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Theory of half-metallic double perovskites. II. Effective spin Hamiltonian and disorder effects
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Double perovskites such as Sr2FeMoO6 are materials with half-metallic ground states and ferrimagnetic Tc’s
well above room temperature. This paper is the second of our comprehensive theory for half-metallic double
perovskites. Here we derive an effective Hamiltonian for the Fe core spins by “integrating out” the itinerant Mo
electrons and obtain an unusual double-square-root form of the spin-spin interaction. We validate the classical
spin Hamiltonian by comparing its results with those of the full quantum treatment presented in a companion
paper [O. N. Meetei et al., Phys. Rev. B 87, 165104 (2013)]. We then use the effective Hamiltonian to compute
magnetic properties as a function of temperature and disorder and discuss the effect of excess Mo, excess Fe,
and antisite disorder on the magnetization and Tc. We conclude with a proposal to increase Tc without sacrificing
carrier polarization.
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Strong electron correlations and the interplay among
charge, spin, and lattice degrees of freedom lead to a wide
range of spectacular phenomena in transition-metal oxides1

such as high-Tc superconductivity, colossal magnetoresis-
tance, and large thermopower.

Half metals with fully spin polarized ground states provide
another example of such unique and spectacular phenomena.
Among the known examples, double perovskites (DPs) are of
particular interest due to their high ferromagnetic Tc’s along
with the possibility of integrating different functionalities
with oxide electronics.2 One of the best-studied half-metallic
DPs is Sr2FeMoO6 (SFMO) with Tc = 420 K, well above
room temperature.2–4 DPs have the form A2BB′O6, which is
derived from the simple ABO3 perovskite structure with a
three-dimensional (3D) checkerboard ordering of B and B′
ions. DPs have a range of fascinating properties from spin
liquids to multiferroics, as well as from metals to multiband
Mott insulators.2,3,5–7

This article is the second part of our comprehensive theory
for half-metallic double perovskites. Along with its companion
paper8 (hereafter referred to as paper I), it is an extension of
our recent Letter.9 We begin by summarizing the first paper
where we discuss the full quantum Hamiltonian describing
core spins on Fe coupled to conduction electrons through a
generalized double-exchange mechanism. We calculated the
magnetic and electronic properties as a function of temperature
using exact diagonalization of the “fast” electronic degrees
coupled to “slow” core spin configurations generated by
classical Monte Carlo simulations (ED + MC). By retaining
the electronic degrees of freedom, we obtained information
about the temperature-dependent density of states and the
destruction of the fully polarized half-metallic ground state
through thermal fluctuations. One of our central results is that
the conduction electron polarization at the chemical potential
is directly proportional to the core-spin magnetization. This
finding is significant because it indicates that if one can derive
an effective Hamiltonian for the core spins, it would be possible
to deduce the electronic polarization, a quantity of central
importance for spin injection and spin transport, but one that

is difficult to measure directly. The effective Hamiltonian also
has the advantage that it can be used to simulate large system
sizes compared to severe size limitations faced by ED + MC
methods.

With this motivation, here we focus on describing the
properties of the Fe core spins by “integrating out” the
itinerant Mo electrons. The main results are as follows:
(1) We derive a new effective Hamiltonian, Heff , for the
classical spins by generalizing, in a nontrivial way, the
Anderson-Hasegawa analysis for manganites10 to double
perovskites. The functional form of Heff is different from
standard Heisenberg or Anderson-Hasegawa Hamiltonians.
(2) We validate Heff by comparing its spin wave dispersion
and temperature-dependent magnetization M(T ) with that of
the full Hamiltonian obtained from the ED + MC method. Heff

indeed captures the magnetic properties of the full Hamiltonian
at all temperatures whereas the Heisenberg Hamiltonian can
only describe the low-temperature behavior. (3) We have
performed the first 3D finite-temperature calculations of
magnetic properties of DPs with accurate estimates of Tc using
finite-size scaling. (4) The effective Hamiltonian also allows
us to efficiently study the effects of disorder on M(T ). While
both excess Fe and Mo decrease the saturation magnetization
and Tc, antisite disorder, in which Fe and Mo exchange
places, behaves differently; although magnetization drops, Tc

is not affected. (5) The previous result forms the basis of
our proposal to increase Tc without sacrificing conduction
electron polarization. We propose that putting excess Fe and
compensating the loss of carriers with La doping can indeed
lead to a dramatic increase in Tc.

We start by briefly describing the full quantum Hamiltonian.
We then solve the problem of two unit cells and derive the
effective exchange Hamiltonian between two Fe core spins
and generalize this form to the infinite lattice.

For large Hund’s coupling JH, Fe3+ in the 3d5 configuration
saturates the “up” manifold and forms a large spin S = 5/2
that we treat classically with a local axis of quantization along
Si . Mo5+ (4d1) contributes to conduction in t2g orbitals. Due
to the symmetry of t2g orbitals, dαβ orbitals can only delocalize
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in αβ planes11 (αβ = xy,yz,xz). For all the Mo sites j , we
choose the same (global) axis of quantization. The generalized
double-exchange Hamiltonian9,12–15 that describes the core
spins interacting with conduction electrons is

H = −t
∑

〈i,j〉,σ
(εiσ d

†
i↓cjσ + H.c.)

− t ′
∑

〈j,j ′〉,σ
c
†
jσ cj ′σ + �

∑
i

d
†
i↓di↓, (1)

where diσ (ciσ ) are fermion operators on the Fe (Mo) sites
with spin σ . The orientation (θi,φi) of the classical spins Si

affects the Mo-Fe hopping via εi↑ = − sin(θi/2) exp(iφi/2)
and εi↓ = cos(θi/2) exp(−iφi/2).

I. EXACT SOLUTION OF TWO-SITE PROBLEM

We solve the Hamiltonian in Eq. (1) exactly analytically
for two unit cells, shown schematically in Fig. 1. This is a
generalization of the Anderson and Hasegawa analysis for
manganites10 applied to double perovskites.

In a single unit cell, there are three states derived from the
Fe↓ and Mo↑,↓ t2g orbitals. We label the unit cells as i and
j , and without loss of generality choose a coordinate system
such that one of the core spins Si is aligned with the z axis,
and the other core spin Sj lies in the x-z plane [Fig. 1(a)]. This
particular choice of coordinates simplifies the calculation as
it gauges away the φ dependence. Thus, ε↑ = sin(θi/2) and
ε↓ = cos(θi/2), where θ is the relative angle between Si and
Sj . The two-unit-cell Hamiltonian is given by

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

� 0 −t 0 0 −γ t

0 0 0 − sin(θ/2)t 0 0

−t 0 0 − cos(θ/2)t 0 0

0 − sin(θ/2)t − cos(θ/2)t � t sin(θ/2) −t cos(θ/2)

0 0 0 t sin(θ/2) 0 0

−γ t 0 0 − cos(θ/2)t 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

in the basis of {Fei↓, Moi↑, Moi↓, Fej↓, Moj↑, Moj↓}. Here
γ = 1 for nearest-neighbor (NN) and 0 for next-nearest-
neighbor (NNN) configurations [see Fig. 1(b)]. By converting
the 6 × 6 matrix for H in a block diagonal form, it can be solved
analytically. The eigenvalues are only a function of the angle
between the core spins Si and Sj and describe the effective
magnetic exchange Hamiltonians. For the nearest-neighbor
configuration (γ = 1), the lowest eigenvalue, describing one
electron in two unit cells which corresponds to an electronic

FIG. 1. (Color online) (a) Schematic showing energy levels at
transition-metal sites in two unit cells (formula units) of SFMO. The
Fe sites have localized S = 5/2 core spins, treated as classical vectors
with orientation (θ,φ). The parameters t,t ′, and � of the Hamiltonian,
Eq. (1), governing the dynamics of the itinerant electrons in t2g

orbitals, are also shown. (b) Nearest-neighbor (NN) and next-nearest-
neighbor (NNN) configuration of two unit cells of DPs.

density of n = 0.5, is

H FM
eff = −

√
(�/2)2 + 2t2[1 + cos(θ/2)] (3)

or equivalently

H FM
eff = −

√
(�/2)2 + 2t2[1 + √

(1 + Si · Sj )/2], (4)

where S is the unit spin vector. We obtain a very interesting
modified functional form with a double-square-root structure
(see Fig. 2) that is different from conventional Heisenberg or
previously studied Anderson-Hasegawa models.10 Note that
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FIG. 2. (Color online) Energy as a function of θ for ferromagnetic
Heff (one electron in two unit cells) and antiferromagnetic Heff

(two electrons in two unit cells). Effective Hamiltonian gives hints
for filling dependent magnetic phase transition. We include FM
Heisenberg Hamiltonian (HHeis) for comparison. Note that FM Heff

is quadratic for a broader range of θ compared to HHeis.
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the interaction is ferromagnetic with spin stiffness JFM ≡
∂2E/∂θ2 obtained by expanding the energy close to θ = 0,
where E(θ ) ≈ E(0) + (1/2)(∂2E/∂θ2)θ2 + O(θ4). We find

JFM ∼
{−t for t 
 |�|,

−t2/� for t � |�|, (5)

showing that the kinetic energy of the conduction electrons
sets the scale of the ferromagnetic exchange.

For two electrons in two unit cells, which corresponds to
n = 1, the effective Hamiltonian is obtained by adding up the
lowest two eigenvalues. For the NN configuration, the effective
Hamiltonian is antiferromagnetic given by

H AF
eff = −

√
(�/2)2 + 2t2[1 + cos(θ/2)]

−
√

(�/2)2 + 2t2[1 − cos(θ/2)]. (6)

Upon increasing the electron density (n = 0.5 → 1), we
find that the effective magnetic coupling changes from ferro-
magnetic to antiferromagnetic which is rather unconventional.
Metallic antiferromagnetism with large local moments at
a commensurate wave vector is rare in nature. Even at a
two-unit-cell level, Heff provides a hint for this transition and
illuminates the mechanism, though only discrete fillings are
accessible at this level. The filling-driven FM-AFM transition
has also been discussed by others.13 The exchange stiffness is
given by

JAF ∼
{

t for t 
 |�|,
t4/|�3| for t � |�|, (7)

with the scale for antiferromagnetism also set by the kinetic
energy of the conduction electrons.

As we will discuss in the following section, SFMO with
a conduction electron density n = 0.33 is far from any
antiferromagnetic instability. We therefore consider only the
ferromagnetic form of the two spin interaction. For conve-
nience, we define two functions F1(x) and F2(x) that capture
the NN and NNN ferromagnetic interactions respectively:

F1(x) = 8
√

2 + √
2 + 2x (8)

and

F2(x) = (5 +
√

5)
√

6 + 2
√

3 + 2x, (9)

where x = Si · Sj . Up to a constant factor of 8, F1(x) is
obtained by setting � = 0 (see Appendix) in Eq. (4). A similar
procedure for the NNN exchange with γ set to zero in Eq. (2)
yields F2(x).

II. EFFECTIVE SPIN HAMILTONIAN

Here we extend the analysis of ferromagnetic two-spin
interaction discussed in the previous section to a full lattice in
order to study the magnetic properties of SFMO. The effective
spin Hamiltonian with NN and NNN interactions has the form

Heff = −J1

∑
〈i,j〉

F1(Si · Sj ) − J2

∑
〈〈i,j〉〉

F2(Si · Sj ), (10)

where F1(x) and F2(x) are defined in Eqs. (8) and (9),
respectively, and x = Si · Sj .

FIG. 3. (Color online) (a) Spin wave spectrum of full Hamiltonian
and the Heff . (b) M(T ) comparison between full Hamiltonian, Heff ,
and Heisenberg Hamiltonian. All simulations are done with an 8 × 8
system due to the high computational cost of the exact diagonalization
and Monte Carlo calculations.

We justify this Hamiltonian in two steps. First, we fix the
values of J1 and J2 by matching the spin wave dispersion of
Heff with that of the full quantum Hamiltonian H [Eq. (1)]. In
the second step, we compare the magnetization as a function
of temperature, M(T ), obtained from Heff and H. In the details
described below, we show that our effective Hamiltonian
completely describes the magnetic properties of SFMO at all
temperatures.

For small θ , F1(2)(cos θ ) ≈ const. + (1/2)θ2, which is the
same as that of the Heisenberg interaction. The particular
choice of prefactors [8 for F1 and (5 + √

5) for F2] allows
this simple comparison. It is therefore not surprising that the
spin wave spectrum obtained by expanding Heff around the
FM ground state for small-angle deviations is the same as
the Heisenberg model with NN and NNN interactions. As
shown in Fig. 3(a), we can match the spin wave spectrum
of the full quantum Hamiltonian with that of Heff by tuning
J1 and J2. This gives us the required values of J1 and J2 in
our model. The agreement over the entire spectral range, rather
than just at small energies, is indeed remarkable. We also point
out that for the full quantum H we have used � = 2.5t and
t ′ = 0.1t ; however, the effective spin Hamiltonian is relatively
insensitive to the value of � (see Appendix) and at the level of
spin waves, the effects of � and t ′ are captured through J1 and
J2. This justifies the simplifying assumption of � = 0 used to
obtain F1(2)(x).

For the second step of validating Heff , we perform
ED + MC calculations for the full quantum Hamiltonian along
with classical Monte Carlo simulations for Heff and for the
Heisenberg Hamiltonian. In Fig. 3(b) we present a comparison
of the temperature-dependent magnetization M(T ) calculated
for each of these three Hamiltonians on an 8 × 8 system. It is
remarkable to observe that M(T ) calculated from Heff agrees
remarkably well with that obtained for the full Hamiltonian
at all temperatures thereby validating Heff . Note that the
Heisenberg Hamiltonian is only able to explain M(T ) at low
temperatures and fails at intermediate temperatures T � Tc/2.

Note that the full quantum model with classical spins
coupled to conduction electrons has low-lying fermionic
excitations. From a functional integral description, integrating
out the fermions would give rise to various extra exchange
terms like longer range interactions and four or more spin
exchanges. The fact that we can reproduce M(T ) using Heff

at all temperatures shows that the effect of such terms is
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FIG. 4. (Color online) (a) Magnetization as a function of tem-
perature, M(T ), of Heff by classical Monte Carlo calculations for
increasing 3D system sizes: 83, 123, and 163. (b) Estimating the
thermodynamic Tc using finite-size scaling. M(T ) for different system
sizes collapses to a universal function close to Tc with universal
critical exponents. We used 3D O(3) universality class exponents and
ε = |T − Tc|/Tc is the reduced temperature. As a result, we found
Tc = 0.14t for SFMO.

negligible and we indeed capture the most important magnetic
exchange interactions within our model.

The agreement between M(T ) for Heff and the full quantum
Hamiltonian also indicates that both J1 and J2 are temperature
independent. Although it is not clear a priori why this is the
case, the fact that Tc is much less than the bandwidth provides
a reasonable justification for the temperature independence of
the exchange constants up to temperatures of order Tc.

Phase transition and determination of Tc. The primary
advantage of the classical Hamiltonian Heff is our ability
to simulate much larger system sizes compared to those
using ED + MC methods. We have performed the first 3D
finite-temperature simulations of magnetic properties using
classical Monte Carlo on up to 163 unit cells on an fcc
lattice, as shown in Fig. 4(a). We have determined Tc using
the finite-size scaling of M(T ). According to the finite-size
scaling hypothesis, M(T ) for a system of size L3 is described
by a function of the form M(T ,L) = L−β/νF(εL1/ν) where
F(x) is a universal function and ε = |T − Tc|/Tc. The critical
exponents β = 0.36 and ν = 0.70 are known for the 3D
O(3) universality class. Using Tc as a fitting parameter, we
plot M(ε)Lβ/ν against εL1/ν for L = 8, 12, and 16. For the
true thermodynamic Tc all curves, of different system sizes,
collapse onto a single curve, as shown in Fig. 4(b) providing
an estimate of Tc = 0.14t for SFMO. Comparing with the
experimental Tc = 420 K gives t = 0.27 eV which is in good
agreement with electronic structure calculations.4

Low-temperature spin wave contribution to M(T ). Stan-
dard ferromagnetic spin waves produce a T 3/2 reduction of the
magnetization, also known as the Bloch T 3/2 law.16 However,
in Fig. 3(c), M(T ) is linear at low T and this linear behavior in
fact persists up to a relatively large fraction of Tc. We explain
this difference between the Bloch law and the calculated linear
behavior as arising from the difference between classical and
quantum magnons. The classical Hamiltonian is equivalent
to taking the S → ∞ limit of the quantum Hamiltonian but
keeping Tc ∼ JS2 constant. The T 3/2 law is restricted to
a temperature scale T0 � Tc/S, the magnon bandwidth, or
equivalently to T0/Tc ∼ 1/S. Therefore the range of temper-
atures to observe the Bloch law is completely quenched in

classical calculations and highly suppressed in the experiment
due to the large S = 5/2 on Fe.

In order to understand the origin of the linear temperature
dependence of the magnetization, we consider the reduction
in M(T ) due to spin waves described by

M(T ) = M0

[
1 −

∫
1stB.Z.

d3q

eβJSwq − 1

]
, (11)

where the integral is over the first Brillouin zone. For small
q, the dispersion for magnons wq ∼ q2. As S → ∞ the
exponential can be expanded at all temperatures: eβJSwq =
eβTcwq/S ≈ 1 + βTcwq

S
for a constant Tc. Using this expansion

and evaluating the integral gives M(T ) ∼ M0(1 − αT ) where
α = O(1). Thus classical spin waves indeed provide a natural
explanation of the linear T dependence of the magnetization at
low T.

The reason for the robustness of the linear M(T ) de-
pendence up to relatively high temperatures is the peculiar
double-square-root form of Heff (see Fig. 2). Compared to
the Heisenberg Hamiltonian, Heff is harmonic (E ∼ Jθ2) for
a larger domain of θ . Therefore magnon-magnon scattering
which is mainly due to the nonharmonic part of the Hamil-
tonian is highly suppressed and that explains why the spin
wave regime and correspondingly the linear T behavior of
M(T ) survives up to relatively high T. Similar M(T ) has been
observed in experiments both on single crystals17 and on thin
films.18

III. DISORDER

In SFMO, there are three common types of disorder:
excess Fe, excess Mo, and antisite disorder (see Fig. 5).
By using Heff , we perform large-scale calculations of the
temperature-dependent magnetic properties on systems up to
163 to investigate the effects of disorder. Finite-size effects
close to Tc are highly suppressed with increasing system
size as shown in Fig. 4(a). We start the discussion with the
general chemical formula Sr2Fe1+yMo1−yO6 with y greater
(smaller) than zero corresponding to excess Fe (Mo), followed

FIG. 5. (Color online) Types of disorder: (a) excess Fe, (b) excess
Mo, (c) antisite disorder. Black, blue, and red lines represent FM
bonds, the broken FM bonds, and the superexchange between Fe
sites.
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FIG. 6. (Color online) Effects of Fe and Mo disorder for
Sr2Fe1+yMo1−yO6 using Heff and comparing it with experiments.
(a) Fe-rich (y > 0) M(T ), (b) Mo-rich (y < 0) M(T ), (c) Tc as a
function of y, (d) saturation magnetization, M(0), with y compared
with experiments (Ref. 19).

by antisite disorder. We conclude with a proposal to increase
Tc without sacrificing conduction electron polarization.

Excess Fe. For y > 0, as seen in Fig. 5(a) Fe replaces Mo
sites which has two main effects: First, it reduces the total
conduction electron density that weakens the double-exchange
mechanism. Second, when two Fe sites are close to each other,
the strong antiferromagnetic superexchange locks the spins.
We estimate the strength of this superexchange S(S + 1)JAF ∼
34 meV based on TN = 750 K for a similar compound LaFeO3

with S = 5/2 spins on Fe. The excess Fe spin with the down
orientation on the Mo site couples antiferromagnetically to
the four neighboring up spins creating a local puddle that
enhances ferromagnetism in its neighborhood. Capitalizing
on this enhanced ferromagnetism will form the basis of our
proposal to enhance Tc.

Figure 6(a) shows that the saturation magnetization M(0)
drops with increasing amount of excess Fe, largely because
of its antiferromagnetic coupling to the neighboring Fe sites
[see Fig. 6(d)]. For small values of y, Tc does not change
significantly, then drops rapidly [Fig. 6(c)] beyond y � 0.1.
The initial insensitivity of Tc on y can be attributed to the
two effects of excess Fe canceling each other: (1) Reduction
of conduction electrons weakens FM, and (2) formation of
ferromagnetic puddles locally stabilizes FM. The behavior of
both M(0) and Tc as a function of y is in good agreement with
experiments.19,20

Excess Mo. Excess Mo (y < 0) leads to a dilution of the
ferromagnetic bonds (see Fig. 5) as well as an increase in
conduction electron density. The detrimental effects of dilution
and broken ferromagnetic bonds on the magnetization as a
function of T are shown in Fig. 6(b) and reflected directly in
the rapid decrease of saturation magnetization M(0) and Tc as
a function of y [see Fig. 6(d)]. Once again these results are

FIG. 7. (Color online) (a) Antisite disorder results for Tc and
saturation magnetization, M(0) (both normalized with respect to
their disorder-free values) compared with experiments. (b) Proposal
to increase Tc by La and Fe doping, LaxSr2−xFe1+yMo1−yO6.
Tc(y) for compensated (x = 3y) and uncompensated (x = 0). The
uncompensated Tc(y) is compared with experiments (Ref. 19).

in good agreement with experiments.19 The behavior of M(0)
in off-stoichiometric SFMO is also in agreement with DFT
calculations.21

Antisite disorder. A realization of antisite disorder (AS)
in which Fe and Mo sites replace each other is shown in
Fig. 5(c). This is the most prevalent type of disorder in
SFMO. It can be thought of as a combination of excess Fe
and Mo disorder while keeping the carrier density constant.
We quantify AS disorder using δ the fraction of Fe atoms that
are on the Mo sublattice; δ = 0.5 is a fully disordered system.
Figure 7(a) shows that M(0) drops linearly with a slope of
(1 − 2δ), primarily due to the Fe spin on the wrong sublattice
flipping from the parallel to the antiparallel direction, as shown
in Fig. 5(c). Tc appears to be insensitive to AS disorder,
primarily because two effects balance each other. While the
broken FM bonds in the Mo-rich regions weaken FM, the
puddles of Fe-rich regions have the opposite effect. Although
Fe sites are coupled antiferromagnetically in these puddles, it
locally creates stronger ferromagnetic domains. We believe
that these two effects balance each other and Tc does not
change significantly with antisite disorder, again in very good
agreement with experiments.19

Proposal to increase Tc. We conclude with a proposal to
increase Tc without sacrificing conduction electron polariza-
tion. We propose adding excess Fe, that locally creates strong
ferromagnetic puddles, and simultaneously adding extra La
to compensate the loss of carriers. Our results are shown in
Fig. 7(b) and suggest that with adequate amount of La doping,
Tc can be increased by about 100 K.

The general formula for both La and Fe doping is
LaxSr2−xFe1+yMo1−yO6. Assuming that the Fe valency re-
mains fixed at +3, and only Mo valency changes from +5
to +5 + η with doping, the charge balance dictates that η =
(2y − x)/(1 − y). The corresponding carrier concentration is
n = (1 + x − 3y)/3. This implies that setting y = 3x exactly
compensates the lost carriers due to excess Fe and fixes
the filling at n = 1/3. The dependence of Tc on excess
Fe for the compensated case is shown in Fig. 7(b). We
find that Tc increases by as much as 100 K for y = 0.25.
Next we argue that our approach for enhancing Tc is better
than only La doping. It is known that La substitution of
x = 1 gives rise to a 15% increase of Tc.22 However, this
is accompanied by a huge increase in the extent of antisite
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FIG. 8. (Color online) Comparison of energy as a function of θ

for the two-site problem calculated using the spin Hamiltonian in
Eq. (4) by setting � = 0 (solid black) and � = 2.5 (dashed red).
They agree well for all values of θ .

disorder.22 For x = 1, Mo valence changes from +5 to +4
(using η = −x). The reduced electrostatic attraction between
the Mo and the surrounding oxygen octahedra leads to an
expansion of the MoO6 octahedra. As the volume of the
MoO6 octahedra approaches that of FeO6, the B-B ′ ordering
becomes fragile2 and the increased antisite disorder reduces the
polarization significantly.8 In contrast, our proposal suggests
a 25% increase in Tc is obtained for y = 0.25 and x = 0.75,
with an average Mo valence of + 4.66 which is unlikely to
give rise to large amounts of antisite disorder.

Finally, we have checked that the proposed system with
excess Fe and La compensation is indeed fully polarized at
T = 0 using ED + MC. The increase in Tc by about 100 K
is extremely encouraging as that would increase the room-
temperature polarization significantly.

IV. CONCLUSION

We have found a nontrivial generalization of the double-
exchange mechanism that is relevant for driving ferromag-
netism in the double-perovskite half metals. The effective
magnetic Hamiltonian Heff with the double-square-root form,

obtained after integrating out the itinerant electrons, is
very different from standard Heisenberg or double-exchange
Hamiltonians and agrees remarkably well when compared
with the full quantum Hamiltonian. Heff is found to retain the
harmonic θ2 form in the canting between neighboring spins
up to a larger range of θ . As a result classical spin waves
provide a good description of the temperature-dependent
M(T ), with suppressed magnon-magnon scattering. We have
performed large-scale simulations of Heff with different types
of disorder. From our insights on the dependence of the
saturation magnetization and Tc on disorder, we propose a
mechanism to substantially increase Tc by balancing excess Fe
doping and compensating the loss of carriers with La doping.
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APPENDIX: INCLUDING EFFECTS OF � IN Heff

Here we show that the effects of � can be included in
the spin Hamiltonian shown in Eq. (10) which we derived
by setting � = 0. As justified in the main text, for small
deviations from the ferromagnetic ground state the spin wave
dispersion has the Heisenberg form which can be captured by
appropriately fitting the spin wave spectrum of Heff to that of
the full quantum Hamiltonian with � �= 0. There is, however,
still the question of how well the model describes large spin
canting which is the main focus of our work. In Fig. 8 we
have shown the energy as a function of θ for the two-site
problem calculated using the spin Hamiltonian in Eq. (4) by
setting � = 0 and � = 2.5. It is clearly seen that once the
spin stiffness is appropriately chosen to match the low-energy
dispersion, the two models agree within a precision of less than
3% for all values of θ . This justifies our approach of using the
simplest model with � = 0.
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