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The double perovskite material Sr2FeMoO6 has the rare and desirable combination of a half-metallic ground
state with 100% spin polarization and ferrimagnetic Tc � 420 K, well above room temperature. In this two-part
paper, we present a comprehensive theoretical study of the magnetic and electronic properties of half-metallic
double perovskites. In this paper we present exact diagonalization calculations of the “fast” Mo electronic degrees
coupled to “slow” Fe core spin fluctuations treated by classical Monte Carlo techniques. From the temperature
dependence of the spin-resolved density of states, we show that the electronic polarization at the chemical potential
is proportional to magnetization as a function of temperature. We also consider the effects of disorder and show
that excess Fe leaves the ground state half-metallic while antisite disorder greatly reduces the polarization. In
the companion paper [Phys. Rev. B 87, 165105 (2013)] we will derive an effective classical spin Hamiltonian
that provides a new framework for understanding the magnetic properties of half-metallic double perovskites
including the effects of disorder. Our results on the dependence of the spin polarization on temperature and
disorder have important implications for spintronics.
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I. INTRODUCTION

Materials with half-metallic ground states in which conduc-
tion electrons are fully spin polarized and have ferromagnetic
transition temperatures Tc well above room temperature are
very rare in nature. Only two families of materials, the
double perovskites and the Heussler alloys, have exhibited
this special combination of properties. Consequently, they
hold the potential for tremendous advancements in the field of
spintronics as spin injectors and tunneling magnetoresistance
devices.

Here, we focus on double perovskites which have generated
considerable interest due to their close connections to ternary
perovskites. The perovskite family is known to exhibit a
wide variety of exotic properties including high-Tc super-
conductivity, colossal magnetoresistance, and ferroelectricity.
Moreover, since these materials are derived from the same
general family there is the potential to grow lattice-matched
layered materials with different functional properties in each
layer. Double perovskites with the general formula A2BB ′O6

are a composite of two different ternary perovskites ABO3 and
AB ′O3 arranged in a three-dimensional (3D) checkerboard
pattern. The additional flexibility of choosing two different
transition metal ions in double perovskites opens up many new
avenues of material exploration, such as the juxtaposition of
strong spin-orbit coupling and strong interaction by combining
5d and 3d transition metals. Already the range of properties
spans metals to band insulators, and multiband Mott insulators,
as well as ferromagnets, antiferromagnets, ferroelectrics,
multiferroics, and spin liquids.1–5

The most widely studied double perovskite Sr2FeMoO6

(SFMO) has a half-metallic ground state with a ferromagnetic
transition temperature Tc ≈ 420 K (Refs. 2,6) which is well
above room temperature. In spite of having a complex chemical
structure, SFMO is a simple system to understand from a
theoretical point of view. In contrast to ferromagnets such
as iron, there is a clear separation of the localized (Fe

spins) and itinerant degrees of freedom (originating from
Mo). Unlike the manganites, SFMO has neither Jahn-Teller
distortions nor competing magnetic ground states. Finally,
in contrast to dilute magnetic semiconductors, disorder is
not an essential aspect of the theoretical problem. Previous
theoretical work on half-metallic double perovskites includes
pioneering T = 0 electronic structure calculations,2,6 model
Hamiltonians analyzed using various mean-field theories,7–9

and two-dimensional (2D) simulations.10

In this paper, hereafter referred to as paper I, and its com-
panion paper, hereafter referred to as paper II,11 we expand on
our recent work12 on the magnetic and electronic properties of
SFMO. Several new results as well as important details which
were omitted in our Letter12 are covered. Broadly, paper I
focuses on the properties of the itinerant quantum electrons
and their effect on magnetism, while paper II describes in
detail the derivation of the effective spin Hamiltonian and the
results obtained from it.

The main results presented in paper I are as follows
(1) Using a variational analysis, we obtain a phase diagram as
a function of the parameters in the Hamiltonian and show that,
for the specific parameters of SFMO, it is firmly in the ferri-
magnetic phase. (2) We present the temperature dependence of
the spin resolved density of states. The electronic polarization
decreases from 100% at T = 0 with increasing temperature
and vanishes above Tc. More importantly, it shows that the
polarization at the chemical potential is proportional to the core
spin magnetization as a function of temperature. This result
is crucial because it allows us to infer electronic properties
from magnetic properties obtained from the effective spin
Hamiltonian. (3) Finally, we present the dependence of the
polarization on disorder. In particular, we show that for Fe rich
systems the ground state remains half-metallic while antisite
disorder rapidly reduces polarization.

Paper I is organized as follows. In Sec. II, we describe
the generalized double exchange Hamiltonian used to study
SFMO. In Sec. III, we present a variational analysis that
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describes the dependence of ground state magnetic properties
on Hamiltonian parameters. For parameters relevant to SFMO,
the ground state is deep in the ferrimagnetic phase. The results
of a perturbative spin wave analysis are discussed in Sec. IV.
We show that the spin stiffness, which sets the scale for
magnetic Tc, is two orders of magnitude smaller than the
electronic energy scale, allowing us to separate the itinerant
degrees of freedom from the localized spins in the spirit
of the Born-Oppenheimer approximation. The temperature
dependence of the spin resolved density of states (DOS) is
presented in Sec. V. Finally, in Sec. VI, we present the effect
of disorder on electronic polarization and conclude with some
remarks about future directions in Sec. VII.

II. MODEL HAMILTONIAN

SFMO can be well understood in terms of a generalized
double exchange model.7–10,12–14 The large Hund’s coupling
on Fe3+ (3d5) leads to a local S = 5/2 core spin. Since locally
all the spin up states on Fe are occupied, the only channel
for the 4d1 electron on Mo5+ to delocalize is by hopping
from one Mo site to the next via the unoccupied Fe down
states. This naturally leads to an antiferromagnetic coupling
between the core Fe spins and the itinerant Mo electrons due
to Pauli’s exclusion principle. The conduction band is formed
by hybridization of the Fe t2g↓ and Mo t2g orbitals via oxygen.
Symmetry dictates that dαβ electrons delocalize only in the
(α,β) plane15 where α,β = x,y,z. The model Hamiltonian
describing SFMO is

H = −t
∑

〈i,j〉,σ
(εiσ d

†
i↓cjσ + H.c.)

−t ′
∑

〈j,j ′〉,σ
c
†
jσ cj ′σ + �

∑
i

d
†
i↓di↓, (1)

where di (ci) denotes the fermion operator on the ith Fe
(Mo) site. The electronic spin on Fe site is quantized along
the direction of the local spin, whereas on the Mo site the
quantization is along a global z axis. t is the nearest neighbor
Fe-Mo hopping amplitude, t ′ is the direct hopping amplitude
between Mo sites, and � is the charge transfer energy between
Fe t2g↓ and Mo t2g states. In the global frame of the Mo spins,
the orientation of the ith Fe core spin is given by (θi,φi) and
it determines the effective hopping amplitude between Fe and
Mo sites through εi↑ and εi↓, which are defined as

εi↑ = − sin(θi/2) exp(iφi/2),
(2)

εi↓ = cos(θi/2) exp(−iφi/2).

A schematic of the level structure is shown in Fig. 1. In
pure SFMO, we ignore direct Fe-Fe hopping and Fe-Fe
superexchange because the Fe sites are far apart16 and the
spatial extent of the 3d orbitals is much smaller compared to
4d orbitals. However, these can be important in the presence
of disorder since two Fe sites can be right next to each other.

At first glance, the double exchange model for double
perovskites looks like the antiferromagnetic Kondo lattice
model.17 However, there are significant differences: In the
case of the antiferromagnetic Kondo lattice, the local moments
are quantum degrees of freedom whereas in SFMO the

FIG. 1. (Color online) Schematic showing energy levels at the
transition metal sites in two unit cells (formula units) of SFMO. The
Fe sites have localized S = 5/2 core spins (red arrows), treated as
classical vectors with orientation (θ,φ). The up and down sectors
on the Fe site are split by a combination of the Hund’s coupling
JH and onsite Hubbard term U . The parameters t , t ′, and � of the
Hamiltonian (1), governing the dynamics of the itinerant electrons
(blue arrows) in t2g orbitals, are also shown.

local moments are large (S = 5/2) and treated classically.
Another consequence of the large local moments in SFMO
is that they cannot be completely screened by the available
conduction electrons. Finally, as mentioned above, Pauli’s
exclusion principle is responsible for the antiferromagnetic
coupling between the local moments and the itinerant electrons
in SFMO. In contrast, the coupling in Kondo lattice arises from
antiferromagnetic exchange interaction and is typically small
compared to the band width.

III. VARIATIONAL ANALYSIS

We begin by studying the T = 0 properties of the quantum
Hamiltonian in Eq. (1). As a function of Hamiltonian param-
eters, we explore the relative stability of various magnetic
phases shown in Fig. 2(c): ferromagnetic (FM), stripe anti-
ferromagnet (AF1), and Néel antiferrmomagnet (AF2). Note
that the FM phase has induced moments on Mo sites which
are aligned in the opposite direction. So, technically, it is a
ferrimagnetic state, but we will focus on the core spins and
refer to this state as FM. We use the same nomenclature in
paper II also. In Fig. 2(a), we present the �-n phase diagram
for t ′ = 0, where 0 � n � 3 is the electron filling. SFMO
corresponds to n = 1/3. Part (b) shows the t ′-n phase diagram
for � = 0. The phase boundaries are determined by the relative
energy of conduction electrons in the various variational spin
backgrounds. For the FM state, the energy is calculated by
integrating over the filled states in the band structure shown in
Fig. 4(a). Details for the AF1 and AF2 phases are provided in
Appendix A. Our result in Fig. 2(a) is consistent with previous
calculations.10

The scale for the magnetic Tc is set by t , and we will
show in paper II that choosing t = 0.27 eV, consistent with
band structure calculations,6 leads to the experimental Tc ≈
420 K of SFMO. For the other Hamiltonian parameters, we
use t ′/t = 0.1 and �/t = 2.5 which are also in agreement with
band structure calculations.6 It is clearly seen from Figs. 2(a)
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FIG. 2. (Color online) Variational calculation: (a) �-n magnetic
phase diagram for t ′ = 0; here � is the charge transfer offset
between the Mo t2g orbitals and the Fe t2g↓ orbitals, and n is the
filling. (b) t ′-n phase diagram for � = 0. Solid lines are first-order
phase boundaries and the black dot indicates SFMO parameters.
Schematics of the variational magnetic phases, ferromagnet (FM),
stripe antiferromagnet (AF1), and usual Néel antiferromagnet (AF2),
are shown in (c). The red arrows indicate Fe spins and blue dots
indicate Mo sites.

and 2(b) that, for the parameters relevant to SFMO (indicated
by black dots), the ground state is deep inside the FM phase.
This justifies our claim that SFMO does not have competing
magnetic phases.

It is, however, interesting to note that t ′ has a major role in
determining the phase boundaries. This is due to the fact that
the effect of t ′ is very different in the different phases. For t ′ =
0, the AF1 phase has one-dimensional bands and increasing
|t ′| introduces two-dimensional hopping which changes the
nature of the bands dramatically. However, in the case of FM
and AF2 phases, the bands are two-dimensional in nature even
for t ′ = 0 and, therefore, the effect of t ′ is not as strong as
in the AF1 phase. The t ′ < 0 region of our phase diagram
can be mapped onto the t ′ > 0 region by the symmetry of the
Hamiltonian: E(t ′,�,n) ≡ E(−t ′, − �,3 − n).

On the other hand, � has very little effect on the T = 0
phase diagram because its effect is very similar in all the
phases. However, we expect increasing � to significantly
reduce Tc. These phase diagrams are useful in guiding
materials searches with optimized parameters.

IV. SPIN WAVES

In this section, we calculate the spin wave dispersion and
the spin stiffness of SFMO using a perturbative analysis.
At low temperatures, the core Fe spins fluctuate about the
fully magnetized ferromagnetic state, and these fluctuations
affect the mobile electrons. To lowest order, we can view the
core spin fluctuations as generating spin wave configurations
that are static on the time scale of the electronic degrees of
freedom. This separation of time scales for the core spins and
the itinerant electrons will be justified a posteriori, and plays
an important role for later results.

The classical core spins in a frozen spin wave can be
described as

Sz
i = cos θ, Sx

i = sin θ cos(q · ri), S
y

i = sin θ sin(q · ri),

(3)

where q is the wave vector of the spin wave. We assume that the
angle θ with respect to the quantization axis of the FM ground
state is small and we explicitly calculate the corrections to the
energy up to O(θ2). In Eq. (1) the fermion operators on the Fe
sites are described with respect to the local quantization axis.
In the analysis here, for small angular perturbations of the Fe
spins, it is convenient to redefine the creation (annihilation)
operators on Fe sites in the same global frame as the operators
on Mo sites. We choose

d
†
i↓ = cos (θ/2) f

†
i↓ − sin (θ/2) e−iq·rif

†
i↑ (4)

where f
†
iσ (fiσ ) is the creation (annihilation) operator in the

global frame for an electron with spin σ on the ith Fe ion. The
Hamiltonian in Eq. (1) can now be rewritten in terms of these
new operators. Keeping only terms up to O(θ2), we get

H = H0 + θH1 + θ2H2, (5)

where

H0 = �
∑
iσ

f
†
iσ fiσ − t

∑
〈i,j〉

(f †
i↓cj↓ + H.c.)

− t ′
∑

〈〈i,j〉〉,σ
(c†iσ cjσ + H.c.), (6)

H1 = t

2

∑
〈i,j〉

(e−iq·rif
†
i↑cj↓ + eiq·rif

†
i↓cj↑ + H.c.), (7)

H2 = t

4

∑
〈i,j〉

(f †
i↓cj↓ − f

†
i↑cj↑ + H.c.). (8)

Here H0 is the unperturbed Hamiltonian, while H1 de-
scribes the hybridization of spin up and spin down orbitals
which is unique to the double perovskites. Finally, H2 contains
terms responsible for narrowing the spin down conduction
band while allowing spin up electrons to delocalize. The details
of the calculation are given in Appendix B.

One subtlety that is worth pointing out is that we are now
working in an overcomplete basis. The Pauli blocking of local
spin up states on Fe sites is enforced in the global frame by con-
straining f

†
i↑ and f

†
i↓ operators to appear only in specific linear

combinations that correspond to the local down spin operators.
We obtain the spin wave dispersion by taking the second

derivative with respect to θ of the total change in energy:

E(q) = 1

2N

d2

dθ2

∑
|k|�kF

δε(k,q), (9)

where the sum is taken over all occupied levels. δε(k,q) [see
Eq. (B14)] is the change in energy up to O(θ2) of the state
in the conduction band labeled by k. The resulting spin wave
dispersion is shown in Fig. 3. It agrees very well with the spin
wave dispersion calculated by exact diagonalization on a finite
lattice, also shown in Fig. 3. No fitting parameters are used.
The analytical result from the perturbative analysis, presented
here, has the advantage of not being limited by finite system
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FIG. 3. (Color online) Comparison of spin wave dispersion
from perturbation theory [Eq. (9)] with that obtained from exact
diagonalization of Eq. (1) in a spin wave background. We find
excellent agreement with no fitting parameters. Also note that the
energy scale of magnetic interactions is two orders of magnitude
smaller than the electronic band width (≈8t).

sizes. In paper II, we use the spin wave dispersion to extract
the parameters of the effective spin Hamiltonian.

We have further calculated the spin stiffness, Jeff =
limq→0(∂2E(q)/∂q2). For parameters relevant to SFMO, we
find that Jeff = −0.035t , which is about two orders of
magnitude smaller than the band width (W ≈ 8t) of the
itinerant electrons. This justifies our initial assumption that,
on the time scale of the electrons, the spin waves can indeed
be approximated by static spin configurations.

V. TEMPERATURE DEPENDENT DENSITY OF STATES

We use a method that combines exact diagonalization with
Monte Carlo (ED + MC) to calculate temperature dependent
properties of SFMO.10,12 For each spin configuration, the
electronic energy is calculated by exact diagonalization, which
is then used to update the spin configuration in the Monte
Carlo algorithm. The assumption that the fast electrons relax
immediately to the given spin texture has already been justified
in Sec. IV by the clear separation of time scales for the local
and itinerant degrees of freedom. At each Monte Carlo step,
a new random spin orientation is generated using Marsaglia’s
method18 and acceptance is based on the Metropolis algorithm.
All calculations are done on lattices up to 16×16, and twisted
boundary conditions are used to minimize finite-size effects.

We use ED + MC method to calculate the spin resolved
density of states (DOS) as a function of temperature, shown in
Fig. 4. At all temperatures, the spin quantization axis is defined
along the direction of magnetization, which is the natural axis
for a ferromagnet.

Figure 4(a) shows the spin polarized bands of the FM
ground state (red indicates spin down while blue denotes spin
up). The bonding band of the Fe t2g↓ and Mo t2g↓ orbitals forms
the conduction band while the antibonding band is pushed up
in energy. The spin up band in the middle comes from the
Mo t2g↑ orbitals and they do not hybridize with the spin down
orbitals in the perfect FM state.

We find that, for T = 0, only the spin down bonding
band is occupied and SFMO is a half metal, in agreement
with photoemission experiment,19 and electronic structure
calculations.2,6 For 0 < T < Tc, the broken time reversal
symmetry leads to very different DOS for spin up and spin
down sectors with the DOS at chemical potential dominated
by spin down. In clear distinction from the strictly T = 0 case,
both spin sectors have nonzero DOS at all energies. Finally,
for T > Tc, there is no preferred spin direction and DOS for
spin up and down are identical.

As seen in Figs. 4(b)–4(d), the DOS varies smoothly
with temperature. This has an important consequence that
the polarization of the conduction electrons at the chemical
potential, P = (N↓ − N↑)/(N↓ + N↑) where Nσ is the density
of states of spin σ at the chemical potential, is proportional
to the magnetization of Fe core spins, M , as a function of
temperature.12 In Fig. 5(a), M and P are plotted as functions
of temperature. For better visualization of the proportionality,
we have shown a parametric plot of P against a normalized
M in Fig. 5(b), with T as the implicit parameter. A linear fit
describes the data very well. The proportionality of P and
M is crucial experimentally because P (T ) is the quantity of
interest in spintronics applications but is difficult to measure.
Our result allows direct inference of polarization from the
magnetization, the latter being a much simpler quantity to
measure experimentally. From a theoretical point of view also,
the proportionality of P and M allows us to focus only on
the magnetism. In paper II, we derive an effective classical
spin Hamiltonian which describes the thermodynamics of the
Fe core spins. It facilitates accurate calculation of magnetic
properties and, by virtue of the proportionality, also provides
realistic results for the electronic polarization.
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μ
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FIG. 4. (Color online) (a) Electronic polarized band structure of FM ground state (blue indicates spin down and red, spin up). At SFMO
filling, only the lowest spin down band is occupied, thereby confirming the half-metallic ground state. (b), (c), and (d) show the spin resolved
density of states at T = 0, T ≈ Tc/2, and T > Tc respectively. The black horizontal line indicates chemical potential at SFMO filling.
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FIG. 5. (Color online) (a) Core spin magnetization (M) and
polarization of the conduction electrons at the chemical potential
(P ) of SFMO as a function of temperature calculated using the
ED + MC method on an 8×8 lattice. (b) Parametric plot of P (T )
against normalized M(T ). It is clear that P (T ) is proportional to
M(T ). The dashed line indicates exact proportionality.

VI. EFFECT OF DISORDER

In this section, we discuss the effect of disorder on
electronic polarization at low T . Its effect on magnetization
is described in paper II. We consider three types of disorder:
(1) excess Fe, (2) excess Mo, and (3) antisite disorder.

Excess Fe: The general formula of off-stoichiometric
SFMO is LaxSr2−xFe1+yMo1−yO6 and Fe rich systems cor-
respond to y > 0. Some Mo is substituted by Fe, which
generates antiferromagnetic superexchange coupling S(S +
1)JSE ≈ 34 meV between Fe on neighboring sites. The ex-
change coupling JSE is estimated from that of the AF insulator
LaFeO3 with TN ≈ 750 K using S(S + 1)JSE = kBTN/2. Since
Mo is also the source of itinerant electrons, excess Fe decreases
the filling. In Fig. 6(a) we show the electronic polarization
at zero temperature, P (0), for Fe rich SFMO. An important
observation is that the conduction electrons remain fully spin
polarized. The persistent half-metallicity can be understood
intuitively from the fact that at low temperatures the strong
superexchange interaction locks the excess Fe on the wrong
sublattice in a perfect antiferromagnetic configuration with
respect to its neighboring Fe sites. Consequently, the extra Fe
sites are prevented from participating in the delocalization of
itinerant electrons, while the rest of the lattice continues to have
a ferromagnetic ground state with spin polarized conduction
electrons.

Excess Mo: When Mo substitutes for Fe, there are regions
with Fe spins that are much farther apart than in the perfect
lattice. In addition, the density of carriers in Mo-rich systems
is higher than that of pure SFMO. Figure 6(a) shows that,
unlike excess Fe, P (0) rapidly decreases as a function of
excess Mo (y < 0), consistent with DFT calculations.20 The
Mo rich regions constitute small regions that can be described
by tight binding lattices with no preferred spin direction. They
introduce states with both spins in the entire energy range of
the conduction band which therefore reduces the polarization
at the chemical potential.

Antisite: Finally, antisite disorder, which is the most
common type of disorder, arises when some Fe sites exchange
positions with Mo sites. It can be thought of as a combination
of Fe rich and Mo rich regions while keeping the overall

-0.1 0 0.1
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1

P(
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0 0.05 0.1 0.15 0.2
δ

0
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0.6

0.8

1

P(
0)
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Mo rich Fe rich

FIG. 6. (Color online) (a) Zero temperature polarization of
conduction electrons, P (0), in off-stoichiometric SFMO with general
formula LaxSr2−xFe1+yMo1−yO6 (y > 0 is Fe rich while y < 0 is Mo
rich). (b) P (0) as a function of antisite disorder. Antisite disorder is
characterized by δ which is the fraction of Fe on the wrong sublattice.
Fe rich systems remain half-metallic while antisite disorder or Mo
excess rapidly decreases the polarization.

stoichiometry unchanged. Since antisite disorder introduces
Mo rich regions, P (0) decreases with increasing antisite
disorder as shown in Fig. 6(b). The extent of antisite disorder is
parametrized by δ which is defined as the fraction of Fe on the
wrong sublattice; complete disorder corresponds to δ = 0.5.
While antisite disorder behaves quantitatively like excess Mo,
the electronic polarization decreases much faster with antisite
disorder. Given that fact that it is also the most common form
of disorder, it is of crucial importance that antisite disorder
be minimized in order to get the high electronic polarization
required for spintronics applications.

VII. CONCLUSION

In conclusion, we have presented here a general framework
for understanding half-metallic double perovskites. While the
generalized double exchange model predicts other magnetic
phases as a function of Hamiltonian parameters, we have
shown that for SFMO only the FM phase is relevant. We have
calculated the temperature dependence of the spin resolved
DOS and found a proportionality between the temperature de-
pendence of the electronic polarization and the magnetization,
which is a significant result. It offers a much simpler method
for determining the polarization. Finally, we have shown that
Fe rich systems have a half-metallic ground state while antisite
disorder greatly reduces the polarization. Such understanding
is crucial for spintronics applications.

The results of paper I become the starting point for paper II.
Motivated by the proportionality between the electronic polar-
ization and the core spin magnetization, in paper II, we focus
entirely on the large local spins on Fe sites and infer electronic
properties from the magnetization. We derive an the effective
magnetic Hamiltonian describing the thermodynamics of
the classical spins. The effective Hamiltonian offers a new
framework for understanding the magnetic properties in half
metallic double perovskites, including the effects of disorder
on the saturation value of magnetization and the Tc. We also
take advantage of the fact that Fe excess does not change the
half-metallic ground state to propose a novel way of increasing
Tcwithout sacrificing the polarization.

165104-5



O. NGANBA MEETEI et al. PHYSICAL REVIEW B 87, 165104 (2013)

ACKNOWLEDGMENTS

We thank D. D. Sarma for fruitful discussions. Funding
for this research was provided by the Center for Emergent
Materials at the Ohio State University, an NSF MRSEC
(Award No. DMR-0820414).

APPENDIX A: VARIATIONAL ANALYSIS

The electronic bands for the variational magnetic states
can be obtained by Fourier transforming the double exchange
Hamiltonian in Eq. (1) into momentum space. The minimum
dimension of the Hamiltonian matrix in momentum space
is related to the periodicity of the configuration. FM has a
periodicity of one unit cell and every unit cell has three states,
therefore HFM(k) is a 3×3 matrix. However AF1 and AF2
have a minimum periodicity of two unit cells. Thus HAF1(k)
and HAF2(k) are six dimensional. The Hamiltonian matrices
are

HFM(k) =
⎛
⎝ � 0 −2tg1(k)

0 −2t ′g2(k) 0
−2tg1(k) 0 −2t ′g2(k)

⎞
⎠,

where

g1(k) = cos

(
kxa + kya

2

)
+ cos

(
kxa − kya

2

)
,

(A1)
g2(k) = cos(kxa) + cos(kya),

HAF1(k) =

⎛
⎜⎜⎜⎜⎜⎝

� 0 ξk 0 0 ξ ∗
k

0 δk 0 ξk γk 0
ξ ∗
k 0 δk 0 0 γk

0 ξ ∗
k 0 � ξk 0

0 γk 0 ξ ∗
k δk 0

ξk 0 γk 0 0 δk

⎞
⎟⎟⎟⎟⎟⎠

,

ξk = −2t cos(kya/2)eikxa/2,
(A2)

δk = −2t ′ cos(kya),

γk = −2t ′ cos(kxa),

HAF2(k) =

⎛
⎜⎜⎜⎜⎜⎝

� 0 ψk 0 0 νk

0 0 0 νk λk 0
ψk 0 0 0 0 λk

0 νk 0 � ψk 0
0 λk 0 ψk 0 0
νk 0 λk 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

ψk = −2t cos[(kx + ky)a/2],
(A3)

νk = −2t cos[(kx − ky)a/2],

λk = −2t ′[cos(kxa) + cos(kya)].

The relevant energy bands are obtained by diagonalizing
these matrices as a function of k, and the energy of the
conduction electrons is calculated by integrating over filled
levels. The relative energy of FM, AF1, and AF2 determines
the phase boundaries in Fig. 2.

APPENDIX B: SECOND-ORDER PERTURBATION THEORY

We describe here the perturbative calculation of the spin
wave dispersion and the spin stiffness of SFMO. The Fe core

spins cant by a small angle θ in a spin wave configuration
[Eq. (3)], and we calculate corrections to the energy levels of
the FM ground state up toO(θ2). The unperturbed Hamiltonian
H0 in Eq. (6) gives four bands with eigenvectors given by

a
†
1(k) = α(k)f †

k↓ + β(k)c†k↓,

a
†
2(k) = −β(k)f †

k↓ + α(k)c†k↓, (B1)

a
†
3(k) = c

†
k↑, a

†
4(k) = f

†
k↑.

The corresponding eigenvalues are

ε1(k) = �

2
− t ′g2(k) − �(k),

ε2(k) = �

2
− t ′g2(k) + �(k), (B2)

ε3(k) = −2t ′g2(k), ε4(k) = �,

where

α(k) = ε3(k) − ε1(k)√
A(k)

, (B3)

β(k) = 2tg1(k)√
A(k)

, (B4)

�(k) =
√

4t2g2
1(k) + [�/2 + t ′g2(k)]2, (B5)

A(k) = [ε1(k) − ε3(k)] 2 + [2tg1(k)] 2, (B6)

g1(k) = cos

(
kxa + kya

2

)
+ cos

(
kxa − kya

2

)
, (B7)

g2(k) = cos(kxa) + cos(kya). (B8)

The first band is the bonding Fe↓-Mo↓ band. The second is the
antibonding band. The third and fourth are the Mo↑ and Fe↑
bands respectively. The distance between two Fe ions is a. For
SFMO filling only the lowest band ε1(k) is occupied.

We next describe how the energy of the lowest band ε1(k)
is affected by H1 and H2. First-order correction in the canting
angle θ is

ε
(1)
1 (k,q) = θ〈a1(k)|H1|a1(k)〉 = 0. (B9)

The second-order correction has several contributions. One of
them is

〈a1(k)|H2|a1(k)〉 = t g1(k)α(k)β(k). (B10)

The mixing of the lowest band with the antibonding band gives

∑
k′

|〈a2(k′)|H1|a1(k)〉|2
ε1(k) − ε2(k′)

= 0. (B11)

The mixing with the Mo↓ band gives

∑
k′

|〈a3(k′)|H1|a1(k)〉|2
ε1(k) − ε3(k′)

= t2g2
1(k − q)α2(k)

ε1(k) − ε3(k − q)
. (B12)

Finally, the mixing with the Fe↑ band gives

∑
k′

|〈a4(k′)|H1|a1(k)〉|2
ε1(k) − ε4(k′)

= t2g2
1(k)β2(k)

ε1(k) − �
. (B13)

Upon collecting all the second-order correction terms and
simplifying them algebraically, we get the energy correction
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in lowest band up to O(θ2):

δε(k,q) = ε
(1)
1 (k,q) + ε

(2)
1 (k,q)

= θ2t2g2
1(k)

A(k)
[ε3(k) − ε1(k)]

+ θ2t2

A(k)

g2
1(k − q) [ε1(k) − ε3(k)]2

ε1(k) − ε3(k − q)
. (B14)

Notice that the energy correction in Eq. (B14) has two
terms. The first term comes from narrowing of conduction
band in the spin wave background. It increases spin stiffness.
The second term comes from hybridization of spin down
conduction band with the Mo↑ band and it reduces the spin
stiffness. As shown in Eq. (9), the spin wave dispersion can be
calculated by summing δε(k,q) over all filled states.

We can also use the result from perturbative anal-
ysis to calculate the change in spin stiffness, Jeff =
limq→0[∂2E(q)/∂q2], as a function of Hamiltonian

FIG. 7. Jeff as a function of Hamiltonian parameters: (a) Jeff vs
t ′ for � = 2.5t , (b) Jeff vs � for t ′ = 0.1t . Filling is fixed at SFMO
value (n = 1/3).

parameters. Figure 7(a) shows the dependence of Jeff on t ′
while Fig. 7(b) shows how Jeff changes with �. Increasing
either t ′ or � decreases Jeff as expected.
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