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Chiral anomaly, charge density waves, and axion strings from Weyl semimetals
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We study dynamical instability and chiral symmetry breaking in three-dimensional Weyl semimetals, which
turns Weyl semimetals into “axion insulators.” Charge density waves (CDWs) are found to be the natural
consequence of chiral symmetry breaking. The phase mode of this charge density wave state is identified as the
axion, which couples to an electromagnetic field in the topological θE · B term. One of our main results is that
“axion strings” can be realized as the (screw or edge) dislocations in the charge density wave, which provides a
simple physical picture for the elusive axion strings. These axion strings carry gapless chiral modes, therefore they
have important implications for dissipationless transport properties of Weyl semimetals with broken symmetry.
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Introduction. Topological insulators are among the most
recent active research fields in condensed matter physics.1–3

Among the remarkable aspects of topological insulators is the
ubiquitous role played by Dirac fermions. In fact, most of the
recently discovered topological insulators can be regarded as
massive Dirac fermion systems with lattice regularization.3

When the mass vanishes, we have massless Dirac fermions,
which are two copies of a Weyl fermion with opposite
chiralities. The Dirac fermions, which obey the Dirac equation,
are described by spinors with four components, while the
Weyl fermions are two-component fermions described by the
following simple Weyl equation,

±vF σ · kψ = Eψ, (1)

where ± is referred as chirality (+ for left handed, − for
right handed), and vF is the Fermi velocity. Since the Dirac
fermion can be decomposed into two copies of the Weyl
fermion, the latter is a more elementary building block. In
fact, it is our current understanding of nature that elementary
fermions such as quarks and electrons fall into the Weyl
fermion framework because the left-handed and right-handed
fermions carry different gauge charges in the standard model
of particle physics.4

It is worth noting that in writing down Eq. (1) we
have assumed that the two “Weyl points,” at which the
energy gap closes, are both located at k = 0. In the particle
physics context, this assumption seems to be natural, however,
in condensed matter physics, without imposing symmetry
constraints such as time reversal symmetry and inversion
symmetry, Weyl points are generally located at different points
in the momentum space. This fact has interesting consequences
for Weyl fermion systems with broken symmetry, as we will
show in this Rapid Communication.

Although the Weyl fermion plays a crucial role in the
description of elementary fermions in nature, it has been
studied in the condensed matter context only very recently.5–23

Weyl semimetals in three dimensions (3D) are analogous to
graphene24 in two dimensions (2D) in the sense that both
are described in terms of gapless fermions with approximately
linear dispersion, but the 3D Weyl semimetals are richer in that
they are more closely related to various fundamental phenom-
ena such as the chiral anomaly.11,12,23 Unlike topological insu-
lators, whose transport is dominated by topologically protected

surface states, in the Weyl semimetal the bulk transport is most
important. Their unique semimetallic behaviors in 3D can be
potentially engineered for the semiconductor industry.

The interaction effect plays a fundamental role in the
dynamics of Weyl fermions. One possibility is the pairing
interaction which leads to superconducting instability. Qi,
Hughes, and Zhang’s Fermi surface topological invariant25 im-
plies that if the pairing amplitudes have opposite sign for Weyl
points with opposite chirality, topological superconductors are
obtained. Another consequence of the interaction, which we
will focus on in this Rapid Communication, is spontaneous
chiral symmetry breaking. Chiral symmetry breaking is the
phenomenon of the spontaneous generation of an effective
mass of Weyl fermions, namely, a pairing between the fermions
(electrons) and antifermions (holes) with different chiralities.
Due to the chiral anomaly, the Goldstone mode θ is coupled to
the electromagnetic field as θE · B, therefore, this Goldstone
mode is an “axion.”26–29

In this Rapid Communication, we focus on chiral symmetry
breaking in Weyl semimetal and axion strings in a condensed
matter context, which have features that are absent in particle
physics. We would like to mention that an axion string can
be realized on the surface of topological insulators with a
magnetic domain wall,30 and axionic dynamics has been
studied in topological magnetic insulators.31,32 Here we study
a route to axionic dynamics through chiral symmetry breaking
induced by the interaction effect. The resultant states are
charge density wave (CDW) states, which are experimentally
observable. One of our main results is that the (screw or
edge) dislocations of CDWs are exactly the “axion strings,”
which are important topological defects carrying gapless chiral
modes. In these chiral modes electrons move solely in one
direction without backscattering. In particle physics, axion
strings have interesting cosmological implications such as
the gravitational lenses effect,33 but observable evidences are
elusive. Axion strings in condensed matter systems have the
advantage that they are much easier to detect. In the Weyl
semimetal studied here, axion strings have important effects
on the transport properties since they provide chiral modes
supporting dissipatonless transport.

Dynamical chiral symmetry breaking. We consider the sim-
plest model for dynamical chiral symmetry breaking, which
nevertheless captures the most salient physical consequences.
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First let us present the free part H0 of the Hamiltonian. The
four-band model studied here is a simplified version of the
model of Weyl semimetal given in Refs. 7 and 12. We have
H0 = c†hc with

h = vF

3∑
i=1

�i(−i∂i − eAi − qi�) − eA0, (2)

where we have defined the Dirac matrices �μ(μ = 0,1,2,3)
satisfying {�μ,�ν} = 2δμν , � is the chirality operator with
the properties �2 = 1 and [�,�i] = 0,34 Aμ is the external
electromagnetic potential, and q = (q1,q2,q3) is a vector that
shifts the gapless points away from k = 0. The simplest
choices of the Dirac matrices are � = τ 3 ⊗ 1 and �i =
τ 3 ⊗ σ i(i = 1,2,3). The low energy modes from the left-hand
(� = +1) chirality are described by h+(k) ≈ vF � · (k − q) =
vF σ · (k − q) near k = q. Similarly, there is a Weyl point at
−q for the right-handed (� = −1) chirality. The low energy
dynamics is dominated by these two Weyl points located at
Q1 = q and Q2 = −q, respectively, with

h±(k) = ±vF σ · (k − Qi), (3)

where the prefactor ±1 is the chirality. For later convenience
let us define two operators τ± = τ 1 ± iτ 2 with the property
{τ±,�} = 0.

Now we would like to investigate the effects of the four-
fermion interaction in Weyl semimetals. Let us write down the
effective action in the imaginary time as

S =
∫

dτdr
{
c†r[∂τ+h + m∗(r)τ+ + m(r)τ−]cr + |m(r)|2

g

}
,

(4)

in which we have written the interaction in terms of the
auxiliary field m(r), which can be integrated out to give the
four-fermion interaction −g(c†rτ+cr)(c†rτ−cr).

It usually happens that a dynamically generated energy
gap can lower the ground state energy of a nominally gapless
system. Let us investigate such a possibility of condensation
〈m(r)〉 �= 0. Since the low energy dynamics is dominated
by the two Weyl points, let us write down the expansion
cr = eiQ1rcL,r + eiQ2rcR,r + · · · , where cR/L are cut off in the
momentum space at 
, i.e., cL/R,r = ∑

|p|<
 eiprcL/R,p + · · · ,
and the “· · · ” terms are high energy modes with |p| >


. At the mean-field level we have m(r) = −g〈c†rτ+cr〉 =
−ge−iQr〈c†Lτ+cR〉, where we have defined Q = Q1 − Q2 =
2q. We note that 〈c†Lτ+cR〉 is a “slow” field whose character-
istic momentum is small compared to |Q|.

In the momentum space the fermion matrix in Eq. (4) can
be approximated by M = −iω + vF τ 3σ · p + m∗(Q)τ+ +
m(Q)τ− at low energy, therefore, we can obtain the gap
equation

1

2g
=

∫
dωd3p

(2π )4

1

ω2 + v2
F p2 + |m|2 (5)

from the mean-field relation m(r) = −g〈c†rτ+cr〉. The solution

to Eq. (5) can be obtained as 1
gc

− 1
g

= 1
8π2v3

F

|m|2 ln v2
F 
2+|m|2

|m|2 ,

where gc = 8π2vF


2 . We have taken a Lorentz-invariant cutoff
|p| < 
,ω < vF 
 in the above calculation, but if we take the

cutoff only for |p| but not for the ω, we can check that gc takes
the same value. Because we are concerned with the cases with
|m| � 
, the solution can be approximated by

1

gc

− 1

g
= 1

8π2v3
F

|m|2 ln
v2

F 
2

|m|2 , (6)

which shows that dynamical symmetry breaking (or “exciton
condensation”) occurs only when the interaction is sufficiently
strong (g > gc).

A qualitative understanding of gc is simple. The kinetic
energy per fermion is EK ∼ vF 
, while the interaction energy
per fermion is EI ∼ g
3, where 
3 accounts for the spatial
density of Weyl fermions. To have chiral condensation, we
must have EK ∼ EI , or gc ∼ vF /
2. To satisfy this condition,
larger EI (stronger interaction) and smaller EK (narrower
bandwidth in Dirac dispersion) is favored.

Axion dynamics and topological theta term. We have
above that when g > gc, chiral symmetry is spontaneously
broken. From a symmetry consideration, the Ginzburg-Landau
effective action (omitting the chiral anomaly at this stage) of
m(r) can be expressed as

Sm =
∫

dtdr
[

1

2
γ
(|∂tm

′|2 − v2
a |∂im

′|2) + δ|m′|2 + η|m′|4
]

,

(7)

where γ,va,δ,η are phenomenological parameters, and m′ ≡
meiQ·r is the “slow” field. In the symmetry breaking phase,
δ < 0 and |m| develops a nonzero expectation value. The
effective action Sm is invariant if we shift the phase of m(r) by a
spacetime-independent phase factor, but in fact this symmetry
is broken by a chiral anomaly, which endows a topological
theta term to the effective action, as we explain below.
Let us first write m(r) = |m(r)| exp[−iQ · r − iθ (r)]. We can
perform a chiral transformation c(r) → c(r)e−i(Q·r+θ)�/2, then
m(r) → m(r)ei(Q·r+θ). After this chiral transformation the
phase of m(r) is removed and m(r) become real numbers,
however, due to the fact that the fermion path integral
measure is not invariant,35 this chiral transformation gener-
ates an anomalous term Sanomaly = e2

32π2

∫
dtdrεμνλρ(Q · r +

θ )FμνFλρ = e2

4π2

∫
dtdr(Q · r + θ )E · B, where we have used

the natural unit h̄ = c = 1.
Taking the above chiral anomaly into account, the fluctua-

tions of θ is described by the following simple axionic effective
action,

Sθ = f 2
a

2

∫
dtdr

[
(∂tθ )2 − v2

a(∂iθ )2
]

+ e2

4π2

∫
dtdr(Q · r + θ )E · B, (8)

where the notation fa (≡γ |m|) is deliberately chosen because
it is analogous to the pion decay constant fπ , namely, that fa

is the “axion decay constant.” We can also define a normalized
field a = faθ and put Eq. (8) into a more standard form,

Sa = 1

2

∫
dtdr

[
(∂ta)2 − v2

a(∂ia)2]

+ e2

4π2

∫
dtdr

(
Q · r + a

fa

)
E · B. (9)
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There is an effective action analogous to the last term for
pion-photon coupling in a high energy context, which is
responsible for the famous two-photon decay of the neutral
pion. The axion-photon coupling is proportional to 1/fa ∼
1/(γ |m|), thus we have the counterintuitive conclusion that
when the chiral condensation becomes weaker, the axion-
photon coupling becomes stronger.

Various topological responses can be calculated from the
effective action given in Eq. (8). Taking a derivative with
respect to Aμ, we have the current

jμ = e2

8π2
εμνλρ(Qν + ∂νθ )Fλρ

= e2

8π2
εμνλρ

(
Qν + ∂νa

fa

)
Fλρ. (10)

Analogous topological responses have been studied in topo-
logical insulators,30 in which the first term in absent. Let us
consider the special case of a constant magnetic field Bzz
along the z direction, and then the charge density given by
Eq. (10) is

j 0 = e2

4π2
(Qz + ∂zθ )Bz = e2

4π2

(
Qz + ∂za

fa

)
Bz. (11)

The first term here is readily understood as layered quantum
Hall effects,36 with a layer thickness 2π/|Q|. The second
term can be understood as follows. Let us consider the case
Q = 0 for simplicity, and take |m| = 0 first. In a constant
magnetic field Bzz, the dispersions of Weyl fermions can be
obtained as En(pz) = ±vF

√
p2

z + 2eBzn with n = 0,1, . . . .
The two gapless modes are the n = 0 Landau levels with
E(pz) = ±vF pz, where ± corresponds to left and right
chirality, respectively. Now a mass term m = |m|eiθ mixes
the two counterpropagating [essentially one dimensional
(1D)] modes and opens a gap. The 1D charge density can
be obtained from the Goldstone-Wilczek formula37 j 0|1d =

1
2π

∂zθ , therefore, the final result of the 3D charge density is

j 0 = (eBz/2π )(∂zθ/2π ) = e2

4π2 Bz∂zθ , where we have added
the density of states eBz/2π of Landau levels. This is exactly
the second term of Eq. (11).

Phase of the charge density wave is the dynamical axion.
Now we will show that chiral symmetry breaking leads to
density waves, among which the CDW is the simplest. The
charge density is given by

ρ1(r) = 〈c†rτ 1cr〉 = −m(r) + m∗(r)

2g
= −|m|

g
cos(Q · r + θ ),

(12)

and similarly ρ2(r) = 〈c†rτ 2cr〉 = i[m(r) − m∗(r)]/2g =
|m| sin(Q · r + θ )/g. Let us explain their physical
consequences. In fact, they depend on the physical degree
of freedom to which τ is referred. Let us take a simplest
example, namely, that τ 3 = ±1 refers to (|A〉 ± |B〉)/√2,
where A,B refer to two inequivalent sites in a unit cell,38 then
τ 1 = ±1 refers to the A/B site, thus ρ1 = ρA − ρB is the
staggered CDW. If we look at the charge density on site A (or
B), it shows an oscillation with wavelength 2π/|Q|. In more
general cases, other density modulations, such as CDWs of
more general types and spin density waves, can show up.

The natural question is how to experimentally detect the
CDW. Apart from bulk measurements, it can also be detected
by simpler surface measurements such as scanning tunneling
microscopy (STM). Denoting the angle between the surface
normal and Q as α, we can obtain the surface CDW wavelength
as λ2d = 2π

|Q|| sin α| .
It is worth noting that the interaction effect and CDW was

studied in 2D Dirac systems in Refs. 39–41. More recently, the
interaction effect on the surface of weak topological insulators
has been studied in Ref. 42, in which CDW also has important
physical consequences. The relation to the chiral anomaly is
absent in these studies because the systems considered there
are in 2D, where the concept of chirality is lacking.

Dislocations in a charge density wave are axion strings.
Let us turn to the central part of this Rapid Communication,
namely, the identification of CDW dislocations as axion
strings, which may provide a dissipatonless chiral transport
channel in 3D bulk materials. An axion string l is a one-
dimensional dislocation of the axion field, around which the
axion field θ changes by 2π , namely, that∫

C

dθ = 2π, (13)

where C is a small contour enclosing l clockwise. Axion
strings are closely related to chiral anomaly, as was studied
long ago in the work by Callan and Harvey43 in the particle
physics context. In the Weyl semimetals studied by us, the
axion strings have a clear geometrical picture because θ is
exactly the phase of the CDW. More explicitly, suppose that
Q = (Qx,Qy,Qz) = (0,0,Q), then it follows from Eq. (12)
that the peaks of the CDW are located at 2D planes (x,y,zn)
with

zn = −θ + 2πn

Q
, (14)

where n = integer. When θ is shifted, the peak position zn

follows the shifting of θ . In fact, the shifting of zn around the
small loop C enclosing the axion string is readily obtained
from Eq. (14) as∫

C

dzn = −
∫
C

dθ

Q
= −2π

Q
, (15)

which is exactly the wavelength of the CDW. The Burgers
vector of the axion string as a dislocation of the CDW is
exactly (0,0, − 2π/Q). For a general CDW wave vector Q,
the Burgers vector is readily obtained as −2πQ/|Q|2.

Let us refer to the orientation of the axion string l as l̂.
According to the relative orientation of l̂ and Q, the axion
string appears as different types of dislocation. When l̂ is
parallel with Q, we have a screw dislocation [Fig. 1(a)],
while when Q is perpendicular with l̂, we have an edge
dislocation [Fig. 1(b)]. We would like to mention that the edge
dislocation with chiral modes has been studied in Ref. 44.
Weyl semimetals provide a natural route to realizing such
interesting topological defects. In the cases of edge dislocation,
the origin of the chiral modes is most clear, because we can
think of them as the edge states of a 2D quantum Hall system,
which is just the slice appearing as the “edge.”

There are chiral modes propagating along the axion
strings,43 therefore, axion strings may serve as unique transport
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(a) (b)

x
y

z

FIG. 1. (Color online) Axion strings as dislocations of a charge
density wave. (a) Screw dislocation. (b) Edge dislocation. The
delineated sheets are the peaks of the CDW. In both (a) and (b),
the axion string is along the z direction. The Burgers vector is parallel
to the axion string in (a), while it is perpendicular to it in (b).

channels in 3D materials with axionic dynamics. Such chiral
modes carry a dissipationless current just as the quantum Hall
edge and quantum anomalous Hall edge states, but the former
are distinct in that they are buried in 3D bulk.

It is worth mentioning that dislocations in topological
materials have also been studied in Ref. 45, but we would
like to emphasize several prominent differences between the
axion strings studied here and the dislocation lines in weak
topological insulators studied in Ref. 45. First, in Ref. 45 the
dislocations carrying gapless modes are indeed dislocations
of the crystal lattice, while in our work the crystal lattice
remains intact, and axion strings are just dislocations of the
CDW. Second, the gapless modes studied in Ref. 45 are helical
modes, which are unstable towards backscattering if time
reversal symmetry is broken, while the gapless modes living
on the axion strings studied here are robust chiral modes. It is
also worth noting that in Ref. 12 line dislocation with chiral
modes was studied, but the CDW is absent there, and more
importantly, the bulk is also gapless there and the coupling
between the dislocation mode and bulk mode can induce
dissipation.

To conclude this part, we remark that the formation of
axion strings in Weyl semimetals can be triggered by rapidly
lowering the temperature from T > Tc to T < Tc, where Tc is

the critical temperature of chiral condensation (Kibble-Zurek
mechanism).

Discussions and conclusions. We have studied dynami-
cal chiral symmetry breaking and topological responses in
Weyl semimetals. We have adopted a simple four-fermion
interaction to simplify formulas. In more realistic models g

is replaced by g(Q). We note that an attractive interaction
−g(Q) < 0 at momentum Q is needed for chiral symmetry
breaking. The values of g(Q) for various materials depend on
the material details, which is beyond the scope of this Rapid
Communication. It is useful to mention that an effectively
attractive electron-electron interaction can appear at some
special momenta commensurate with the reciprocal lattice.
Such an electron-lattice coupling effect is responsible for
the Peierls transitions in 1D systems, and we expect that
dynamical chiral symmetry breaking may also occur in 3D
by this mechanism if 2π/|Q| is commensurate with the crystal
lattice. In this case chiral symmetry breaking can be thought of
as generalized Peierls transitions, which induce dimerization,
trimerization, etc.

Our model provides a geometrical picture of axion, which
manifests itself as the phase of the CDW. One of our main
results is the identification of axion strings as CDW (edge or
screw) dislocations, which has no analog in particle physics.
The axion strings have 1D robust chiral modes along them,
which have great potential applications if the chiral symmetry
breaking (exciton condensation) of a Weyl fermion is realized
in experiment. Here we studied the general cases with Q �= 0.
When Q = 0 there is no CDW associated with chiral symmetry
breaking, but the axion strings do exist and have an important
implication for 3D transport properties.

Note added. Recently we became aware of a related work46

on symmetry breaking in a Weyl semimetal by Zyuzin and
Burkov, though CDW and axion strings were not studied. Due
to the nonzero density of states considered in their work, the
gap equation is also different from ours.
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