrotropic coefficient proportional to
ω/γ0kF , where kF is the Fermi wave vector, in which the
scattering time does not appear. While the Berry curvature is
not explicit in that calculation, it is conceivable that the result
obtained by MY also originates from the Berry curvature,
and applies in the frequency regime γ0kF > ω > 1/τ where
they state that their approximations are valid. We proceed
to understand the magnitude of the gyrotropic effect in two
models of inversion symmetry breaking.

III. MODEL CALCULATIONS

A. Introduction

In a layered material, intuition for the gyrotropic effect can
be obtained by regarding interplane coupling as a perturbation
to the two-dimensional problem of a single plane that breaks
inversion. For the case of isolated layers, the Berry curvature
in the 2D momentum space of each layer will be nonzero in
general, although time-reversal symmetry stipulates that the
integral of �(k) over occupied states, or �, vanishes. We
consider next a 3D system formed by stacking the individual
layers in the z direction. In the absence of interplane coupling
�(kz), defined as the flux of �(k) through a 2D Fermi contour
with constant kz, is equal to zero. However, as we show
explicitly in model calculations described below, introduc-
ing interplane coupling can induce �(kz) 	= 0 for generic
values of kz, although time-reversal symmetry requires that
�(kz) = −�(−kz).

Insight into the origin of a large gyrotropic coefficient can be
gained by viewing the dispersion of electron states in each xy

plane in momentum space as an effective 2D band structure. As
interplane coupling generates a nonvanishing �(kz); it acts as
a T breaking perturbation to this 2D band structure, which can
be viewed as a kz-dependent effect magnetic field, or heff(kz).
Overall, time reversal is preserved as heff(kz) = −heff(−kz).
For a large gyrotropic effect, heff(kz) should induce a large
�(kz), a result that will obtain when the uncoupled 2D plane is
highly susceptible to a time-reversal-breaking perturbation that
yields a large anomalous Hall effect. We illustrate this physics
in a model of coupled Rashba two-dimensional electron gases
(2DEGs) (Ref. 28) described in Sec. III C, in which the
interplane coupling acts like a Zeeman magnetic field, and
which is well known to produce a large AHE.29,30 Spin-orbit
coupling in this model provides a large magnitude Berry
curvature as the wave function evolves rapidly with crystal
momentum; we will see that this model realizes the full natural
magnitude of the gyrotropic effect, analogous to σxy = e2/h

for the Hall effect. Conversely, we expect a relatively small
gyrotropic effect if the 2D planes are not particularly close
to any state with a large AHE. In the model, described
next, of stripe order in a cubic lattice, we indeed obtain a
nonzero but small gyrotropic effect in the lowest band near the
� point.

B. Spinless model

The first tight-binding model we consider has no spin-orbit
coupling and spin indices are suppressed in the following. The
starting point is a cubic lattice of spacing a with a single orbital

per site and nearest-neighbor hopping t ,

H0 = −t
∑
〈ij〉

(c†i cj + c
†
j ci), (12)

where i and j are the sites of a nearest-neighbor bond. The
resulting band has energy

E0(k) = −2t(cos kxa + cos kya + cos kza), (13)

with a minimum at the k = 0 (�) point. If the Fermi energy is
slightly above −6t , the Fermi surface is a sphere around the �

point.
The key quantity for rotation of the plane of polarization

for light incident along ẑ is the z component of the Berry
curvature,

	z(k) = −i(〈∂kx
u|∂ky

u〉 − 〈∂ky
u|∂kx

u〉), (14)

where u is the periodic part of a Bloch state ψk = exp(ik ·
r)uk(r). The Berry curvature is identically zero in a model
with both inversion and time-reversal symmetry, such as
the unperturbed H0; we seek to compute the 	z generated
by symmetry-lowering perturbations. Consider now a model
where the unit cell is increased to 16 sites and the bonds
indicated by thick lines in Fig. 3 have hopping matrix element
−(t + δt) rather than strength −t . We also add an additional
on-site potential ε on the circled sites. Labeling the set of thick
bonds in Fig. 3 by B, the sites of a bond b by b1 and b2, and
the set of solid-circle sites S, we have the full Hamiltonian

H = H0 − (δt)
∑
b∈B

(c†b1cb2 + c
†
b2cb1) + ε

∑
s∈S

c†s cs . (15)

Each xy plane has a single mirror if both δt and ε are nonzero,
and there is a screw axis parallel to z and passing through the

FIG. 3. Inversion-breaking structure with 16-site unit cell on a
cubic lattice. The thick bonds are those with modified hopping t + δt

compared to t for the thin bonds, and the solid sites have potential
ε compared to zero for the thin bonds. Each individual plane has no
inversion center if and only if ε and δt are both nonzero, and under
these conditions the structure has a nonzero gyrotropic effect.
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upper left sites in Fig. 3. If either of the perturbations is zero,
then there is an inversion center and 	z vanishes.

There are straightforward procedures to calculate 	z

anywhere in the Brillouin zone: The simplest is to find smooth
wave functions u in a sufficiently large patch of the Brillouin
zone to evaluate 	z, and a robust alternative is to use the
projection operator onto the Bloch eigenstate for an explicitly
gauge-invariant calculation.31 To get a simple analytical result,
we focus on the vicinity of the � point and treat the bond and
site modulations perturbatively. A smooth gauge is obtained in
that region if we require that the first component of the Bloch
eigenvector in the site basis be positive.

The result of the 	z calculation, which requires computing
the wave functions to order kxkykz, is that the leading behavior
for small ka, (δt)/t , and ε/t is

	z(k) = 289

3 456 000

(
δt

t

)2(
ε

t

)2

a3kz. (16)

This result is consistent with the expectation that the leading-
order gyrotropic effect should not depend on the sign of either
perturbation (as the direction of the screw axis does not change)
and should require both perturbations to be present.

The smallness of the dimensionless prefactor in this model
(approximately 8.36 × 10−5) indicates that the kz 	= 0 planes
are quite far removed from quantum anomalous Hall 2D
band structures, which would have integer Chern number (the
Brillouin zone integral of 	z divided by 2π ). We have also
computed a similar model where the screw axis passes through
faces rather than sites; in this model the coefficient in Eq. (16)
is increased by (27/17)2. This suggests that the strength of
the gyrotropic effect could be increased in materials where
the Fermi level is closer to a band crossing, as significant
Berry curvature accumulates in the vicinity of degeneracies
or avoided crossings. Incommensurate electronic stripes are
an interesting limit where inversion is infinitesimally broken
in the sense that each plane has a point that is arbitrarily
close to being an inversion center, so the gyrotropic effect will
vanish. Locking of the stripes will then be accompanied by an
increase in the gyrotropic effect if the locked pattern breaks
inversion.

C. Tight-binding model including spin-dependent hopping

We now consider a 2D square-lattice tight-binding model
with an additional spin-dependent hopping term that generates

Rashba spin-orbit coupling:

H = −t
∑
〈ij〉,σ

(c†iσ cjσ + c
†
jσ ciσ )

+ tR
∑

j

(ic†jσ s
y

σσ ′c(j+x̂)σ ′ + H.c.)

− (ic†jσ sx
σσ ′c(j+ŷ)σ ′ + H.c.). (17)

To this we add a spin-dependent interplane coupling

Hz = tz
∑

j

(ic†jσ sz
σσ ′c(j+ẑ)σ ′ + H.c.). (18)

Writing λR = tRh̄/2, λz = tzh̄/2, the 2 × 2 Bloch Hamiltonian
for H + Hz takes a simple form in terms of the Pauli
matrices:

HB = −2t[cos(kxa) + cos(kya)]1

+ λR[sin(kxa)σy − sin(kya)σx] + λz sin(kza)σz. (19)

We will study the behavior of this band structure when λz �
t,λR and when kxa and kya are both much less than unity. At
fixed kz this becomes exactly the problem of a Rashba 2DEG
in a z-directed Zeeman field, and a standard result from that
literature will imply immediately that this model can have a
strong gyrotropic effect. The z-directed Zeeman field modifies
the band structure near the � point as shown in Fig. 4. Writing
Ẽ = EF + 2t for the energy above the band minimum and
setting a = 1, we find a quadratic equation for R2 = k2

x + k2
z

on the Fermi surface, with solutions

R2 =
2tẼ + λ2

R ±
√

λ4
R + 4λ2

RtẼ + 4λ2
z sin2 kzt2

2t2
. (20)

(When one or both values on the right-hand side are negative,
the Fermi surface contains one or zero sheets, respectively.)
We see that the 2D � point R = 0 always lies on the Fermi
surface at Ẽ = 0 if sin kz = 0. At this Fermi energy the physics
is quite simple: When sin kz is positive, the 2D band structure
has σxy = e2/(2h), and when sin kz is negative, σxy = −e2/h.

These results follow from computing that the AHE strength
for the 2D band structure at constant kz is

σxy = e2

h

θ (R1) − θ (R2)

π
, (21)

where R2
1 and R2

2 are the larger and smaller non-negative
solutions of (20) (R2 = 0 if only one non-negative solution

heff

kxkx

E E

(a) (b)

FIG. 4. (Color online) (a) Slice of the two-dimensional band structure described by a Hamiltonian with quadratic and Rashba terms.
(b) The effect of a z-directed Zeeman field, which opens a gap at the � point proportional to the field strength. This is equivalent to the effect
of the z-directed spin-orbit-coupled hopping in the model described by Eq. (19), which can be viewed as an effective field heff (kz).
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exists), and

θ (R) = arctan

(
λRR

λz sin kz

)
. (22)

The geometrical picture of this result is that the integral of 	z

over a partially filled 2D band is proportional to the area on the
Bloch sphere swept out by the corresponding two-component
eigenspinor. For our rotationally symmetric case, that area is
just determined by the highest and lowest lines of latitude
reached, which gives (21).

In the following section we restore the lattice spacing and
dielectric constant and convert this result to a Kerr rotation
measurable in experiment. The fact that a small perturbation
λz can lead to a strong gyrotropic effect in this model if
Ẽ = 0 is a consequence of the degeneracy of the unperturbed
band structure; the smallness of the effect in the previous
example essentially results because the starting band structure
(the cubic tight-binding model near the � point) is quite
stable. We conclude from this example of weakly coupled
Rashba 2DEGs that the fundamental scale of the Berry phase
entering the gyrotropic effect, when the symmetry breaking is
fully developed, corresponds to 	z of order a2 in a generic
constant-kz plane of the Brillouin zone.

IV. ESTIMATING THE SIZE OF THE KERR ROTATION

The gyrotropic response of chiral media is usually ex-
pressed by a nonlocal dielectric tensor γijk defined in terms
of an expansion of the electric displacement in orders of the
spatial derivative of the electric field,

Di = εijEj + γijk

dEj

dxk

+ · · · . (23)

According to Ref. 2, the Kerr effect at normal incidence on the
optic axis of a uniaxial crystal is given by

θK = ω

c
Im

{
γijk

ε‖(ω) − 1

}
, (24)

where ε‖(ω) is the dielectric function in the plane perpendicular
to the optic axis. To estimate the maximum values of θK that
can be expected, we use the result of the previous section, in
which it was shown that �(kz) ∼ a2 when the Fermi level lies
between two bands that are split by a nonzero kz. In this case,∫ kFz

−kFz

dkz �(kz)vz(kz)τz ∼ lz, (25)

where lz is the mean-free path in the z direction, normalized
to the lattice constant. Substituting this estimate into Eq. (11)
yields

θK (ω) ∼ αlzRe

[
1

(1 − iωτz)2[ε‖(ω) − 1]

]
, (26)

where α is the fine-structure constant.
Figure 5 shows the spectrum of θK expected on the basis

of Eq. (26), with transport parameters chosen to test for
consistency with Kerr data on LBCO. As the transport in the
direction perpendicular to the CuO2 planes is incoherent, we
set lz = 1. We take h̄/t⊥ to be a lower bound on τz; a typical
value for the interplane hopping matrix element t⊥ = 70 meV
corresponds to τz = 0.01 ps. The spectrum of the in-plane

FIG. 5. (Color online) Spectrum of θK (ω) based on Eq. (27), for
the three values of τz indicated in the legend. The zero crossing
in the vicinity of the plasma frequency is a consequence of the
proportionality of θK to the real part of [ε‖(ω) − 1]−1 in this frequency
range. The photon energy of 0.8 eV used in the Kerr experiments lies
just below the energy of the predicted zero crossing.

dielectric function ε‖(ω) is obtained from Ref. 32. Both the
strong dependence of the Kerr rotation on τz and the zero
crossing in the spectrum of θK (ω) are expected in the high
frequency (ωτz � 1) limit of Eq. (26), where

θK (ω) → − αlz

(ωτz)2
Re

{
1

(ε‖(ω) − 1)

}
. (27)

The experimentally determined Kerr rotation in LBCO,
θK = 6 μrad at h̄ω = 0.8 eV, corresponds essentially to the
maximum value possible with our theory, that is, the smallest
reasonable value of τz, coupled with a Berry flux of order unity
through generic planes of constant kz. As the Rashba model
in which this result is obtained is not directly applicable to
the cuprate band structure, the large value of the Kerr effect
obtained experimentally would appear to require some other
topological property of the cuprate band structure that leads
to large Berry curvature. Evidence for the latter would be
sensitivity to T -breaking perturbations such as magnetic field,
and indeed, such evidence can be found in the highly singular
nature of the Hall coefficient in the neighborhood of the charge
order transition in LBCO.33 Regarding future experiments, our
theory predicts that γ is real in the near infrared and, therefore,
that θK (ω) will be proportional to the real part of 1/[ε‖(ω − 1)].
Experiments that probe the spectrum of θK in the region near
the plasma resonance of the cuprates would be valuable in
determining the origin of their gyrotropic response. Finally,
investigating the polar Kerr effect in hexagonal CDW systems
such as 1T -TiSe2 would offer another opportunity to test our
model for optical gyrotropy in chiral metals.
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