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Charge conservation protected topological phases
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We discuss the relation between particle number conservation and topological phases. In four spatial
dimensions, we find that systems belonging to different topological phases in the presence of a U(1) charge
conservation can be connected adiabatically, i.e., without closing the gap, upon intermediately breaking this
local symmetry by a superconducting term. The time reversal preserving topological insulator states in two
and three dimensions which can be obtained from the four-dimensional parent state by dimensional reduction
inherit this protection by charge conservation. Hence, all topological insulators can be adiabatically connected
to a trivial insulating state without breaking time reversal symmetry, provided an intermediate superconducting
term is allowed during the adiabatic deformation. Conversely, in one spatial dimension, non-symmetry-protected
topological phases occur only in systems that break U(1) charge conservation. These results can intuitively be
understood by considering a natural embedding of the classifying spaces of charge conserving Hamiltonians into
the corresponding Bogoliubov–de Gennes classes.
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Introduction. In recent years, topological states of matter
(TSM) that can be understood at the level of quadratic model
Hamiltonians have become a major focus of condensed matter
physics.1–4 An exhaustive classification of all possible TSM
in the ten Altland-Zirnbauer symmetry classes5 of insulators
and mean field superconductors has been achieved by different
means in Refs. 1,6, and 7. For the symmetry class A of the
quantum Hall effect in 2D, i.e., no symmetries except a local
U(1) charge conservation, there is a variety of topological
phases apart from the integer quantum Hall (IQH) phases,8–10

namely, the family of fractional quantum Hall states,11–13 that
exist only in the presence of interactions and hence cannot
be adiabatically deformed into noninteracting band structures.
These phases can be classified in the framework of topological
order which was introduced by Wen back in 1990.14 In a
more recent paper by Chen, Gu, and Wen,15 it has been shown
that different gapped phases which do not have local order
parameters associated with spontaneous symmetry breaking
must have different topological orders. Furthermore, Ref. 15
identifies different topological orders with different patterns
of long range entanglement (LRE).

According to the definition of topological order given in
Ref. 15, noninteracting two-dimensional (2D) band structures
with different Chern numbers, i.e., various IQH states, have
different topological orders since they concur in all symmetries
and cannot be adiabatically connected.16 Clearly, the IQH
states all have trivial topological entanglement entropy as
defined in Refs. 17 and 18 as they all have quantum dimension
one. Moreover, the wave functions of all IQH states are
Slater determinants, which implies that the electrons are not
entangled at all.19–21 However, by dividing such a many body
system into two subsystems by virtue of a virtual cut in
real space, a nonvanishing entropy in the reduced state of
one subsystem might arise due to fluctuations in the particle
number of this subsystem: If the wave function of one of
the single particle states entering the Slater determinant of
occupied states is delocalized over the real space cut, it
is plausible for the particle to be found in each of the
subsystems. Hence, in this case, the reduced state of one

subsystem will be a mixture of states with a different particle
number which gives the notion of a nontrivial entanglement
entropy even for noninteracting states22,23—a particle number
entanglement. Along these lines a nontrivial Chern number
is indeed in one-to-one correspondence to a long range
particle number entanglement: A set of exponentially localized
Wannier functions for a band can be found if and only if the
Chern number of the band vanishes.24

Main results. In this Rapid Communication, we view charge
conservation as a protecting symmetry, i.e., we demonstrate
that the statement whether two systems are adiabatically
connected to each other can depend on the symmetry
constraints regarding particle number conservation. More
specifically, we define the notion of a charge conservation
protected topological phase (CPTP), i.e., a state that cannot
be adiabatically connected to a trivial band structure in the
presence of a locally conserved U(1) charge but which can be
connected to a trivial state without closing the gap if this U(1)
symmetry is intermediately broken down to a superconducting
charge conservation modulo two. An example of a CPTP is
the four-dimensional (4D) analog of the quantum Hall effect25

which is not symmetry protected in the conventional sense.
The time reversal symmetry (TRS) preserving topological
insulators (TIs) in 2D26–29 and three dimensions (3D)30–32 are
shown to be protected by both TRS and charge conservation.
This means that a TI state can be adiabatically connected
to a trivial state without breaking TRS if the constraint of
U(1) charge conservation is relaxed to a superconducting Z2

constraint. This should of course not be seen as a limitation
of the robustness of these states since experimentally one
will hardly pick up a superconducting term accidentally. In
contrast, the IQH state is not a CPTP, i.e., insulating 2D
band structures with different first Chern numbers cannot be
adiabatically connected by relaxing charge conservation to a
Z2 constraint.

Embedding of charge conserving symmetry classes. The
symmetry class D can be formally obtained from the unitary
class A by imposing a symmetry constraint, namely, the
antiunitary particle-hole symmetry (PHS) P with P2 = 1 (see
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TABLE I. Table of topological invariants for the symmetry classes
A, D, DIII, AII in spatial dimension d = 1 . . . 4 (Ref. 1). In the second
column, the symmetries are denoted in the order (TRS,PHS,CS),
where CS stands for chiral symmetry. The absence of a symmetry is
denoted by 0. For, TRS and PHS the entry ±1 denotes the presence
of a symmetry operation which squares to ±1. The presence of CS is
denoted by 1.

Class Symmetries d = 1 d = 2 d = 3 d = 4

A (0,0,0) 0 Z 0 Z
D (0,+1,0) Z2 Z 0 0
DIII (−1,+1,1) Z2 Z2 Z 0
AII (−1,0,0) 0 Z2 Z2 Z

Ref. 6 and Table I which we repeat here for the reader’s
convenience). From this point of view, one might think of class
D as a subset of class A. In one dimension (1D), for example,
there are no topological states in class A due to π1(Gn,m(C)) =
0, where Gn,m(C) = U (n)/[U (m) × U (n − m)] denotes the
complex Grassmannian. However, in the presence of PHS,
topological band structures similar to the model introduced by
Su, Schrieffer, and Heeger (SSH)33 can be defined that can
only be adiabatically deformed into a trivial band structure if
PHS is broken during the deformation. Therefore, the SSH
model is called a symmetry protected topological state.

This picture needs revision if we think of a mean field su-
perconductor without symmetries as a Bogoliubov–de Gennes
(BdG) Hamiltonian in symmetry class D.5 In this case, PHS
is a consequence of the particle-hole redundancy present in
the BdG picture rather than a physical symmetry: The BdG
band structure consists of two copies of the underlying band
structure where the energy spectrum of the hole bands is
mirrored as compared to the equivalent electron bands. This
enforces the presence of the spectrum generating PHS—the
hole bands are conjugated to the electron bands by PHS. This
constraint is not a symmetry and cannot be broken physically.
Hence the BdG analog of the SSH model should not be
considered as a symmetry protected topological state since
it cannot be connected to a trivial state without closing the
gap.

Along these lines, symmetry class A can thus be viewed as
a subset of all possible BdG Hamiltonians in class D: One can
start with any noninteracting band structure in class A, create a
holelike copy of this band structure, and is then even allowed to
consider U(1) charge conservation breaking superconducting
terms which cannot be accounted for in symmetry class A. This
viewpoint is equivalent to viewing class D as the set of arbitrary
gapped Hamiltonians that are bilinear in Majorana fermion
operators.7 Here, since we want to work in the BdG picture
later on, we formalize this argument by an embedding map
E : A → D instead of going to the Majorana representation.
This map is defined as

H0 �→ E(H0) =
(

H0 0

0 −T H0T −1

)
, (1)

where T denotes the time reversal operation and H0 ∈ A is
an arbitrary charge conserving gapped quadratic Hamiltonian.
The resulting Hamiltonian E(H0) is a special case of a BdG

FIG. 1. (Color online) Top: Symmetry class D in 1D as a subset
of charge conserving Hamiltonians in class A that preserve PHS with
P2 = 1. The SSH model is in the connected component denoted by
ν = 1. The superset A has only one connected component, i.e., all
charge conserving states in 1D can be adiabatically connected to each
other. Bottom: The symmetry class D as the set of BdG Hamiltonians
without further symmetries in 1D has two connected components.
The injective embedding E [A] of class A (red set denoted by A)
defined in Eq. (1) is a subset of the trivial connected component
ν = 0. The BdG Hamiltonian of the Majorana chain is in the other
connected component ν = 1.

Hamiltonian in class D that is still U(1) charge conserving. This
phenomenology is illustrated in Fig. 1. For later purposes, we
note that if H0 preserves TRS with T 2 = −1, i.e., if H0 ∈ AII,
then this restriction of the same map E defines an embedding
of class AII into the BdG class DIII.

A known consequence of this reasoning in 1D
is the existence of non-symmetry-protected topological
superconductors34 although there are no particle number con-
serving topological phases in the unitary class (see Fig. 1 and
Table I). The BdG Hamiltonian of Kitaev’s Majorana chain34

is similar to the SSH model. However, whereas a staggered
potential breaks the particle-hole symmetry of the SSH model,
a formally equivalent term in the BdG Hamiltonian of the
Majorana chain is forbidden by the fermionic algebra of the
field operators. Hence, the SSH model is associated with the
scenario illustrated in the upper panel of Fig. 1, whereas the set
of Hamiltonians depicted in the lower panel of Fig. 1 contains
the Majorana chain. This example shows that relaxing the
charge conservation symmetry from U(1) to Z2 can give rise
to new topological phases that are not symmetry protected.

Conversely, one might ask whether some topological phases
are protected by the U(1) charge conservation symmetry.
This would be the case if a state could not be adiabati-
cally connected to a trivial insulating band structure in the
presence of charge conservation but could be connected
without closing the gap if we are allowed to break charge
conservation by a superconducting term. In the following,
we answer this question in the affirmative by discussing an
example of a topologically nontrivial state in class A in 4D
which we adiabatically connect to a trivial state by inter-
mediately breaking charge conservation. We call such states
charge conservation protected topological phases (CPTPs). By
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FIG. 2. (Color online) The set of BdG Hamiltonians without
further symmetries in 4D has only one connected component. PHS
conjugated copies of particle number conserving Hamiltonians with
a different second Chern number C2 are disconnected in symmetry
class A but can be adiabatically connected within symmetry class D.
Remarkably, for each value of C2, there is a nonempty subset of TRS
preserving Hamiltonians (green). The blue star denotes the nontrivial
topological state for m < 0 whereas the blue triangle denotes the
trivial state for m > 0. The arrow between the two states sketches our
gapped interpolation via an intermediate superconducting state.

dimensional reduction, we are able to show that also the 3D
and 2D TI states are protected by charge conservation.

A U(1) protected phase in 4D. In 4D, symmetry class A is
characterized by an integer topological invariant, the second
Chern number C2 which distinguishes different topological
phases. However, class D is trivial in 4D, i.e., all BdG
Hamiltonians are equivalent (see Fig. 2 and Table I). We hence
suspect that different topological phases can be connected
adiabatically by intermediately breaking the U(1) charge
conservation down to Z2. We now explicitly construct such
an adiabatic interpolation. Let us start from a toy model for
the 4D analog of the quantum Hall effect.25,35 The model
Hamiltonian reads

H0 = dμ�μ,

d0 = m + k2, di = ki, i = 1, . . . ,4, (2)

where the 4 × 4 Dirac matrices �μ are given by

�0 = s0 ⊗ σz, �1 = s0 ⊗ σy, �2 = sx ⊗ σx,

�3 = sy ⊗ σx, �4 = sz ⊗ σx, (3)

with the Pauli matrices si and σi in the spin and a band
pseudospin space of the system, respectively. The � matrices
satisfy the SO(5) Clifford algebra36,37

{�μ,�ν} = 2δμν. (4)

For large momenta, the isotropic k2 term dominates the
Hamiltonian. We can thus compactify the k space of our model
to S4 by identifying k → ∞ with a single point. The second
Chern number,

C2 = − 1

8π2

∫
S4

Tr[F ∧ F], (5)

with the non-Abelian Berry curvature F , is then integer
quantized, and it has been shown35 that C2 = 1 for m < 0
whereas C2 = 0 for m > 0. These two phases cannot be
connected to each other without closing the bulk gap as long
as particle number conservation is preserved. However, by
adiabatically switching on a superconducting gap, we will be
able to connect the two states without ever closing the bulk
gap. We first introduce a particle-hole pseudospin τ . The BdG

Hamiltonian associated with our model then reads

H =
(

H0 0

0 −T H0T −1

)
= H0τz, (6)

where we have used the time reversal invariance of H0 under
T = isyK in the last step. In this basis, the emergent PHS op-
eration takes the form P = syτyK , where K denotes complex
conjugation. We now switch on the fictitious superconducting
term �(λ)τx , where λ ∈ [0,π ] is the parameter of the adiabatic
interpolation and �(λ) = sin(λ). Furthermore, we make H0

dependent on λ by defining d0(λ) = cos(λ) + k2, i.e., the Dirac
mass parameter m acquires the λ dependence m(λ) = cos(λ).
Obviously, H0(0) is the trivial insulator with C2 = 0 whereas
H0(π ) is the nontrivial insulator with C2 = 1. The additional
superconducting term vanishes at λ = 0,π . Hence, both the
starting and end points of the interpolation preserve U(1)
charge conservation. The spectrum of the total BdG Hamil-
tonian H̃ (λ) = H (λ) + �(λ)τx can be conveniently obtained
by taking the square

E2 = H̃ (λ)2 = |d|2 + {H0τz,�τx} + �2

= |d|2 + �2 � 1 ∀λ,k. (7)

This interpolation is fully gapped and describes a formally well
defined BdG Hamiltonian for all values of the interpolation
parameter λ since τx preserves the emergent PHS operation
in our choice of basis. Thus we have connected two different
topological phases adiabatically with the help of an interme-
diate superconducting term.

Topological insulators as CPTP. In Eq. (2), we could,
without loss of generality, choose a model Hamiltonian that
preserves TRS and is hence not only in symmetry class A
but also in AII, the symplectic class. This is because in 4D
a Hamiltonian with an arbitrary second Chern number can
be adiabatically deformed into a representative that preserves
TRS within the same topological equivalence class, i.e.,
without changing the second Chern number (see Fig. 2). This
makes the 4D analog of the IQH effect25 the parent state of
a dimensional hierarchy of topological states.1,3,4,35 The two
lower dimensional descendants in class AII are the 3D TI,30,31

and the 2D TI, also known as the quantum spin Hall state.26–29

In contrast to the parent state, these states are protected by
TRS, i.e., they can be adiabatically connected to a trivial state
if TRS is broken. We will now show that in addition they are
protected by charge conservation in the same sense as their
parent state. To this end, we express the model for the 3D
TI presented in Ref. 32 and the model for the quantum spin
Hall effect introduced in Ref. 28 as dimensional reductions
from the toy model for the 4D parent state (2). Explicitly,
by setting d1 = 0 in Eq. (2), we obtain a toy model similar
to those in Refs. 3 and 32 for the 3D TI which is nontrivial
for m < 0, and by setting d2 = d3 = 0 we obtain a minimal
model for the quantum spin Hall effect which is very similar
to the one presented in Ref. 28. It then follows that for these
dimensional reductions, the gapped interpolation with the
same superconducting term �τx as shown above for the parent
state can be performed in complete analogy. This concludes
our proof that both the 2D and the 3D TI state are protected
by U(1) charge conservation. Note that this conclusion cannot
be obtained from looking at the periodic table of topological
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states1,7 (see Table I). This is due to the existence of different
topological phases also in class DIII which are characterized
by a Z2 invariant in 2D and a Z invariant in 3D, respectively.1,6

Whereas, as we have just shown, the TI states belong to the
trivial phase in DIII, there are TRS preserving topological
superconductors6,38,39 which represent the nontrivial phases in
DIII.

Conclusions. We embedded the particle number conserving
symmetry classes A and AII into the corresponding BdG
classes D and DIII, respectively. In 4D, states that are in
different topological phases as long as the particle number
is conserved can be adiabatically connected in the BdG
class D. By dimensional reduction from the 4D parent state,
we could show that topological insulators in the symplectic

class AII in 2D and 3D can be adiabatically connected to
trivial insulating states without breaking TRS if the U(1)
charge conservation is relaxed to the superconducting charge
conservation modulo two. In 2D, BdG Hamiltonians consisting
of PHS conjugated copies of different IQH states have different
Chern numbers as well. Therefore, different IQH states in 2D
cannot be adiabatically connected to each other with the help
of a superconducting term. Our analysis shows that charge
conservation can play the role of a protecting symmetry for
topological phases.
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