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Spin Hall and spin Nernst effect in dilute ternary alloys
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We report on ab initio studies of the spin Hall and spin Nernst effect in dilute ternary alloys. Our calculations
are performed for a Cu host with different types of substitutional impurities. The obtained numerical results are
well approximated by Matthiessen’s rule relying on the constituent binary alloys. We show that the spin Nernst
effect can be significantly more efficient in a ternary alloy with respect to the related binary alloys. Together with
the application of Matthiessen’s rule this opens an easy way to design materials for spintronics applications.
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The spin Hall effect (SHE), which was predicted by
Dyakonov and Perel in 1971,1 is one of the most promising
research topics in the field of spintronics. It describes the
separation of electrons with antiparallel spins lateral to an
electrical current.2 The direct experimental verification was
provided 33 years later by Kato et al.,3 who observed the
spin accumulation optically via Kerr rotation. However, an
indirect measurement of the SHE was performed by Fert
et al.4 much earlier via studies of the anomalous Hall effect
(AHE) in ternary alloys. Nowadays, the inverse SHE offers
a simple method to detect a spin current via its conversion
into a charge current.5 The importance of the SHE for
practical applications arises from the advantage to generate
spin currents in nonmagnetic materials without spin injection
from ferromagnets. Normally, three main contributions to
the SHE, as well as for the AHE,6 are discussed in litera-
ture. Namely, they are the intrinsic contribution due to the
anomalous velocity7,8 and the extrinsic skew-scattering9,10 and
side-jump11 mechanisms. In dilute alloys the skew-scattering
contribution is dominating.12–14 In that limit the spin Hall
conductivity depends strongly on the impurity type, which can
even cause a sign change of the spin Hall current in one and
the same host crystal.15,16 Recently, a related phenomenon,
the spin Nernst effect (SNE), was studied theoretically.17–22

This phenomenon is connected to the rapidly emerging field
of spin caloritronics.23,24 The SNE describes the creation of a
transverse spin current by an applied temperature gradient, in
contrast to an electric field used for the SHE. The mechanisms
contributing to the SNE are the same as introduced for the SHE.

Until now, the skew-scattering mechanism for both
phenomena mentioned above was considered for binary
alloys.12,15,16,20 In this Rapid Communication we present
first-principles studies of the SHE and SNE in dilute Cu-
based ternary alloys. Due to the long spin diffusion length,
together with the strong SHE and SNE reachable by impurity
tailoring,15,16,20,25,26 copper seems to be a good candidate for
possible spintronic applications. Our work is motivated by
the fact that in real systems more than one type of impurity
can be present. Obviously, it is desirable to understand the
influence of this to the considered phenomena. We will show
that optimal combinations of different types of impurities
in the same host material can enhance the generated spin
current in comparison to the related binary alloys. Our
investigated systems are Cu(A1−wBw) alloys, where a Cu

host contains two different types of substitutional impurities
labeled as A and B. In the considered dilute impurity limit, both
charge and spin conductivity are inversely proportional to the
impurity concentration.9,10,12–15 For our studies we fix the total
concentration of impurities at 1 at. % to obtain comparable
results. Thus, the quantity w ∈ [0,1] describes the weighting
between the impurities A and B. It implies for w = 0 and w = 1
the system reduces to the binary alloys Cu(A) and Cu(B),
respectively.

In our approach a fully relativistic Korringa-Kohn-Rostoker
method27 is used to obtain the electronic structure of the
host and the impurity system. The transport properties are
calculated within the semiclassical theory solving the lin-
earized Boltzmann equation.15,28 In the considered dilute
limit, the impurities are assumed to be noninteracting and
consequently the scattering cross sections can be added.
Therefore, the microscopic transition probability of the ternary
alloy Cu(A1−wBw) can be expressed by those of the related
binary alloys Cu(A) and Cu(B) as29

P ss ′AB
kk′ (w) = (1 − w)P ss ′A

kk′ + wP ss ′B
kk′ . (1)

Here, P ss ′
kk′ describes the scattering probability from an initial

state {k,s} to a final state {k′,s ′}, where for each crystal
momentum k there are two degenerate relativistic spin states
labeled as s = + and s = −.15,27 After solving the Boltzmann
equation considering the corresponding spin-dependent mi-
croscopic transition probability, a conductivity tensor for each
spin direction is calculated.15

Within the two-current model, which is employed for
our calculations, the charge conductivity σ̂ and the spin
conductivity σ̂ s are represented by

σ̂ = σ̂+ + σ̂−, σ̂ s = σ̂+ − σ̂−. (2)

This is a good approximation for a Cu host, where the
electron spin polarization, expressed in units of h̄/2, is higher
than 0.99.27 The results of our calculations presented below
are obtained neglecting spin-flip transitions for the SNE but
including them for the SHE, following to the corresponding
approaches of Refs. 20 and 15.

For a nonmagnetic cubic host with z as the global
quantization axis, the spin-dependent conductivity tensors are
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given by

σ̂+ =

⎛
⎜⎝

σ+
xx −σ+

yx 0

σ+
yx σ+

xx 0

0 0 σ+
zz

⎞
⎟⎠ = (σ̂−)T , (3)

where the superscript T denotes the transpose. The resistivity
tensors ρ̂± = (σ̂±)−1 have similar structures. On can easily
obtain

ρ+
xx = σ+

xx

(σ+
xx)

2 + (σ+
yx)

2 , ρ+
yx = − σ+

yx

(σ+
xx)

2 + (σ+
yx)

2 , (4)

where we have written only the components important for
the further discussion. The relation between σ̂+ and σ̂− in
Eq. (3) is valid due to the time and space inversion symmetry
of the considered systems. Consequently, it is sufficient to
describe the longitudinal conductivity σxx = 2σ+

xx and the spin
Hall conductivity σ s

yx = 2σ+
yx in terms of one spin channel.

The ratio of these quantities defines the spin Hall angle
(SHA)

α = σ s
yx

σxx

= σ+
yx

σ+
xx

= −ρ+
yx

ρ+
xx

, (5)

which describes the efficiency of charge into spin current
conversion.

The transport properties of a ternary alloy can be obtained
either by a full calculation based on Eq. (1) and the formalism
of Ref. 15 or by the approximation of Matthiessen’s rule
applied for each spin channel separately,29,30

ρ̂+AB ≡ ρ̂+AB(w) = (1 − w)ρ̂+A + wρ̂+B. (6)

Here, ρ̂+AB is the resistivity tensor of the ternary alloy
Cu(A1−wBw). The resistivity tensors of the related binary
alloys are ρ̂+A = (σ̂+A)−1 and ρ̂+B = (σ̂+B)−1. The inversion
yields

σAB
xx = 2ρ+AB

xx(
ρ+AB

xx

)2 + (
ρ+AB

yx

)2 ,

(7)

σ sAB
yx = − 2ρ+AB

yx(
ρ+AB

xx

)2 + (
ρ+AB

yx

)2

for the longitudinal conductivity and the spin Hall conductivity
(SHC) of the considered ternary alloy.

As a first result, we present a comparison between the full
calculation and the approximation by Matthiessen’s rule. For
this purpose alloys of the form Cu(A0.5B0.5) are chosen. In
Fig. 1 the relative deviations of the full calculations from
Matthiessen’s rule,

�ρij

ρij

= ρ+AB
ij − 1

2

(
ρ+A

ij + ρ+B
ij

)
1
2

(
ρ+A

ij + ρ+B
ij

) , (8)

are visualized for ρ+AB
xx and ρ+AB

yx . Obviously, for the consid-
ered alloys Matthiessen’s rule gives a good approximation
of the full calculation with maximal relative deviations
less than 15%. The reason for this is the approximately
spherical Fermi surface of copper, since for spherical bands
Matthiessen’s rule holds exactly.30 For the longitudinal re-
sistivity, the deviations are always positive,29,30 since ρ+

xx is
mainly determined by the symmetric part, (P ++

kk′ + P ++
k′k )/2,

FIG. 1. (Color online) Relative deviations of the longitudinal and
Hall resistivity, �ρxx/ρxx (upper left half) and �ρyx/ρyx (lower right
half), respectively, for Cu(A0.5B0.5) alloys.

of the transition probability. By contrast, the Hall resis-
tivity ρ+

yx is caused by the antisymmetric part, (P ++
kk′ −

P ++
k′k )/2.31 Consequently, �ρyx/ρyx is not restricted to be

positive.
Now, let us consider the results of our calculations in the

whole range of the weighting factor w for some selected alloys,
which illustrate distinct characteristics. They are shown in
Fig. 2 for the spin Hall and longitudinal conductivity given
by Eq. (7) as well as for the spin Hall angle defined by
Eq. (5). The lines are obtained applying Matthiessen’s rule of
Eq. (6), while the dots are results from the full calculations. For
simplicity, the impurity labels A and B are chosen in a way that
σA

xx > σB
xx . The behavior of the conductivities can be explained

under the assumption |ρ+AB
yx | � ρ+AB

xx , which is valid for the
considered systems. Then σAB

xx ≈ 2(ρ+AB
xx )−1 holds, where

ρ+AB
xx has a linear slope within Matthiessen’s rule given by

Eq. (6). Therefore, we obtain hyperbolae for the longitudinal
conductivities, which are most pronounced if the ratio σA

xx/σ
B
xx

is high. The situation for the spin Hall conductivity is more
interesting. As can be seen in Fig. 2, this quantity can have
an extremum. Importantly, the absolute value of the extremum
is not necessarily the largest value in the considered impurity
regime. For instance, in the case of Cu(Zn1−wTiw) the maximal
absolute value is present for the Cu(Zn) binary alloy. This
originates from the opposite signs in the Hall conductivities
for the corresponding binary alloys. Only for Cu(Au1−wBiw)
an actual enhancement with respect to the constituent binary
alloys is observed. Furthermore, an extremum occurs not in all
cases. Within Matthiessen’s rule and the assumption |ρ+AB

yx | �
ρ+AB

xx , one can easily obtain an approximate position of the
extremum,

wE ≈ ρ+A
xx

ρ+B
xx − ρ+A

xx

− 2ρ+A
yx

ρ+B
yx − ρ+A

yx

, (9)

for the SHC, which can be observed if wE ∈ [0,1]. Contrary
to the SHC, the spin Hall angle shows no extremum. This
follows, if we use Matthiessen’s rule and analyze the first
derivative of the spin Hall angle with respect to w. Indeed, with
Eqs. (6) and (7) we obtain the condition for ∂αAB/∂w = 0 as
αA ≡ −ρ+A

yx /ρ+A
xx = −ρ+B

yx /ρ+B
xx ≡ αB . However, this is the
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FIG. 2. (Color online) Spin Hall conductivity, longitudinal con-
ductivity, and spin Hall angle for three Cu(A1−wBw) alloys. An
approximation via Matthiessen’s rule (lines) and the values obtained
with full calculations (dots) are shown. All curves are normalized
to have the absolute values for Cu(A) alloy equal to one. The
multiplication of the curves with the scaling factors provides the
actual values of the conductivities in units of (μ� cm)−1 and α

(dimensionless).

trivial solution of a constant SHA for the ternary alloy. It
implies that while the SHC can be enhanced for independent
scatterers in a ternary alloy, αAB is limited by the SHA of the
constituent binary alloys.

Let us consider now the spin Nernst effect, which describes
the creation of a spin current density j s

y transverse to an applied
temperature gradient ∇xT . Both quantities are connected by
the spin Nernst conductivity (SNC) as j s

y = σSN∇xT .20 To
characterize the efficiency of the SNE, it is reasonable to
use the ratio of j s

y to the longitudinal heat current density
qx = −κ∇xT , where κ is the heat conductivity.32 Within
the formalism of Ref. 20 we obtain the efficiency of the
SNE as

γ = σSN

−κ
=

2
T

(L+
1,xx

L+
0,xx

L+
0,yx − L+

1,yx

)

− 2
eT

( (L+
1,xx )2

L+
0,xx

− L+
2,xx

) ≈ e

L+
1,xx

L+
0,xx

L+
0,yx − L+

1,yx

L+
2,xx

,

(10)
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FIG. 3. (Color online) Spin Nernst conductivity, heat conductiv-
ity, and the ratio of both calculated via Matthiessen’s rule (lines) and
full calculations (dots) at 300 K. The given factors provide σSN in
A/K m, κ in W/K m, and γ in 1/V .

where e = |e| is the elementary charge and the transport
coefficients L̂+

n are defined by20

L̂+
n (T ) = −1

e

∫
dE σ̂+(E)

(
− df0(E,T )

dE

)
(E − μ)n. (11)

The approximation in Eq. (10) is valid, since the term
(L+

1,xx)2/L+
0,xx is negligible for metals.32

In Fig. 3 the SNC, the heat conductivity and the ratio of
both is presented for the three ternary alloys. As was shown
above, the SHC and the charge conductivity are well described
by Matthiessen’s rule. Consequently, this rule can be applied
to approximate the transport coefficients of Eq. (11) for the
ternary alloys. For this aim, we apply Matthiessen’s rule given
by Eq. (6) to an energy range around the Fermi level. Then,
Eq. (7) yields the conductivities of the ternary alloys which
are used to express the higher order moments of Eq. (11). The
results shown in Fig. 3 approve the validity of this procedure.
The SNC has an extremum for all the considered systems in
contrast to the SHC. The curves for κ are hyperbolalike, similar
to σxx in Fig. 2. This is a consequence of the Wiedemann-
Franz law, which states the proportionality of charge and heat
conductivity in metals. However, in contrast to the SHE, the
efficiency of the SNE can have an extremum as shown in the
lower panel of Fig. 3. Namely, for the Cu(Bi1−wTiw) alloy an

161114-3



RAPID COMMUNICATIONS

TAUBER, FEDOROV, GRADHAND, AND MERTIG PHYSICAL REVIEW B 87, 161114(R) (2013)

optimal weighting of the impurities can enhance γ by a factor
of 4.5. Unfortunately, the extremum position cannot be easily
expressed in terms of the transport properties of the binary
alloys. All terms in Eq. (10) involve higher moments, which
are strongly influenced by the actual energy dependence of
the conductivities, according to Eq. (11). However, despite
the lack of a simple analytic expression, pronounced extrema
can be found graphically by applying our procedure based
on Matthiessen’s rule and using the known results for the
constituent binary alloys.

In summary, we have studied the spin transport in dilute Cu-
based ternary alloys transverse to applied electric fields (spin
Hall effect) or temperature gradients (spin Nernst effect). We
found that the transport properties of the considered systems
are well approximated by Matthiessen’s rule. In contrast to the
longitudinal resistivities which are always underestimated, the
Hall resistivities show positive and negative deviations from
Matthiessen’s rule. We demonstrate that the spin Hall and

spin Nernst conductivity of ternary alloys can be enhanced
in comparison to the constituent binary alloys of equal total
impurity concentration. This is not valid for the efficiency
of the charge to spin current conversion described by the
spin Hall angle. However, the efficiency of the heat to spin
current conversion can be significantly enhanced in ternary
alloys. For Cu(Bi0.75Ti0.25) it is increased by a factor of 4.5 in
comparison to the Cu(Bi) alloy. This result offers a way for
efficient spin current generation from temperature gradients
in ternary alloys. In combination with Matthiessen’s rule, this
is a simple tool for material design of particular spintronics
applications.
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