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‘We use entanglement entropy signatures to establish non-Abelian topological order in projected Chern-insulator
wave functions. The simplest instance is obtained by Gutzwiller projecting a filled band with Chern number
C = 2, whose wave function may also be viewed as the square of the Slater determinant of a band insulator.
We demonstrate that this wave function is captured by the SU(2), Chern-Simons theory coupled to fermions.
This is established most persuasively by calculating the modular S-matrix from the candidate ground-state wave
functions, following a recent entanglement-entropy-based approach. This directly demonstrates the peculiar
non-Abelian braiding statistics of Majorana fermion quasiparticles in this state. We also provide microscopic
evidence for the field theoretic generalization, that the Nth power of a Chern number C Slater determinant
realizes the topological order of the SU(N ) Chern-Simons theory coupled to fermions, by studying the SU(2)3
(Read-Rezayi—type state) and the SU(3), wave functions. An advantage of our projected Chern-insulator wave
functions is the relative ease with which physical properties, such as entanglement entropy and modular S-matrix,
can be numerically calculated using Monte Carlo techniques.
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It is well known that quasiparticles may go beyond the con-
ventional bosonic and fermionic statistics in two-dimensional
many-body systems. A famous example is the Laughlin
quantum Hall state that is realized by interacting electrons
in fractionally filled Landau levels.! These are described by
the Laughlin wave function,> where the quasiparticles carry
fractional statistics. This state realizes an Abelian topological
order,? described by a relatively well-understood* low-energy
effective theory, the U(1) Chern-Simons (CS) theory.

There is increasing interest in generalizations to non-
Abelian statistics, partially brought on by the recent pre-
liminary evidence for Majorana fermions in superconductor-
semiconductor junctions® and their potential as topological
quantum memories.>® Other examples of non-Abelian topo-
logical order are the v = 5/2 and v = 12/5 fractional quantum
Hall effects’ and the Moore-Read states.'? Although a general
theory and classification of these states are still absent, there is
a wide class of states effectively characterized by non-Abelian
CS theories:!! the low-energy effective theory for filling
fraction v = k/N on k Landau levels is the SU(N); CS theory.
In the simplest case of SU(2), CS theory, the elementary
excitations are Ising anyons, whose braiding transforms the
ground state, instead of just incurring phase factors corre-
sponding to anionic statistics as in the Abelian case.'> The
entanglement spectrum has also been established as a powerful
tool for identifying such phases in numerical calculations.'?
For universal quantum computation, the minimal SU(2),
non-Abelian statistics is insufficient. Instead, one needs at least
the complexity of SU(2); topological order with Fibonacci
anyons,® which may describe the fractional quantum Hall
plateau at v = 12/5. Examples of such phases are given by the
Read-Rezayi states'* and generalizations to lattice spin liquid
states;'>'® however, physical properties of these constructions
are relatively difficult to evaluate.

Fractional quantum Hall liquids are generally associated
with extreme experimental conditions such as clean sam-
ples and large magnetic fields. Yet it is increasingly being

1098-0121/2013/87(16)/161113(5)

161113-1

PACS number(s): 05.30.Pr, 03.65.Ud, 73.43.—f

appreciated that Landau levels are not the sole route to
realizing these states. It is well known that the integer
quantum Hall effect is present in Chern insulators—Iattice
band models without an external magnetic field but with a net
Berry curvature in reciprocal space.!” Analogous interacting
lattice models offer a new route to realizing topological
orders, for which there has been mounting numerical evidence
both for Abelian!322 and non-Abelian?2° states, which are
collectively referred to as fractional Chern insulators.

Recall that the Laughlin wave functions® ¥ ~ [](z; — z;)"

e~/ can be considered as the mth power of a lowest-
Landau-level integer quantum Hall state of anyons with a
reduced charge. Previously, we confirmed that the lattice
analog of this statement: the mth power of a Chern band
wave function with unit Chern number ¥ ~ v%_,, has the
topological order of a Laughlin state of order m.>’?® In
this paper, we focus on the cases when the Chern number
C > 1, which is unique to lattice models and has no simple
Landau-level counterpart. Consistent with the field theory
study in Ref. 29 and parton construction scheme proposed
in Ref. 30, we suggest that the square (power N = 2) of
C =2 Chern band wave functions ¥ ~ wé=2 are captured
by the SU(2), CS theory coupled to fermions and have
the same quasiparticle braiding statistics as the Moore-Read
Pfaffian state®! y ~ PR~ [1(zi - zj)e 14 We verify
that there are only three line:arly independent wave functions
by construction, consistent with the expected threefold ground-
state degeneracy. Especially, the wave function diagnostic
algorithm in Ref. 28 can be generalized to non-Abelian cases
and is particularly useful for many-body systems where the
entanglement spectrum is not available. With a variational
ansatz, physical measurables of these states are much simpler
to calculate, thus we are able to extract the modular S-matrix
easily and determine the quantum dimension and quasi-
particle statistics through topological entanglement entropy
(TEE)?"-?8:32:33 and prove the existence of non-Abelian quasi-
particles. This is a direct numerical measurement of the
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modular S-matrix and identification of a non-Abelian
topological-order wave function. We also generalize our
studies of ground-state degeneracy and entanglement to the
C=2,N=3@W~yl_)andC=3 N=2® ~ ¢z,
cases. These results imply the effective theory for the Nth
power of a C = k Chern insulator’s band i ~ I/Ié\]:k is the
SU(N) CS theory coupled to fermions, allowing non-Abelian
statistics when N > 1 and k > 1. Besides, these constructions
may offer access to the entire ground-state manifold with
different choices of boundary conditions of the parent Chern
insulator.

Chern number C =72 model. To construct a two-band
model with Chern number C = %2, consider a tight-binding
model on a two-dimensional square lattice with two orbitals
on each lattice site labeled by I = 1,2:

H=Y (D"l e+ (el +He)
(ij).1 (ij)

+AY (@ clyen + He), (1)
(k)

where 6;; is the azimuthal angle for the vector connecting i
and j. By counting the number of chiral modes on the physical
edges as well as within the entanglement spectrum, we verify
that the model has a finite gap between the two bands with
Chern number C = %2, respectively. Hereafter, we assume
A=1/ V2 for a maximum gap to suppress the finite-size
effect. For a system at half filling with periodic boundary
conditions, the many-body ground state occupies the valence
band below the band gap, and the corresponding wave function
x (21,22, . ..)is a Slater determinant, where z = (¥,1) contains
both the position and orbital indices.

Gutzwiller projected wave functions. Our wave functions’
construction generalizes previous chiral spin liquid parton
constructions,”’**3¢ but instead of occupying a band with
Chern number C = 1, each parton now fills up a band with
Chernnumber C > 1, e.g., the Hamiltonian in Eq. (1). Itis then
restricted to one fermion per site Hilbert space by Gutzwiller
projection. For the simplest case with two flavors of partons
labeled as spin up and spin down at half filling, the resulting
wave functionis ®(z1,22, ...) = x1(21,22, .. ) xy Z1,%2, ... ),
where Z; are the set of complementary sites of z;. Note that
all the charge degrees of freedom are now projected out,
®(z1,22, ...) is a spin wave function and is purely bosonic.
In addition, Eq. (1) has a particle-hole symmetry c; ;<
crr(=1) =" which simplifies ®(z1,22,...) = X2(21 20y et)
up to an unimportant sign. The properties of x%(z;,22, ... ) are
the major focus of this paper. Note that it is 7 /2-rotational
symmetric even though x(z1,z2, . ..) is not; although the /2
rotation symmetry is not essential to the topological properties,
it is especially helpful for their determination.”®

To construct x2(z1,22, . . . ) with periodic boundary condi-
tions, there are multiple choices of boundary conditions for
the parent Chern insulator, e.g., either periodic or antiperiodic
boundary condition along the £ and y directions in Eq. (1). Let
us denote the four corresponding projected wave functions as
|®,Dy), @,y = 0,7. Physical quantities related to the wave
functions may be calculated with variational Monte Carlo
method.?” To understand their relation and linear dependence,
we calculate the overlaps between them with variational Monte
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Carlo method on a 12 x 12 system:

(00|r7) = «,

(O |70) = o,

(07 100) = (70]00) = B,

(O |y = (70|nm) = B. 2)

Numerically, we find to very high accuracy that « = o’ =
—0.086 and 8 = B’ = 0.457. We may construct a “general-
ized” projection operator:

P =Y 10,0,)(D,,|P,@))(P,P]]

ZON" /1 « B B (70
_fwom)y | [« 1 8 g (onl 3
|\ |zn) B B 1 « (| |

100) B B a 1 (00|

Due to the nonorthogonality between the basis states, the
eigenvalues of P actually contain one 0, so the corresponding
eigenstate is projected out:

P[|lrm) — |0m) — |70) 4+ ]00)] = O, %)

where we have used 28 =14« (true to high numerical
accuracy). Thus there are only three linearly independent wave
functions by construction:

|Fy = 1LFy = 1) = (|00) 4 |07r) + [70) + |7 7)),
|Fy = 1,Fy = —1) = (|00) — [0nr) + |70) — |77)),  (5)
|Fy = —1,Fy = 1) ~(|00) + |07) — [70) — |77)),

up to phase and normalization. We have introduced the flux
threading operators Fy, and F, to label these states. The
wave functions’ linear dependence is consistent with the
ground-state degeneracy of SU(2), CS theory, as shown in
the Supplemental Material. These provide a complete basis
for candidate ground-state wave functions, i.e., other possible
constructions with different boundary conditions for partons
are shown to be linearly dependent on the wave functions
above.™®

Topological entanglement entropy. To obtain further in-
formation on the wave functions, we extract their TEE for
a 6 x 6 system following the prescription of Kitaev and
Preskill,>> which effectively cancels out the boundary and
corner contributions and exposes the topological term, given
the size of the regions exceed the correlation length. Although
the smallest length scale is only two lattice spacings for the
system size we study, it is still longer than the correlation
length & ~ 0.5 lattice spacings. In addition, the corresponding
wave-function overlaps suggest that the residue of Eq. (4) is
just ~1.3%; thus the orthogonal basis in Eq. (6) is still a good
approximation. These facts suggest that the system size is large
enough to reflect universal properties. Throughout we focus
on the Renyi entropy S, due to its ease of calculation.?”-?8:3

We find that the TEE of |®,®,) for a topologically
trivial disk-shape entanglement partition is y = 0.85 % 0.08,
in reasonable agreement with the ideal theoretical value
Asu@), =In2 ~0.693 for the SU(2), CS theory. Note that,
for an Abelian topological order with D? =3 degenerate
ground states on a torus, the expected TEE would be
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FIG. 1. (Color online) (Inset) Kitaev-Preskill scheme for extract-
ing TEE by partitioning the torus into regions A, B, and C.3? Regions
C and AB encircle the torus, leading to a state-dependent TEE of
y’, while the TEE y for region A and B has a fixed value. The
resulting 2y — y’ = —Sasc + Sas + Ssc + Sac — Sa — Sp — Sc =
—28a + 28as — Sagc is plotted for the linear combinations of wave
functions |®;). The solid curve is the theoretical value from the
SU(2), CS theory.

T
-0.50 -0.25

y = In D ~ 0.549, which deviates further from the calculated
value and is unlikely to describe these wave functions.

Modular S-matrix from entanglement entropy. A decisive
identification of the topological order is provided by extracting
the braiding properties of quasiparticles using entanglement.
Following the algorithm for a 7 /2-rotation symmetric system
in Ref. 28, we (i) calculate the TEE y’ for partitioning the
torus into two cylinders along the y direction for various
linear combinations of wave functions (see Fig. 1 inset),
then (ii) search for the states with minimum entanglement
entropy (maximum TEE y’) and identify them as the §
direction Wilson loop states of quasiparticles, and finally
(iii) establish their transformation under /2 rotation, which
gives the modular S-matrix. The numerical results of TEE
are shown as 2y — y’ for the following linear combinations:
|®1) = cosB|0m) + sin 8| 0), |P,) = sinH|00) — cos 8|7 0),
and

|®P3) = (sin6 + 0.7915 cos 0)|00)
— (sinf@+ 0.4697 cos 0)|7r0) —1.2623 cos 0|0r) (6)

for selected values of 6 shown in Figs. 1, 2(a), and 2(b),
respectively. By identifying the minima of 2y — y’, we obtain
the three orthogonal quasiparticle states, given approximately
2528

1) = —|70) —100),
2) = —|70) + 100}, @)
;) = 0.7915/00) — 0.4697|70) — 1.2623]|07).

m o m

Now consider arotation of 7 /2: the states |®, ® ) transform
as |m0) <> |0r) and |00) <> |00), which determines the
transformation of |E;). Along with Eq. (2) to ensure the
orthogonality of wave functions, it leads to the following
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FIG. 2. TEE 2y — y’ for linear combinations of wave functions:
(a) |®,) and (b) |®3). The solid curves are the theoretical values
from the SU(2), CS theory. The presence of only two minima with
2y — y’ >~ Oindicates that two of the three quasiparticles are Abelian,
while the third one must be non-Abelian.

S-matrix:
0.627 0.610 0.484
S=10.610 0.000 —-0.792]. )
0.484 —0.792 0.372

As a comparison, the ideal S-matrix for the SU(2), CS
theory is

0.5 0.707 0.5
0.707 0 —-0.707 | . C))
0.5 —0.707 0.5

S =

While there is a reasonably quantitative agreement, what
is more revealing are the robust qualitative features of
quasiparticle braiding that the obtained S-matrix Eq. (8)
implies. While the quasiparticles corresponding to |E;) and
|E3) obey Abelian statistics upon braiding, the zero diagonal
entry in the modular S-matrix for the quasiparticle of |E,) is
a signature of its non-Abelian self-statistics. Indeed, for the
Majorana fermion in the SU(2), CS theory, one Dirac fermion
composes a pair of Majorana fermions ¢ = y; + iy,»; when
one of the Majorana fermions braids with another Majorana
fermion and picks up an additional & phase, it changes the
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original annihilation operator to a creation operator and vice
versa and fails to return to the excitation-free ground state, thus
the corresponding entry in the modular S-matrix vanishes.

We make two more detailed comparisons between numerics
on these wave functions and the SU(2), CS theory, which
predicts the following connection between the eigenstates of
F, and F, in Eq. (6) and the quasiparticles:'?

|Fe = 1Fy = 1) = (I1,) + [¥,))/V2,
|Fe=1F,=—1)=(1,) = [$,)/¥V2,  (10)
|Fy = —1,Fy, =1) =loy),
where |1,), [{,), and |o,) are the $ direction Wilson loop states
of the identity, fermionic, and non-Abelian quasiparticles,
respectively. The connection between Egs. (6) and (10) gives

the expressions of the |®,®,) states in the |1y), [¥), |oy)
basis:

00) = 0.8466]1,) + 0.1101]4,) + 0.5208]0,
70) = 0.8466|1,) 4 0.1101[y,) — 0.5208]0,
Orr) = 0.1101]1,) + 0.8466|,) + 0.5208|0,
lr) = 0.1101]1,) + 0.8466|y,) — 0.5208]0,

’

’

)

’

I - -

’

consistent with Eq. (7). In addition, for an arbitrary ground
state, the value of TEE is given by*’

2y —y'=—In (Z p?/a’_lz-) , (12)
J

where d; and p; are the individual quantum dimension and the
statistical weight for the jth quasiparticle. We may derive d;
from the values of the 2y — y’ minima as In(d}) = 2y — v/},
which follows straightforwardly from Eq. (12), and we obtain
di=dy=1,d, = /2. The values of 2y — y’(9) with these
individual quantum dimensions and Eq. (11) are shown in
Figs. 1 and 2 as the solid curves and fit well with the numerical
results. In particular, d, = +/2 implies that the o quasiparticle
must obey non-Abelian statistics.

Other non-Abelian states (i) SU(3),. Such wave-function
constructions may be generalized to even more complicated
non-Abelian cases. As another example, we construct nine
candidate ground-state wave functions |®, ®,) with boundary
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conditions @, , = 0, &= 27 /3 for %3(z1,22, . ..), the cube of
the Chern-insulator wave functions. Repeating the calculations
and analysis in previous sections on a 12 x 12 system, we
obtain a “generalized” projection operator P’ (see Ref. 41),
which has only six nonzero eigenvalues; therefore, there are
only six linearly independent wave functions by construc-
tion. The m/2-rotation eigenvalues of the six corresponding
eigenstates are =1, *1, and =£i. These results are con-
sistent with SU(3), CS theory. In addition, the TEE for
a contractible entanglement partition on a 6 x 6 system is
y >~ 1.264 £ 0.073, consistent with the theoretical value of
D = [3(5 ++/5)/21"% and ysu@), = In D ~ 1.19. While we
consider this evidence sufficient, we leave further verifications
such as TEE ground-state dependence and constructions from
other boundary conditions to future works.

(ii) SU(2)3 in close connection to the Read-Rezayi state.
In analogy with Eq. (1), we may construct a triangular lattice
tight-binding model with the azimuthal angular dependence
36. The model is a two-band Chern insulator with Chern
number C = £3 for A # 0. Similar models may have potential
for the construction of bands with even higher Chern number,
and a systematic scheme to produce arbitrary Chern-number
bands has been studied in Ref. 26. We construct wave functions
with nine different boundary conditions on a 12 x 12 system.
Our results show that only four of the nine eigenvalues
of the corresponding “generalized” projection operator are
unambiguously finite, consistent with the fourfold ground-
state degeneracy of the SU(2)3 CS theory.

In conclusion we have introduced lattice wave-function
constructions for a class of non-Abelian topological phases
that (i) are readily generalized to capture SU(N); topological
order, (ii) easily generate the set of candidate ground-state
wave functions corresponding to the topological degeneracy.
and (iii) can compute physical properties with Monte Carlo
techniques, and the usefulness of entanglement in the diagnosis
and study of these wave functions. The presence of such natural
lattice wave functions holds promise that such states may be
realized in the context of fractional Chern insulators.
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