
PHYSICAL REVIEW B 87, 165107 (2013)

Quantized topological terms in weak-coupling gauge theories with a global symmetry and their
connection to symmetry-enriched topological phases

Ling-Yan Hung1,2 and Xiao-Gang Wen2,3,4

1Department of Physics, Harvard University, Cambridge Massachusetts 02138, USA
2Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, Canada N2L 2Y5

3Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
4Institute for Advanced Study, Tsinghua University, Beijing, 100084, People’s Republic of China

(Received 8 December 2012; published 5 April 2013)

We study the quantized topological terms in a weak-coupling gauge theory with gauge group Gg and a global
symmetry Gs in d space-time dimensions. We show that the quantized topological terms are classified by a pair
(G,νd ), where G is an extension of Gs by Gg and νd an element in group cohomology Hd (G,R/Z). When d = 3
and/or when Gg is finite, the weak-coupling gauge theories with quantized topological terms describe gapped
symmetry enriched topological (SET) phases (i.e., gapped long-range-entangled phases with symmetry). Thus,
those SET phases are classified by Hd (G,R/Z), where G/Gg = Gs . We also apply our theory to a simple case
Gs = Gg = Z2, which leads to 12 different SET phases in 2 + 1 dimensions [(2 + 1)D], where quasiparticles
have different patterns of fractional Gs = Z2 quantum numbers and fractional statistics. If the weak-coupling
gauge theories are gapless, then the different quantized topological terms may describe different gapless phases
of the gauge theories with a symmetry Gs , which may lead to different fractionalizations of Gs quantum numbers
and different fractional statistics [if in (2 + 1)D].
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I. INTRODUCTION

For a long time, we thought that Landau symmetry breaking
theory1–3 described all phases and phase transitions. In 1989,
through a theoretical study of high Tc superconducting model,
we realized that there exists a new kind of order—topological
order—which cannot be described by Landau symmetry break-
ing theory.4–6 Recently, it was found that topological orders are
related to long-range entanglements.7,8 In fact, we can regard
topological order as pattern of long-range entanglements9

defined through local unitary (LU) transformations.10–12

The notion of topological orders and long-range entangle-
ments leads to a more general and also more detailed picture of
phases and phase transitions (see Fig. 1).9 For gapped quantum
systems without any symmetry, their quantum phases can be
divided into two classes: short-range-entangled (SRE) states
and long-range-entangled (LRE) states.

SRE states are states that can be transformed into direct
product states via LU transformations. All SRE states can be
transformed into each other via LU transformations. So all
SRE states belong to the same phase [see Fig. 1(a)]; i.e., all
SRE states can continuously deform into each other without
closing the energy gap and without phase transition.

LRE states are states that cannot be transformed into direct
product states via LU transformations. It turns out that, in
general, different LRE states cannot be connected to each
other through LU transformations. The LRE states that are not
connected via LU transformations represent different quantum
phases. Those different quantum phases are nothing but the
topologically ordered phases.

Chiral spin liquids,13,14 fractional quantum Hall states,15,16

Z2 spin liquids,17–19 non-Abelian fractional quantum Hall
states,20–23 etc., are examples of topologically ordered phases.
The mathematical foundation of topological orders is closely
related to tensor category theory9,10,24,25 and simple current
algebra.20,26 Using this point of view, we have developed a

systematic and quantitative theory for nonchiral topological
orders in two-dimensional (2D) interacting boson and fermion
systems.9,10,25 Also for chiral 2D topological orders with only
Abelian statistics, we find that we can use integer K matrices
to describe them.27–32

For gapped quantum systems with symmetry, the structure
of phase diagram is even richer [see Fig. 1(b)]. Even SRE states
now can belong to different phases. One class of nontrivial SRE
phases for Hamiltonians with symmetry is the Landau sym-
metry breaking states. However, even SRE states that do not
break the symmetry of the Hamiltonians can belong to different
phases. The 1D Haldane phase for a spin-1 chain33–36 and topo-
logical insulators37–42 are nontrivial examples of phases with
short-range entanglements that do not break any symmetry. We
call these kinds of phases SPT phases. The term “SPT phase”
may stand for symmetry protected topological phase,35,36 since
the known examples of those phases, the Haldane phase and
the topological insulators, were already referred as topological
phases. The term “SPT phase” may also stand for symmetry
protected trivial phase, since those phases have no long-range
entanglements and have trivial topological orders.

It turns out that there is no gapped bosonic LRE state in
1D.11 So all 1D gapped bosonic states are either symmetry
breaking states or SPT states. This realization led to a complete
classification of all 1D gapped bosonic quantum phases.43–45

In Refs. 46 and 47, the classification of 1D SPT phase is
generalized to any dimensions: For gapped bosonic systems
in d space-time dimensions with an on-site symmetry Gs ,
we can construct distinct SPT phases that do not break the
symmetry Gs from the distinct elements in Hd [Gs,U (1)],
the d-cohomology class of the symmetry group Gs with
U (1) as coefficient. We see that we have a quite systematic
understanding of SRE states with symmetry.48,49

For gapped LRE states with symmetry, the possible quan-
tum phases should be much richer than SRE states. We may
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FIG. 1. (Color online) (a) The possible gapped phases for a class
of Hamiltonians H (g1,g2) without any symmetry. (b) The possible
gapped phases for the class of Hamiltonians Hsymm(g1,g2) with
symmetry. The yellow regions in (a) and (b) represent the phases with
long-range entanglement. Each phase is labeled by its entanglement
properties and symmetry breaking properties. SRE stands for short-
range entanglement, LRE for long-range entanglement, SB for
symmetry breaking, SY for no symmetry breaking. SB-SRE phases
are the Landau symmetry breaking phases. The SY-SRE phases are
the SPT phases. The SY-LRE phases are the SET phases.

call those phases symmetry enriched topological (SET) phases.
The projective symmetry group (PSG) was introduced to study
the SET phases.50–52 The PSG describes how the quantum
numbers of the symmetry group Gs get fractionalized on the
gauge excitations.51 When the gauge group Gg is Abelian,
the PSG description of the SET phases can be be expressed
in terms of group cohomology: The different SET states with
symmetry Gs and gauge group Gg can be (partially) described
by H2(Gs,Gg).53 Many examples of the SET states can be
found in Refs. 48, 50, and 54–56.

Recently, Mesaros and Ran proposed a quite systematic
understanding of a subclass of SET phases:57 One can use the
elements of Hd (Gs × Gg,R/Z) to describe the SET phases in
d space-time dimensions with a finite gauge group Gg and a
finite global symmetry group Gs . Here Hd (Gs × Gg,R/Z) is
the group cohomology class of group Gs × Gg . This result is
based on the group cohomology theory of the SPT phases47

and the Levin-Gu duality between the SPT phases and the
“twisted” weak-coupling gauge theories.58–60 Also, Essin and
Hermele generalized the results of Refs. 50, 51, 54, and 55
and studied quite systematically the SET phases described by
a Gg = Z2 gauge theory.53 They show that some of those SET
phases can be classified by H2(Gs,Gg).

In this paper, we develop a somewhat systematic under-
standing of SET phases, following a path-integral approach
developed for the group cohomology theory of the SPT
phases47 and the topological gauge theory.60,61 The idea is to
classify quantized topological terms in weak-coupling gauge
theory with symmetry. If the weak-coupling gauge theory
happens to have a gap, then the different quantized topological
terms will describe different SET phases. This allows us to
obtain and generalize the results in Refs. 53 and 57. Since
weak-coupling gauge theories only describe some topological
ordered states, our theory only describes some of the SET
states.

We show that quantized topological terms in symmetric
weak-coupling gauge theory in d space-time dimensions with
a gauge group Gg and a global symmetry group Gs can be
described by a pair (G,νd ), where G is an extension of Gs

by Gg and νd is an element in Hd (G,R/Z). (An extension of

Gs by Gg is group G that contains Gg as a normal subgroup
and satisfy G/Gg = Gs .) When Gg is finite or when d =
3, the weak-coupling gauge theory is gapped. In this case,
(G,νd ) describe different SET phases. Note that the extension
G is nothing but the PSG introduced in Ref. 50. Also, when
the symmetry group Gs contains antiunitary transformations,
those antiunitary transformations will act nontrivially onR/Z:
x → −x, x ∈ R/Z.47

In Appendix B, we show that we can use (y0,y1, . . . ,yd )
with

yk ∈ Hk[Gs,Hd−k(Gg,R/Z)] (1)

to label the elements in Hd (G,R/Z). However, such a labeling
may not be one-to-one and it may happen that only some of
(y0,y1, . . . ,yd ) correspond to the elements in Hd (G,R/Z).
However, for every element in Hd (G,R/Z), we can find a
(y0,y1, . . . ,yd ) that corresponds to it. If we choose a special
extension G = Gg × Gs , then we recover the result in Ref. 57
if G is finite: A set of SET states can be can be described
by (y0,y1, . . . ,yd ) with an one-to-one correspondence [see
Eq. (A10)]:

Hd (Gs × Gg,R/Z) = ⊕d
p=0Hd−p[Gs,Hp(Gg,R/Z)]

= ⊕d
p=0Hd−p[Gg,Hp(Gs,R/Z)]. (2)

The term Hd [Gs,H0(Gg,R/Z)] = Hd (Gs,R/Z) describes
the quantized topological terms associated with only the
symmetry Gs which describes the SPT phases. The term
H0[Gs,Hd (Gg,R/Z)] = Hd (Gg,R/Z) describes the quan-
tized topological terms associated with pure gauge theory.
Other terms ⊕d−1

p=1Hd−p[Gs,Hp(Gg,R/Z)] describe the quan-
tized topological terms that involve both gauge theory Gg and
symmetry Gs . Those terms describe how Gs quantum numbers
get fractionalized on gauge-flux excitations.57

When Gg is Abelian, the different extensions, G, of Gs by
Gg is classified by H2(Gs,Gg). This reproduces a result in
Ref. 53.

II. A SIMPLE FORMAL APPROACH

First let us describe a simple formal approach that allows
us to quickly obtain the above results. We know that the SPT
phases in d-dimensional discrete space-time are described by
topological nonlinear σ models with symmetry G:

L = 1

λs

[∂g(xμ)]2 + iWtop(g), g ∈ G, (3)

where λs → ∞, and the 2π -quantized topological term∫
Wtop(g) is given by an element in Hd (G,R/Z). Different

elements inHd (G,R/Z) describe different SPT phases.47 If we
“gauge” the symmetry G, the topological nonlinear σ model
will become a gauge theory,

L = 1

λs

[(∂ − iA)g(xμ)]2 + iWtop(g,A) + (Fμν)2

λ
, (4)

where Wtop(g,A) is the gauged topological term. For those
topological terms that can be expressed in continuous field
theory, Wtop(g,A) can be obtained from Wtop(g) by replacing
∂μ with ∂μ − iAμ. When Gs and Gg are finite, Wtop(g,A) can
be constructed explicitly in discrete space-time.62
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If we further integrate out g, we get a pure gauge theory
with a topological term,

L = (Fμν)2

λ
+ iWtop(A). (5)

This line of thinking suggests that the quantized topological
term

∫
W̃top(A) in symmetric gauge theory is classified by the

same Hd (G,R/Z) that classifies the 2π -quantized topological
term

∫
Wtop(g).

Now let us consider topological nonlinear σ models with
symmetry Gs × Gg ,

L = 1

λs

[∂g(xμ)]2 + iWtop(g), g ∈ G = Gs × Gg, (6)

where the 2π -quantized topological term
∫

Wtop(g) is classi-
fied by Hd (Gs × Gg,R/Z). If we gauge only a subgroup Gg

of the total symmetry group Gs × Gg , we will get a gauge
theory,

L = 1

λs

[(∂ − iA)g(xμ)]2 + iWtop(g,A) + (Fμν)2

λ
, (7)

with global symmetry Gs . This line of thinking suggests that
the quantized topological term

∫
Wtop(g,A) is classified by the

same Hd (Gs × Gg,R/Z).
We can generalize the above approach to obtain more

general quantized topological terms in weak-coupling gauge
theory with gauge group Gg and symmetry Gs . We start with
a group G which is an extension of the symmetry group Gs by
the gauge group Gg:

1 → Gg → G → Gs → 1. (8)

In other words, G contains a normal subgroup Gg such that
G/Gg = Gs . So we can start with a topological nonlinear σ

models with symmetry G,

L = 1

λs

[∂g(xμ)]2 + iWtop(g), g ∈ G, (9)

where the 2π -quantized topological term
∫

Wtop(g) is classi-
fied by Hd (G,R/Z). If we gauge only a subgroup Gg of the
total symmetry group G, we will get a gauge theory,

L = 1

λs

[(∂ − iA)g(xμ)]2 + iWtop(g,A) + (Fμν)2

λ
, (10)

with global symmetry Gs = G/Gg . This line of thinking
suggests that the quantized topological term

∫
Wtop(g,A) is

classified by Hd (G,R/Z).
So more generally, the SET states in d-dimensional space-

time with gauge group Gg and symmetry group Gs are labeled
by the elements in Hd (G,R/Z), where G is the extension of
the symmetry group Gs by the gauge group Gg , provided that
the symmetric gauge theory (9) is gapped in a small λ limit and
d � 3. If the symmetric gauge Eq. (9) is gapless in the small λ

limit, then Hd (G,R/Z) describes different gapless phases of
the symmetric gauge theory.

The above approach is formal and hand-waving. When G

is finite, we can rigorously obtain the above results, which
is described in Ref. 62. In the following, we discuss such
an approach assuming Gg is finite (but Gs can be finite or
continuous). Then we discuss another approach that allows

(b)(a)

0

1 2

0

12

33
G G

G12

01 23

FIG. 2. (Color online) Two branched simplices with opposite
orientations. (a) A branched simplex with positive orientation and
(b) a branched simplex with negative orientation.

us to obtain the above result more rigorously for the case
G = Gs × Gg , where Gs,Gg can be finite or continuous.

III. AN EXACT APPROACH FOR FINITE Gg

This approach is based on the formal approach (10)
discussed above, where G is an extension of the symmetry
group Gs by the gauge group Gg: G/Gg = Gs . We make
the above approach exact by putting the theory on space-time
lattice of d dimensions.

A. Discretize space-time

We discretize the space-time M by considering its triangu-
lation Mtri and define the d-dimensional gauge theory on such
a triangulation. We call such a theory a lattice gauge theory.
We call the triangulation Mtri a space-time complex, and a cell
in the complex a simplex.

In order to define a generic lattice theory on the space-
time complex Mtri, it is important to give the vertices of each
simplex a local order. A nice local scheme to order the vertices
is given by a branching structure.47,63 A branching structure
is a choice of orientation of each edge in the d-dimensional
complex so that there is no oriented loop on any triangle (see
Fig. 2).

The branching structure induces a local order of the vertices
on each simplex. The first vertex of a simplex is the vertex with
no incoming edges, and the second vertex is the vertex with
only one incoming edge, etc. So the simplex in Fig. 2(a) has
the following vertex ordering: 0,1,2,3.

The branching structure also gives the simplex (and its
subsimplexes) an orientation denoted by sij ···k = 1,∗. Figure 2
illustrates two 3-simplices with opposite orientations s0123 = 1
and s0123 = ∗. The red arrows indicate the orientations of the
2-simplices which are the subsimplices of the 3-simplices.
The black arrows on the edges indicate the orientations of the
1-simplices.

B. Gauged nonlinear σ model on space-time lattice

To put Eq. (10) on space-time lattice, we put the g(xμ) ∈ G

field on the vertices of the space-time complex, which becomes
gi , where i labels the vertices. We also put the gauge field on
the edges ij which becomes gij ∈ Gg .

The action amplitude for a d cell (ij · · · k) is complex
function of gi and gij : Vij ···k({gij },{gi}) The partition function
is given by

Z =
∑

{gij },{gi }

∏
(ij ···k)

[Vij ···k({gij },{gi})]sij ···k , (11)
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where
∏

(ij ···k) is the product over all the d cells (ij · · · k). If
the above action amplitude

∏
(ij ···k)[Vij ···k({gij },{gi})]sij ···k on

closed space-time complex (∂Mtri = ∅) is invariant under the
gauge transformation

gij → g′
ij = higijh

−1
j , gi → g′

i = higih
−1
i , hi ∈ Gg,

(12)

then the action amplitude Vij ···k({gij },{gi}) defines a gauge
theory of gauge group Gg . If the action amplitude is invariant
under the global transformation

gij → g′
ij = hgijh

−1, gi → g′
i = hgih

−1, h ∈ G, (13)

then the action amplitude Vij ···k({gij },{gi}) defines a gauge
theory with a global symmetry Gs = G/Gg . (We need to
mod out Gg since when h ∈ Gg , it will generate a gauge
transformation instead of a global symmetry transformation.)

Using a cocycle νd (g0,g1, . . . ,gd ) ∈ Hd (G,R/Z), gi ∈ G,
we can construct an action amplitude Vij ···k({gij },{gi}) that
defines a gauge theory with gauge group Gs and global
symmetry Gs . First, we note that the cocycle satisfies the
cocycle condition

νd (g0,g1, . . . ,gd ) = νd (hg0,hg1, . . . ,hgd ), h ∈ G,∏
i

νd (g0, . . . ,ĝi , . . . ,gd+1) = 1, (14)

where g0, . . . ,ĝi , . . . ,gd+1 is the sequence g0, . . . ,gi, . . . ,gd+1

with gi removed. The gauge theory action amplitude is given
by

V01···d ({gij },{gi}) = 0, if gijgjk 	= gik,

V01···d ({gij },{gi}) = νd (g̃0g0,g̃1g1, . . . ,g̃dgd ), otherwise,

(15)

where g̃i are given by

g̃0 = 1, g̃1 = g̃0g01, g̃2 = g̃1g12, g̃3 = g̃2g23, . . . .

(16)

One can check that the above action amplitude V01···d
({gij },{gi}) is invariant under the gauge transformation (12)
and the global symmetry transformation (13). Thus, it defines
a symmetric gauge theory.

We know that the action amplitude is nonzero only when
gijgjk = gik . The condition gijgjk = gik is the flat connection
condition, and the corresponding gauge theory is in the weak-
coupling limit (actually is at the zero-coupling). This condition
can be implemented precisely only when Gg is finite. With
the flat connection condition gijgjk = gik , g̃i’s and the gauge
equivalent sets of gij have an one-to-one correspondence.

Since the total action amplitude
∏

(ij ···k)[Vij ···k
({gij },{gi})]sij ···k on a sphere is always equal to 1 if the
gauge flux vanishes, Vij ···k({gij },{gi}) describes a quantized
topological term in weak-coupling gauge theory (or
zero-coupling gauge theory). This way, we show that a
quantized topological term in a weak-coupling gauge theory
with gauge group Gg and symmetry group Gs can be
constructed from each element of Hd (G,R/Z).

When Gg = {1} (or G = Gs),

V01···d ({gij },{gi}) = νd (g0,g1, . . . ,gd ) (17)

become the action amplitude for the topological nonlinear σ

model, describing the SPT phase labeled by the cocycle νd ∈
Hd [Gs,R/Z).47

When Gs = {1} (or G = Gg),

V01···d ({gij },{gi}) = νd (g̃0g0,g̃1g1, . . . ,g̃dgd ). (18)

We can use the gauge transformation (12) to set gi = 1 in the
above and obtain

V01···d ({gij },{gi}) = νd (g̃0,g̃1, . . . ,g̃d ). (19)

This is the topological gauge theory studied in Refs. 60 and 61.

IV. AN APPROACH BASED ON CLASSIFYING SPACE

In this section, we consider the cases where Gs,Gg can
be finite or continuous. However, for the time being, we can
only handle the situation where G = Gs × Gg . Our approach
is based on the classifying space.

A. Motivations and results

Let us first review some known results. To gain a systematic
understand of SRE states with on-site symmetry Gs , we started
with a nonlinear σ model,

L = 1

λs

[∂g(xμ)]2, g ∈ Gs, (20)

with symmetry group Gs as the target space. The model can
be in a disordered phase that does not break the symmetry Gs

when λ is large. By adding different 2π quantized topological
θ terms to the Lagrangian L, we can get different Lagrangians
that describe different disordered phases that do not break the
symmetry Gs .47 Those disordered phases are the symmetry
protected topological (SPT) phases.35,36 So we can use the
quantized topological terms to classify the SPT phases. (In
general, topological terms, by definition, are the terms that do
not depend on space-time metrics.)

We know that gauge theory

L = 1

λ
Tr(FμνF

μν) (21)

is one way to describe LRE states (i.e., topologically ordered
states). In Refs. 60 and 61, different quantized topological
terms in weak-coupling gauge theory with gauge group Gg and
small λ in d space-time dimensions are constructed and clas-
sified, using the topological cohomology class Hd+1(BGg,Z)
for the classifying space BGg of the gauge group Gg .
By adding those quantized topological terms to the above
Lagrangian for the weak-coupling gauge theory, we may obtain
different phases of the weak-coupling gauge theory.

In this section, we plan to combine the above two ap-
proaches by studying the quantized topological terms in the
combined theory,

L = 1

λ
Tr(FμνF

μν) + 1

λs

[∂g(xμ)]2, g ∈ Gs, (22)

where F is the field strength with gauge group Gg , and
(λ,λs) → (small,large). Such a theory is a gauge theory with
symmetry Gs . We find that quantized topological terms in
the combined theory can be constructed and classified by the
topological cohomology class Hd+1(BGs × BGg,Z) for the
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classifying space of the product Gg × Gs . Those quantized
topological terms give us a somewhat systematic understand-
ing of different phases of weak coupling gauge theories
with symmetry. If those symmetric weak coupling gauge
theories are gapped (for example, for finite gauge groups),
then the theories will describe topologically ordered states with
symmetry. Those SET phases in d space-time dimensions are
described by elements in Hd+1(BGs × BGg,Z).

B. Gauge theory as a nonlinear σ model with classifying
space as the target space

To obtain the above result, we follow closely the approaches
used in Refs. 60 and 47. We obtain our result in two steps.

1. Symmetric weak-coupling gauge theory as the nonlinear σ

model of Gs × BGg

As in Ref. 60, we may view a weak-coupling gauge
theory with gauge group Gg as a nonlinear σ model with
classifying space BGg as the target space. So the symmetric
weak-coupling gauge theory in Eq. (22) can be viewed as
a nonlinear σ model with Gs × BGg as the target space,
where each path in the path integral is given by an embedding
γ : Mtri → Gs × BGg from the space-time complex Mtri to
Gs × BGg . We can study topological terms in our symmetric
weak-coupling gauge theory by studying the topological terms
in the corresponding nonlinear σ model.

Following Ref. 60, a total term Stop corresponds to eval-
uating a cocycle αd ∈ Z(Gs × BGg,R/Z) on the complex
γ (Mtri) ⊂ Gs × BGg:

Stop[γ ] = 2π〈αd,γ (Mtri)〉 mod 2π. (23)

Such a topological term does not depend on any smooth defor-
mation of γ and is thus “topological.” (Note that the evaluation
of the d-cocycle on any d-cycles [i.e., d-dimensional closed
complexes] are equal to 0 mod 1 if the d-cycles are boundaries
of some (d + 1)D complex.)

Here we would like to stress that the cocycle αd on the
group manifold is not the ordinary topological cocycle. It has
a symmetry condition,

〈αd,c〉 = 〈αd,cg〉, (24)

where c is a complex in Gs and cg is the complex generated
from c by the symmetry transformation Gs → gGs , g ∈ Gs .
Also, since λs → ∞ and g(xμ) have large fluctuations in
Eq. (22), 〈αd,c〉 only depend on the vertices g0,g1, . . . of c:

〈αd,c〉 = ν(g0,g1, . . .), ν(gg0,gg1, . . .) = ν(g0,g1, . . .);

g,gi ∈ Gs. (25)

So, on Gs , αd is actually a cocycle in the group cohomology
Z(Gs,R/Z),47 while on BGg , αd is the usual cocycle in the
topological cohomology Z(BGg,R/Z).

Since, on Gs , αd is a cocycle in the group cohomology
Z(Gs,R/Z), when Gs contains antiunitary symmetry, such
antiunitary symmetry transformation will have a nontrivial
action on R/Z: x → −x, x ∈ R/Z.47

If two d-cocycles, αd,α
′
d ∈ Zd (BGg,R/Z), differ by a

coboundary: α′
d − αd = dμd , μd ∈ Cd (BGg,R/Z), then, the

corresponding action amplitudes, e iStop[γ ] and e iS ′
top[γ ], can

smoothly deform into each other without phase transition.
So e iStop[γ ] and e iS ′

top[γ ], or αd and α′
d , describe the same

quantum phase. Therefore, we regard αd and α′
d to be

equivalent. The equivalent classes of the d-cocycles form
the d cohomology class Hd (Gs × BGg,R/Z). We conclude
that the topological terms in symmetric weak-coupling lattice
gauge theories are described by Hd (Gs × BGg,R/Z) in d

space-time dimensions.
To calculate Hd (Gs × BGg,R/Z), let us first calculate

Hd (Gs × BGg,Z). Using the the Künneth formula Eq. (A4)
(with M ′ = Z), we find that

Hd (Gs × BGg,Z)


 [⊕d
p=0 Hp(Gs,Z) ⊗Z Hd−p(BGg,Z)

]
⊕[⊕d+1

p=0 TorZ1 [Hp(Gs,Z),Hd−p+1(BGg,Z)]
]
. (26)

In the above, we have used the fact that the cohomology on
Gs is the group cohomology H and the cohomology on BGg

is the usual topological cohomology H .
In Appendix A, we show that [see Eq. (A6)]

Hd (X,R/Z) 
 Hd (X,Z) ⊗Z R/Z

⊕ TorZ1 [Hd+1(X,Z),R/Z]. (27)

Using

Z ⊗Z R/Z = R/Z, Zn ⊗Z R/Z = 0,
(28)

TorZ1 (Z,R/Z) = 0, TorZ1 (Zn,R/Z) = Zn,

we see that Hd (X,R/Z) has a form Hd (X,R/Z) =
R/Z ⊕ · · · ⊕ R/Z ⊕ Zn1 ⊕ Zn2 ⊕ · · ·. So the discrete part of
Hd (X,R/Z) is given by

Dis[Hd (X,R/Z)] = Zn1 ⊕ Zn2 ⊕ · · · = Tor[Hd+1(X,Z)],

(29)

where we have used

Hd+1(X,Z) = Free[Hd+1(X,Z)] ⊕ Tor[Hd+1(X,Z)] (30)

with Tor[Hd+1(X,Z)] the torsion part and Free[Hd+1(X,Z)]
the free part of Hd+1(X,Z). Therefore, we have

Dis[Hd (Gs × BGg,R/Z)]


 Tor
[[⊕d+1

p=0 Hp(Gs,Z) ⊗Z Hd+1−p(BGg,Z)
]

⊕[⊕d+2
p=0 TorZ1 (Hp(Gs,Z),Hd−p+2(BGg,Z))

]]
. (31)

Since Hd (Gs,Z) = Hd (BGs,Z), the above can be rewritten
as

Dis[Hd (Gs × BGg,R/Z)]


 Tor
[[⊕d+1

p=0 Hp(BGs,Z) ⊗Z Hd+1−p(BGg,Z)
]

⊕[⊕d+2
p=0 TorZ1 (Hp(BGs,Z),Hd−p+2(BGg,Z))

]]
= [⊕d+1

p=0 Tor[Hp(BGs,Z)] ⊗Z Tor[Hd+1−p(BGg,Z)]
]

⊕[⊕d+1
p=0 Free[Hp(BGs,Z)] ⊗Z Tor[Hd+1−p(BGg,Z)]

]
⊕[⊕d+1

p=0 Tor[Hp(BGs,Z)] ⊗Z Free[Hd+1−p(BGg,Z)]
]

⊕[⊕d+2
p=0 TorZ1 (Hp(BGs,Z),Hd−p+2(BGg,Z))

]
. (32)
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Each element in the above cohomology class describes a
quantized topological term in the weakly coupled gauge theory
with symmetry Gs .

2. Chern-Simons form

We note that

Hd+1(BGs × BGg,Z)

= [⊕d+1
p=0 Hp(BGs,Z) ⊗Z Hd+1−p(BGg,Z)

]
⊕[⊕d+2

p=0 TorZ1 [Hp(BGs,Z),Hd−p+2(BGg,Z)]
]
. (33)

So the result (32) is very close to our proposal that ele-
ments in Hd+1(BGs × BGg,Z) correspond to the quantized
topological terms. The only thing missing is the free part of
Hd (BGg,Z).

In fact, the free part of Hd+1(BGg,Z), denoted as
Free[Hd+1(BGg,Z)], is nonzero only when d = odd. So in
the following we consider only d = odd cases. The free part
Free[Hd+1(BGg,Z)] corresponds to the Chern-Simons forms
in d space-time dimensions.

To understand such a result, we first choose a ω ∈
Free[Hd+1(BGg,Z)]. We can find integers Ki such that

−ω + K1

d+1
2 !(2π )

d+1
2

TrF
d+1

2 + · · · (34)

is an exact form dθd (A). Here θd (A) is called a Chern-Simons
form in d dimensions.

We can use a Chern-Simons form θd−p(A) and a cocycle
αp ∈ Hp(Gs,Z) to construct a quantized topological term,

Stop[γ ] = 2π〈αp ∪ θd−p(A),γ (Mtri)〉 mod 2π. (35)

Such kind of topological terms are labeled by the elements in

⊕d+1
p=0Hp(Gs,Z) ⊗Z Free[Hd+1−p(BGg,Z)]

= ⊕d+1
p=0H

p(BGs,Z) ⊗Z Free[Hd+1−p(BGg,Z)]. (36)

Combining the above result with Eq. (32), we find that
the elements in Hd+1(BGs × BGg,Z) correspond to the
quantized topological terms.

V. AN EXAMPLE: Gs = Z2 AND Gg = Z2

In this section, we discuss a simple example with Gs =
Z2 and Gg = Z2. There are two kinds of extensions G of
Gs = Z2 by Gg = Z2: G = Z2 × Z2 and G = Z4. So the
quantized topological terms and the SET phases are described
by Hd (Z2 × Z2,R/Z) and Hd (Z4,R/Z) in d space-time
dimensions.

In d = 3 space-time dimensions, we have

H3(Z2 × Z2,R/Z) = Z3
2, H3(Z4,R/Z) = Z4. (37)

So there are 12 SET phases for weak-coupling Z2 gauge theory
with Z2 symmetry. However, at this stage, it is not clear if those
12 SET phases are really distinct, since they could be smoothly
connected via strong coupling gauge theory. Later, we will see
that the 12 SET phases are indeed distinct, since they have
distinct physical properties.

A. A K -matrix approach

To understand the physical properties of those 12 SET
phases, we would like to use Levin-Gu duality to gauge the
Gs and turn the theory into gauge theory with gauge group G.

Let us first consider the G = Z2 × Z2 case. A G = Z2 × Z2

gauge theory can be described by U 4(1) mutual Chern-Simons
theory:54,64

L = 1

4π
K0,IJ aI

μ∂νa
J
λ + · · · , (38)

with

K0 = 2

⎛
⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠. (39)

The Gs charge corresponds to the unit charge of a1
μ gauge

field and the Gg gauge charge corresponds to the unit charge
of a3

μ gauge field. The Gs flux excitation (in the G = Z2 × Z2

gauge theory) corresponds to the end of the branch cut in the
original theory along which we have a twist generated by a Gs

symmetry transformation (see Ref. 58 for a detailed discussion
about the symmetry twist). Such Gs flux corresponds to the
flux of an a1

μ gauge field.
The eight types of quantized topological terms are given by

Wtop = n1

2π
a1

μ∂νa
1
λ + n12

2π
a1

μ∂νa
3
λ + n2

2π
a3

μ∂νa
3
λ, (40)

n1 = 0,1, n12 = 0,1, n2 = 0,1. The total Lagrangian has a
form

L + Wtop = 1

4π
KIJ aI

μ∂νa
J
λ + · · · , (41)

with

K =

⎛
⎜⎜⎜⎝

2n1 2 n12 0

2 0 0 0

n12 0 2n2 2

0 0 2 0

⎞
⎟⎟⎟⎠. (42)

Two K matrices are equivalent: K1 ∼ K2 if K1 =
UT K2U for an integer matrix with det(U ) = ±1.
We find K(n1,n12,n2) ∼ K(n1 + 2,n12,n2) ∼ K(n1,n12 +
2,n2) ∼ K(n1,n12,n2 + 2). Thus, only n1,n12,n2 = 0,1 give
rise to inequivalent K matrices.

A particle carrying lI aI
μ charge will have a statistics

θl = πlI (K−1)IJ lJ . (43)

A particle carrying lI aI
μ charge will have a mutual statistics

with a particle carrying l̃I aI
μ charge:

θl,l̃ = 2πlI (K−1)IJ l̃J . (44)

We note that the Gs charge is identified with the unit a1
μ

charge and the Gg gauge charge is identified with the unit a3
μ

charge. Using

K−1 = 1

4

⎛
⎜⎜⎜⎝

0 2 0 0

2 −2n1 0 −n12

0 0 0 2

0 −n12 2 −2n2

⎞
⎟⎟⎟⎠, (45)
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we find that the Gs charge (the unit a1
μ charge) and the

Gg gauge charge (the unit a3
μ charge) remain bosonic after

inclusion of the topological terms. This is actually a condition
on the topological terms: The topological terms do not affect
the statistics of the gauge charge.

The end of the branch cut in the original theory corresponds
to π flux in a1

μ. We note that a particle carrying lI aI
μ charge

created a l2π flux in a1
μ. So a unit a2

μ charge always create a
Gs twist. However, what is the Gs charge of the lI particle?

To measure the Gs charge, we need to find the pure Gs

twist. Let us assume that the pure Gs twist corresponds to
lv = (lv1 ,lv2 ,0,0)aI

μ charge. Then lv2 = 1 so that the lv particle
produces π a1

μ flux. For a pure Gs twist, we also have

π (lv)T K−1lv = 0. (46)

This allows us to obtain

(lv)T =
(

n1

2
,1,0,0

)
. (47)

Note that some times, lv is not an allowed excitation. However,
we can always use lv to probe the Gs charge. Let

q = 2K−1lv =

⎛
⎜⎜⎜⎝

1

−n1/2

0

−n12/2

⎞
⎟⎟⎟⎠. (48)

Moving a pure Gs twist around the lI particle will induce a
phase

2π lT K−1lv = πqT l. (49)

We find that the Gs charge of the lI particle is

Gs charge = qT l mod 2. (50)

When n12 = 0, those gauge excitations have a trivial mutual
statistics with the unit a2

μ charge (i.e., the end of the branch
cut). This means that those gauge excitations carry a trivial
Gs quantum number. When n12 = 1, the unit a4

μ charge (the
gauge-flux excitation) has a π/2 mutual statistics with the unit
a2

μ charge (i.e., the end of the branch cut). This means that the
unit a4

μ charge carries a fractional Gs charge. Such a fractional-
Gs-charge gauge excitation has a Bose/Fermi statistics if n2 =
0 and a semion statistics if n2 = 1. We see that both n12 and
n2 are measurable. n1 is also measurable, which describes the
Gs SPT phases.

To summarize, Tables I–VIII list the Gs charges, the Gs

twists, the Gg gauge sectors, and the statistics of the 16 kinds
of quasiparticles/defects in the Z2 gauge theory which contains
a topological term labeled by n1, n12, and n2. The Gs charge
is a Z2 charge which is defined modular 2. The Gs twist = 0
means that there is no branch cut, and the Gs twist = 1 means
that there is a branch cut with the Gs twist. The statistics in
Tables I–VIII is defined as statistics = θl/π . Thus, statistics =
0 corresponds to Bose statistics, statistics = 1 corresponds to
Fermi statistics, and statistics = ±1/2 corresponds to semion
statistics, etc.

The Gg gauge excitations must have trivial mutual statistics
with the Gs charge and are described by (lI ) = (0,0,l3,l4).
The Gg gauge sectors describe the four types of Gg gauge

TABLE I. The Gs charges, the Gs twists, the Gg gauge sectors,
and the statistics of the 16 kinds of quasiparticles/defects in the SET
state where (n1n12n2) = (000).

(l1l2l3l4) Gs charge Gs twist Gg gauge Statistics

(0000) 0 0 0 0
(1000) 1 0 0 0
(0010) 0 0 e 0
(1010) 1 0 e 0
(0001) 0 0 m 0
(1001) 1 0 m 0
(0011) 0 0 em 1
(1011) 1 0 em 1

(0100) 0 1 0 0
(1100) 1 1 0 1
(0110) 0 1 e 0
(1110) 1 1 e 1
(0101) 0 1 m 0
(1101) 1 1 m 1
(0111) 0 1 em 1
(1111) 1 1 em 0

excitations:

the trivial excitation (l3,l4) = (0,0) → “0”,

the Gg charge excitation (l3,l4) = (1,0) → “e”,

the Gg vortex excitation (l3,l4) = (0,1) → “m”,

the Gg charge vortex excitation (l3,l4) = (1,1) → “em”.

We know that the above eight classes of SET states are
classified by

H3(Z2 × Z2,R/Z)

= H3(Gs = Z2,R/Z) ⊕ H3(Gg = Z2,R/Z)

⊕H2(Gs = Z2,Z2)

= Z3
2, (51)

TABLE II. The Gs charges, the Gs twists, the Gg gauge sectors,
and the statistics of the 16 kinds of quasiparticles/defects in the SET
state where (n1n12n2) = (010).

(l1l2l3l4) Gs charge Gs twist Gg gauge statistics

(0000) 0 0 0 0
(1000) 1 0 0 0
(0010) 0 0 e 0
(1010) 1 0 e 0
(0001) −1/2 0 m 0
(1001) 1/2 0 m 0
(0011) −1/2 0 em 1
(1011) 1/2 0 em 1

(0100) 0 1 0 0
(1100) 1 1 0 1
(0110) 0 1 e 0
(1110) 1 1 e 1
(0101) −1/2 1 m −1/2
(1101) 1/2 1 m 1/2
(0111) −1/2 1 em 1/2
(1111) 1/2 1 em −1/2
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TABLE III. The Gs charges, the Gs twists, the Gg gauge sectors,
and the statistics of the 16 kinds of quasiparticles/defects in the SET
state where (n1n12n2) = (100).

(l1l2l3l4) Gs charge Gs twist Gg gauge Statistics

(0000) 0 0 0 0
(1000) 1 0 0 0
(0010) 0 0 e 0
(1010) 1 0 e 0
(0001) 0 0 m 0
(1001) 1 0 m 0
(0011) 0 0 em 1
(1011) 1 0 em 1

(0100) −1/2 1 0 −1/2
(1100) 1/2 1 0 1/2
(0110) −1/2 1 e −1/2
(1110) 1/2 1 e 1/2
(0101) −1/2 1 m −1/2
(1101) 1/2 1 m 1/2
(0111) −1/2 1 em 1/2
(1111) 1/2 1 em −1/2

From the Tables I–VIII, we see that H3(Gg = Z2,R/Z) =
Z2 (labeled by n2) determine if the Gg gauge theory is a
Z2 gauge theory (for n2 = 0) or a double-semion theory (for
n2 = 1). We also see that H3(Gs = Z2,R/Z) = Z2 (labeled
by n1) describes the Gs SPT phases, and H2(Gs = Z2,Z2) =
Z2 (labeled by n12) determines if the Gg gauge-flux excitations
can carry a 1/2 Gs charge.

From Tables I–VIII, we see that sometimes, a 1/2 Gs charge
can and can only appear on a gauge-flux excitation with l4 = 1.
This implies that the symmetry of the gauge-flux excitations
is described by a nontrivial PSG = Z4. In all eight phases,
the Gg gauge-charge excitations (the a3

μ charges) are always
bosonic and always carry integer Gs charge. In other words,

TABLE IV. The Gs charges, the Gs twists, the Gg gauge sectors,
and the statistics of the 16 kinds of quasiparticles/defects in the SET
state where (n1n12n2) = (110).

(l1l2l3l4) Gs charge Gs twist Gg gauge Statistics

(0000) 0 0 0 0
(1000) 1 0 0 0
(0010) 0 0 e 0
(1010) 1 0 e 0
(0001) −1/2 0 m 0
(1001) 1/2 0 m 0
(0011) −1/2 0 em 1
(1011) 1/2 0 em 1

(0100) −1/2 1 0 −1/2
(1100) 1/2 1 0 1/2
(0110) −1/2 1 e −1/2
(1110) 1/2 1 e 1/2
(0101) 1 1 m 1
(1101) 0 1 m 0
(0111) 1 1 em 0
(1111) 0 1 em 1

TABLE V. The Gs charges, the Gs twists, the Gg gauge sectors,
and the statistics of the 16 kinds of quasiparticles/defects in the SET
state where (n1n12n2) = (001).

(l1l2l3l4) Gs charge Gs twist Gg gauge Statistics

(0000) 0 0 0 0
(1000) 1 0 0 0
(0010) 0 0 e 0
(1010) 1 0 e 0
(0001) 0 0 m −1/2
(1001) 1 0 m −1/2
(0011) 0 0 em 1/2
(1011) 1 0 em 1/2

(0100) 0 1 0 0
(1100) 1 1 0 1
(0110) 0 1 e 0
(1110) 1 1 e 1
(0101) 0 1 m −1/2
(1101) 1 1 m 1/2
(0111) 0 1 em 1/2
(1111) 1 1 em −1/2

the symmetry of the gauge-charge excitations is described by
a trivial PSG = Gs × Gg = Z2 × Z2.

Next, we consider the G = Z4 case. We show that, in
this case, the symmetry of the gauge-charge excitations is
described by a nontrivial PSG = Z4 (i.e., carries a fractional
Gs charge). A G = Z4 gauge theory can be described by U 2(1)
mutual Chern-Simons theory:

L = 1

4π
K0,IJ aI

μ∂νa
J
λ + · · · , (52)

with

K0 = 4

(
0 1

1 0

)
. (53)

TABLE VI. The Gs charges, the Gs twists, the Gg gauge sectors,
and the statistics of the 16 kinds of quasiparticles/defects in the SET
state where (n1n12n2) = (011).

(l1l2l3l4) Gs charge Gs twist Gg gauge Statistics

(0000) 0 0 0 0
(1000) 1 0 0 0
(0010) 0 0 e 0
(1010) 1 0 e 0
(0001) −1/2 0 m −1/2
(1001) 1/2 0 m −1/2
(0011) −1/2 0 em 1/2
(1011) 1/2 0 em 1/2

(0100) 0 1 0 0
(1100) 1 1 0 1
(0110) 0 1 e 0
(1110) 1 1 e 1
(0101) −1/2 1 m 1
(1101) 1/2 1 m 0
(0111) −1/2 1 em 0
(1111) 1/2 1 em 1
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TABLE VII. The Gs charges, the Gs twists, the Gg gauge sectors,
and the statistics of the 16 kinds of quasiparticles/defects in the SET
state where (n1n12n2) = (101).

(l1l2l3l4) Gs charge Gs twist Gg gauge Statistics

(0000) 0 0 0 0
(1000) 1 0 0 0
(0010) 0 0 e 0
(1010) 1 0 e 0
(0001) 0 0 m −1/2
(1001) 1 0 m −1/2
(0011) 0 0 em 1/2
(1011) 1 0 em 1/2

(0100) −1/2 1 0 −1/2
(1100) 1/2 1 0 1/2
(0110) −1/2 1 e −1/2
(1110) 1/2 1 e 1/2
(0101) −1/2 1 m 1
(1101) 1/2 1 m 0
(0111) −1/2 1 em 0
(1111) 1/2 1 em 1

A unit Gg gauge charge corresponds to the unit charge of
a1

μ gauge field and a Gg gauge-flux excitation corresponds to
two-unit charge of a2

μ gauge field. Note that a unit Gg gauge
charge carries 1/2 Gs charge. In other words, the symmetry
of the gauge-charge excitations is described by a nontrivial
PSG = Z4. Two-unit charge of a1

μ gauge field carries no Gg

gauge charge, but a unit of Gs charge.
The four types of quantized topological terms are given by

Wtop = m1

2π
a1

μ∂νa
1
λ, (54)

m1 = 0,1,2,3. The total Lagrangian has a form

L + Wtop = 1

4π
KIJ aI

μ∂νa
J
λ + · · · , (55)

TABLE VIII. The Gs charges, the Gs twists, the Gg gauge sectors,
and the statistics of the 16 kinds of quasiparticles/defects in the SET
state where (n1n12n2) = (111).

(l1l2l3l4) Gs charge Gs twist Gg gauge Statistics

(0000) 0 0 0 0
(1000) 1 0 0 0
(0010) 0 0 e 0
(1010) 1 0 e 0
(0001) −1/2 0 m −1/2
(1001) 1/2 0 m −1/2
(0011) −1/2 0 em 1/2
(1011) 1/2 0 em 1/2

(0100) −1/2 1 0 −1/2
(1100) 1/2 1 0 1/2
(0110) −1/2 1 e −1/2
(1110) 1/2 1 e 1/2
(0101) 1 1 m 1/2
(1101) 0 1 m −1/2
(0111) 1 1 em −1/2
(1111) 0 1 em 1/2

with

K =
(

2m1 4

4 0

)
, K−1 = 1

8

(
0 2

2 −m1

)
. (56)

Since moving the Gs charge (two units of a1
μ charge) around a

unit a2
μ charge induced a phase π , a unit a2

μ charge corresponds
to the end of the branch cut in the original theory along which
we have a Gs symmetry twist. However, fusing two unit a2

μ

charges gives a nontrivial Gg gauge excitation, a unit of Gg

gauge flux (described by two-unit charge of a2
μ gauge field).

Therefore, a unit a2
μ charge does not correspond to a pure Gs

twist. It is a bound state of Gs twist, Gg gauge excitation, and
Gs charge.

To calculate the Gs charge for a generic quasiparticle with
lI a

I
μ charge, first we assume that that the Gs charge has the

following form:

Gscharge = lT q. (57)

The vector q must satisfy (2,0)q = ±1 so that two units of
a1

μ charge carry a Gs charge 1. To obtain another condition
on q, we note that the trivial quasiparticles are given by
l = (K11,K12) = (2m1,4) and l = (K21,K22) = (4,0). So we
require that (2m1,4)q = 0 or 2. We find that q has four choices:

qT = (1/2, − m1/4), qT = (−1/2,m1/4),
(58)

qT = (1/2,(2 − m1)/4), qT = (−1/2,(2 + m1)/4).

We may choose qT = (1/2,−m1/4) and obtain
Tables IX–XII, which list the Gs charges, the Gs twists,
the Gg gauge sectors, and the statistics of the 16 kinds
of quasiparticles/defects in the Z2 gauge theory with Z2

symmetry which contain a topological term labeled by m1

and a mixing of the gauge Gg and symmetry Gs described by
G = Z4. Other choices of q sometimes regenerate the above
four states and sometimes generate new states.

From Tables I–XII, we see the patterns of Gs charges,
Gs twists, and statistics are all different, except the

TABLE IX. The Gs charges, the Gs twists, the Gg gauge sectors,
and the statistics of the 16 kinds of quasiparticles/defects in the SET
state m1 = 0 with qT = (1/2,−m1/4).

(l1l2) Gs charge Gs twist Gg gauge Statistics

(00) 0 0 0 0
(20) 1 0 0 0
(10) 1/2 0 e 0
(30) −1/2 0 e 0
(02) 0 0 m 0
(22) 1 0 m 0
(12) 1/2 0 em 1
(32) −1/2 0 em 1

(01) 0 1 0 0
(21) 1 1 0 1
(11) 1/2 1 e 1/2
(31) −1/2 1 e −1/2
(03) 0 1 m 0
(23) 1 1 m 1
(13) 1/2 1 em −1/2
(33) −1/2 1 em 1/2
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TABLE X. The Gs charges, the Gs twists, the Gg gauge sectors,
and the statistics of the 16 kinds of quasiparticles/defects in the SET
state m1 = 1 with qT = (1/2,−m1/4).

(l1l2) Gs charge Gs twist Gg gauge statistics

(00) 0 0 0 0
(20) 1 0 0 0
(10) 1/2 0 e 0
(30) −1/2 0 e 0
(02) −1/2 0 m −1/2
(22) 1/2 0 m −1/2
(12) 0 0 em 1/2
(32) 1 0 em 1/2

(01) −1/4 1 0 −1/8
(21) 3/4 1 0 7/8
(11) 1/4 1 e 3/8
(31) −3/4 1 e −5/8
(03) −3/4 1 m 7/8
(23) 1/4 1 m −1/8
(13) −1/4 1 em 3/8
(33) 3/4 1 em −5/8

(n1n12n2) = (010) state and the m1 = 0 state: The two states
are related by an exchange e ↔ m. Thus, the construction
produces 11 different Z2 gauge theories with Z2 symmetry.

Let us examine the quasiparticles without the Gs twist.
We see that six states contain quasiparticles with bosonic and
fermionic statistics. Those six states are described by standard
Gg = Z2 gauge theory. However, the Gs = Z2 symmetry is
realized differently. Some states contain quasiparticles with
fractional Gs = Z2 charge, while others contain quasipar-
ticles without fractional Gs = Z2 charge. In some states,
the fermionic quasiparticles carry fractional Gs = Z2 charge
while in other states, the fermionic quasiparticles carry integer
Gs = Z2 charge.

TABLE XI. The Gs charges, the Gs twists, the Gg gauge sectors,
and the statistics of the 16 kinds of quasiparticles/defects in the SET
state m1 = 2 with qT = (1/2,−m1/4).

(l1l2) Gs charge Gs twist Gg gauge Statistics

(00) 0 0 0 0
(20) 1 0 0 0
(10) 1/2 0 e 0
(30) −1/2 0 e 0
(02) 1 0 em 1
(22) 0 0 em 1
(12) −1/2 0 m 0
(32) 1/2 0 m 0

(01) −1/2 1 0 −1/4
(21) 1/2 1 0 3/4
(11) 0 1 e 1/4
(31) 1 1 e −3/4
(03) 1/2 1 em −1/4
(23) −1/2 1 em 3/4
(13) 1 1 m −3/4
(33) 0 1 m 1/4

TABLE XII. The Gs charges, the Gs twists, the Gg gauge sectors,
and the statistics of the 16 kinds of quasiparticles/defects in the SET
state m1 = 3 with qT = (1/2,−m1/4).

(l1l2) Gs charge Gs twist Gg gauge Statistics

(00) 0 0 0 0
(20) 1 0 0 0
(10) 1/2 0 e 0
(30) −1/2 0 e 0
(02) 1/2 0 m 1/2
(22) −1/2 0 m 1/2
(12) 1 0 em −1/2
(32) 0 0 em −1/2

(01) −3/4 1 0 −3/8
(21) 1/4 1 0 5/8
(11) −1/4 1 e 1/8
(31) 3/4 1 e −7/8
(03) −1/4 1 m 5/8
(23) 3/4 1 m −3/8
(13) 1/4 1 em 1/8
(33) −3/4 1 em −7/8

The other six states contain quasiparticles with semion
statistics. Those states are twisted Z2 gauge theory, which is
also known as double-semion theory.10,24 Again some of those
states have fractional Gs = Z2 charge while others are without
fractional Gs = Z2 charge. Sometimes, the semions only carry
integer Gs = Z2 charges, or only fractional Gs = Z2 charges,
or both integer and fractional Gs = Z2 charges. Those results
agree with those obtained in Refs. 65 and 66.

B. Comparison with group cohomology construction

In Ref. 57, SET phases are constructed using group
cohomology, generalizing the toric code to include global
symmetry. The physical excitations in phases with the group
extension given by G = Gs × Gg = Z2 × Z2 were also ex-
plored there, and it is of interest to compare with the results
above using a K matrix.

The group cohomology H3(Z2 × Z2,R/Z) = Z2 × Z2 ×
Z2. The generators of each of the Z2 in the cohomology group
are given by

ω11(x,y,z) = exp

(
πi

2
x1(y1 + z1 − y1 + z1)

)
, (59)

ω22(x,y,z) = exp

(
πi

2
x2(y2 + z2 − y2 + z2)

)
, (60)

ω12(x,y,z) = exp

(
πi

2
x1(y2 + z2 − y2 + z2)

)
, (61)

where x,y,z ∈ Z2 × Z2, and x = (x1,x2), where x1,2 = {0,1},
and similarly for y and z. Also, a + b = a + b mod 2. Note
that

H3(Z2 × Z2,R/Z)

= H3[Z2,R/Z) ⊕ H2[Z2,H1(Z2,R/Z)]

⊕H1[Z2,H2(Z2,R/Z)] ⊕ H3(Z2,R/Z)]

= Z2 ⊕ Z2 ⊕ Z1 ⊕ Z2

= Z2 × Z2 × Z1 × Z2. (62)
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A phase is then characterized by three-cocycles of the form

�(x,y,z) = ω
n1
11(x,y,z)ωn2

22(x,y,z)ωn12
12 (x,y,z), (63)

where n1,12,2 = {0,1}, and they can be precisely identified with
the n1, n12, n2 in Eq. (42). This can be easily checked by
computing the modular S matrix from the group cycles and
comparing with the matrix of mutual statistics obtained from
the K matrix. More explicitly, using the methods detailed in
Refs. 61, 67, and 68, the modular S matrix evaluated on the
cocycle �(x,y,z) of the Z2 × Z2 lattice gauge theory is given
by

S(g,α)(h,β)(n1,n12,n2)

= 1

4
exp

(
− πi

([
2∑
i

αihi + βigi

]
+ n1g1h1 + n2g2h2

+ n12

2
(g1h2 + h1g2)

))
, (64)

where g,h,α,β are all two-component vectors whose compo-
nents each taking values ∈{0,1}. Here g,h ∈ Z2 × Z2 are the
flux excitations and α,β denote irreducible representations of
Z2 × Z2, which correspond to charge excitations. The phase
factor appearing in the modular matrix is related to the mutual
statistics obtained in Eq. (44). It is clear that the phase factor
indeed takes the form of Eq. (44) if we interpret (α1,g1,α2,g2)
and (β1,h1,β2,h2) as our charge vectors l,l′, respectively:6,69

Sl,l′ (n1,n12,n2) = 1
4 exp(−2πilT K−1l′). (65)

We can thus immediately read off the inverse of the K matrix
from Eq. (64) to be

K−1 = 1

4

⎛
⎜⎜⎜⎝

0 2 0 0

2 2n1 0 n12

0 0 0 2

0 n12 2 2n2

⎞
⎟⎟⎟⎠ , (66)

which, up to a convention for the sign of n1, n12, n3, is precisely
Eq. (42).

In Ref. 57 the Gs charges of both flux and charge excitations
of the gauge group Gg are computed, by explicitly constructing
the Gs symmetry transformation operator and the (pair)
creation operators (i.e., ribbon operators) of the excitations.
In the language of the K-matrix construction, the gauge
charge and flux excitations correspond to charges of a3 and
a4, respectively; i.e., violation of vanishing flux in a plaquette
corresponds to a4 charges, and the a3 charges correspond to
the product of gauge variables along the ribbon connecting the
pair of excitations at the end points of the ribbon. Gs charge
fluctuations are also possible in the cocycle model, but it does
not contain Gs-flux excitation by construction there. An a2

charge would correspond to a field configuration in Ref. 57,
which does not return to its original value after traversing a
loop. Therefore we can compare the Gs charges of excitations
with those in Ref. 57 when l2 = 0.

Let us elaborate further on the conversion of gauge charges
between the two descriptions. In Ref. 57 excited states with a
pair of quasiparticle excitations are specified by |h,hg,g̃,uA〉,
where h,hg ∈ Gg , g̃,uA ∈ Gs , and uA corresponds to the
field configuration at one of the two quasiparticle sites A,B

connected by the ribbon operator. It satisfies the constraint
uAu−1

B = g̃. Flux excitations are given by h, whereas charge
fluctuations are given by hg , and Gs charges are given by
a mixture of g̃,uA. The charge fluctuations are, however,
expressed in a different basis compared to the K-matrix
description. To convert to the K matrix description, we again
have to do the transformation (suppose we focus on the
quasiparticle located at the end B, and fixing uA at the other
end)

|h,αg,βs,uA〉 = 1

|Gg × Gs |
∑
hg,g̃

ραg
(hg)ρβs

(g̃)|h,hg,g̃,uA〉,

(67)

where ραg
(g) corresponds to characters of representations of

Gg = Z2, and ρβs
(g̃) corresponds to that of Gs = Z2.70 One

can check that in terms of the diagonalized basis vectors of the
Gs transformation as specified in Table II in Ref. 57, the Gs

charge matches up with the result obtained in the K-matrix
formulation given above.

The most important observation is that it is found in Ref. 57
(see Table II there) that only in the case where n12 and l4 (i.e.,
flux charge h = 1 there) are both nonvanishing that charge
fractionalization occurs. In fact, the Gs transformation U for
the flux charge squares to −1, which is indeed the statement
that the Gs charge is halved. This is in perfect agreement
with the results in the previous section [see Eq. (50) or
Tables I–VIII].

We note also that since the modular S matrix descending
from the 3-cocycles agrees with that of the K matrix, the
braiding statistics in Ref. 57 have to agree with that obtained
using the K matrix when we turn off l2 accordingly.

VI. SUMMARY

In this paper, we studied the quantized topological terms
in a weak-coupling gauge theory with gauge group Gg and a
global symmetry Gs in d-dimensional space-time. We showed
that the quantized topological terms are classified by a pair
(G,νd ), where G is an extension of Gs by Gg and νd is
an element in group cohomology Hd (G,R/Z). When d = 3
and/or when Gg is finite, the weak-coupling gauge theories
with quantized topological terms describe gapped SET phases.
Thus, those SET phases are classified by Hd (G,R/Z), where
G/Gg = Gs . This result generalized the PSG description of
the SET phases.50,51,54,55 It also generalized the recent results
in Refs. 53 and 57. We also apply our theory to a simple case
Gs = Gg = Z2 to understand the physical meanings of the
Hd (G,R/Z) classification. Roughly, for the trivial extension
G = Gs × Gg , Hd (Gg × Gs,R/Z) describes different ways
in which the quantum number of Gs becomes fractionalized
on gauge-flux excitations, while the nontrivial extensions G

describe different ways in which the quantum number of Gs

become fractionalized on gauge-charge excitations.

ACKNOWLEDGMENTS

We would like to thank Y.-M. Lu and Ashvin Vishwanath
for discussions. This research is supported by NSF Grants
No. DMR-1005541, No. NSFC 11074140, and No. NSFC

165107-11



LING-YAN HUNG AND XIAO-GANG WEN PHYSICAL REVIEW B 87, 165107 (2013)

11274192. Research at Perimeter Institute is supported by the
Government of Canada through Industry Canada and by the
Province of Ontario through the Ministry of Research. L.Y.H.
is supported by the Croucher Fellowship.

APPENDIX A: CALCULATING H∗(X,R/Z) FROM H∗(X,Z)

We can use the Künneth formula (see Ref. 71, page 247),

Hd (X × X′,M ⊗R M ′)

 [⊕d

p=0 Hp(X,M) ⊗R Hd−p(X′,M ′)
]

⊕ [⊕d+1
p=0 TorR1 (Hp(X,M),Hd−p+1(X′,M ′))

]
, (A1)

to calculate H ∗(X,M) from H ∗(X,Z). Here R is a prin-
cipal ideal domain and M,M ′ are R modules such that
TorR1 (M,M ′) = 0. Note that Z and R are principal ideal
domains, while R/Z is not. A R module is like a vector space
over R (i.e., we can “multiply” a vector by an element of R.)
For more details on principal ideal domain and R module, see
the corresponding Wiki articles.

The tensor-product operation ⊗R and the torsion-product
operation TorR1 have the following properties:

A ⊗Z B 
 B ⊗Z A,

Z ⊗Z M 
 M ⊗Z Z = M,

Zn ⊗Z M 
 M ⊗Z Zn = M/nM,
(A2)

Zm ⊗Z Zn = Z(m,n),

(A ⊕ B) ⊗R M = (A ⊗R M) ⊕ (B ⊗R M),

M ⊗R (A ⊕ B) = (M ⊗R A) ⊕ (M ⊗R B),

and

TorR1 (A,B) 
 TorR1 (B,A),

TorZ1 (Z,M) = TorZ1 (M,Z) = 0,

TorZ1 (Zn,M) = {m ∈ M|nm = 0},
(A3)

TorZ1 (Zm,Zn) = Z(m,n),

TorR1 (A ⊕ B,M) = TorR1 (A,M) ⊕ TorR1 (B,M),

TorR1 (M,A ⊕ B) = TorR1 (M,A) ⊕ TorR1 (M,B),

where (m,n) is the greatest common divisor of m and n. These
expressions allow us to compute the tensor-product ⊗R and
the torsion-product TorR1 .

If we choose R = M = Z, then the condition TorR1
(M,M ′) = TorZ1 (Z,M ′) = 0 is always satisfied. So we have

Hd (X × X′,M ′)

 [⊕d

p=0 Hp(X,Z) ⊗Z Hd−p(X′,M ′)
]

⊕ [⊕d+1
p=0 TorZ1 (Hp(X,Z),Hd−p+1(X′,M ′))

]
. (A4)

Now we can further choose X′ to be the space of one point
and use

Hd (X′,M ′)) =
{

M ′, if d = 0,

0, if d > 0,
(A5)

to reduce Eq. (A4) to

Hd (X,M) 
 Hd (X,Z) ⊗Z M ⊕ TorZ1 (Hd+1(X,Z),M),

(A6)

where M ′ is renamed as M . The above is a form of the
universal coefficient theorem which can be used to calculate
H ∗(BG,M) from H ∗(BG,Z) and the module M .

Now, let us choose M = R/Z and compute Hd (BG,R/Z)
from Hd (BG,Z). Note that Hd (BG,Z) has a form
Hd (BG,Z) = Z ⊕ · · · ⊕ Z ⊕ Zn1 ⊕ Zn2 ⊕ · · ·. A Z in
Hd (BG,Z) will produce a R/Z in Hd (BG,R/Z) since
Z ⊗Z R/Z = R/Z. A Zn in Hd+1(BG,Z) will produce a
Zn in Hd (BG,R/Z) since TorZ1 (Zn,R/Z) = Zn. So we see
that Hd (BG,R/Z) has a form Hd (BG,R/Z) = R/Z ⊕ · · · ⊕
R/Z ⊕ Zn1 ⊕ Zn2 ⊕ · · · and

Dis[Hd (X,R/Z)] 
 Tor[Hd+1(X,Z)], (A7)

where Dis[Hd (X,R/Z)] is the discrete part of Hd (X,R/Z).
If we choose M = R, we find that

Hd (X,R) 
 Hd (X,Z) ⊗Z R. (A8)

So Hd (X,R) has the form R ⊕ · · · ⊕ R and each Z in
Hd (X,Z) gives rise to aR in Hd (X,R). Since Hd (BG,R) = 0
for d = odd, we have

Hd (BG,Z) = Tor[Hd (BG,Z)], for d = odd. (A9)

Using the Künneth formula Eq. (A4) we can also rewrite
Hd (Gs × Gg,R/Z) as

Hd (Gs × Gg,R/Z)

= Hd+1(Gs × Gg,Z)

= [⊕d+1
p=0 Hp(Gs,Z) ⊗Z Hd+1−p(G,Z)

]
⊕ [⊕d+2

p=0 TorZ1 [Hp(Gs,Z),Hd−p+2(G,Z)]
]

= Hd (Gs,R/Z) ⊕ Hd (Gg,R/Z)

⊕ [⊕d−1
p=1 Hd−p(Gs,Z) ⊗Z Hp(Gg,R/Z)

]
⊕ [⊕d−1

p=1 TorZ1 [Hd−p+1(Gs,Z),Hp(Gg,R/Z)]
]

= Hd (Gs,R/Z) ⊕ Hd (Gg,R/Z)

⊕ [⊕d−1
p=1 Hd−p[Gs,Hp(Gg,R/Z)]

]
= ⊕d

p=0Hd−p[Gs,Hp(Gg,R/Z)], (A10)

where we have used Hn(G,R/Z) = Hn+1(G,Z) for n > 0,
and H1(G,Z) = 0 for compact or finite group G. We also
used the universal coefficient theorem (A6)

Hd−p[Gs,Hp(Gg,R/Z)]

= Hd−p(Gs,Z) ⊗Z Hp(Gg,R/Z)

⊕ TorZ1 [Hd−p+1(Gs,Z),Hp(Gg,R/Z)]. (A11)

APPENDIX B: A LABELING SCHEME OF SET STATES
DESCRIBED BY WEAK-COUPLING GAUGE THEORY

The Lyndon-Hochschild-Serre spectral sequence
Hx[Gs,Hy(Gg,R/Z)] ⇒ Hx+y(G,R/Z) may help us to
calculate the group cohomology Hd (G,R/Z) in terms of
Hx[Gs,Hy(Gg,R/Z)]. We find that Hd (G,R/Z) contains a
chain of subgroups,

{0} = Hd+1 ⊂ Hd ⊂ · · · ⊂ H 1 ⊂ H 0 = Hd (G,R/Z), (B1)
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such that Hk/Hk+1 is a subgroup of a factor group of
Hk[Gs,Hd−k(Gg,R/Z)],

Hk/Hk+1 ⊂ Hk[Gs,Hd−k(Gg,R/Z)]/Hk, k = 0, . . . ,d,

(B2)

where Hk is a subgroup of Hk[Gs,Hd−k(Gg,R/Z)]. Note that
Gs has a nontrivial action on Hd−k(Gg,R/Z) as determined
by the structure Gs = G/Gg . We also have

H 0/H 1 ⊂ H0[Gs,Hd (Gg,R/Z)],
(B3)

Hd/Hd+1 = Hd = Hd (Gs,R/Z)/Hd .

In other words, the elements in Hd (G,R/Z) can be one-to-one
labeled by (x0,x1, . . . ,xd ) with

xk ∈ Hk/Hk+1 ⊂ Hk[Gs,Hd−k(Gg,R/Z)]/Hk. (B4)

If we want to use (y0,y1, . . . ,yd ) with

yk ∈ Hk[Gs,Hd−k(Gg,R/Z)] (B5)

to label the elements in Hd (G,R/Z), then such a labeling
may not be one-to-one and it may happen that only some
of (y0,y1, . . . ,yd ) correspond to the elements in Hd (G,R/Z).
However, for every element in Hd (G,R/Z), we can find a
(y0,y1, . . . ,yd ) that corresponds to it.
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