
PHYSICAL REVIEW B 87, 155435 (2013)

Magnetic effects on nonlinear mechanical properties of a suspended carbon nanotube
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We propose a microscopic model for a nanoelectromechanical system made by a radio-frequency driven
suspended carbon nanotube (CNT) in the presence of an external magnetic field perpendicular to the current. As
a main result, we show that, when the device is driven far from equilibrium, one can tune the CNT mechanical
properties by varying the external magnetic field. Indeed, the magnetic field affects the CNT bending mode
dynamics inducing an enhanced damping as well as a noise term due to the electronic phase fluctuations. The
quality factor, as observed experimentally, exhibits a quadratic dependence on external magnetic field strength.
Finally, CNT resonance frequencies as a function of gate voltage acquire, increasing the magnetic field strength,
a peculiar dip-peak structure that should be experimentally observed.
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I. INTRODUCTION

Nanoelectromechanical Systems (NEMS) made of sus-
pended carbon nanotubes (CNTs) have received increasing
attention recently.1–8 These devices are ideal for NEMS
applications due to the extreme mechanical properties of CNTs
(low mass density and a high Young’s modulus), resulting in
a wide range of resonance frequencies for the fundamental
bending mode vibration [from MHz up to GHz (Ref. 9) range].
For instance, this has made it possible to operate with ultrahigh
frequency devices and therefore explore the quantum ground
state of a macroscopic object.10

On the other hand, CNT-based electromechanical devices
working in the adiabatic regime (resonator frequencies in
the MHz range compared to an electronic hopping frequency
from the leads of the order of tens of GHz) have attracted great
interest due to the extremely large quality factors (Q > 105)
attainable.2,3,11 Large quality factors allow one to tune CNT
mechanical properties, e.g., the resonance frequency of the
bending mode, by adjusting electronic parameters such as
gate and bias voltages with a resolution of a few MHz.2,12

Furthermore, it has been recently demonstrated that the
application of a static magnetic field perpendicular to the
CNT device can be used as another useful tool for tuning
its mechanical characteristics,1 as the electronic current flow
through the CNT beam is affected by the Lorentz force.

The properties mentioned above are due to the fact that
suspended CNTs, at cryogenic temperatures, behave as quan-
tum dots13–15 with a strong interplay between single-electron
tunneling and bending mode mechanical motion.2,12,16–19 This
means that the electronic current is very sensitive to the CNT
bending mode dynamics and can be used as a quantum (due to
the intrinsic quantum nature of the charge carriers) mean for
studying its mechanical characteristics.

Motivated by recent experiments,1,12 in this paper we study
a general model describing the mechanical properties of a
radio-frequency driven suspended CNT-based NEMS in the
presence of a magnetic field transverse to the CNT oscillation
plane. To study this system, we employ the same model
adopted by some of us in Ref. 16. There we showed that

the effects of damping, spring stiffening, and softening, and
nonlinearity observed in CNT-based NEMS devices in the
absence of a magnetic field2,3,20 can be understood in terms of a
very simple schematization for the CNT device: the electronic
part is described by a single electronic level16,21 coupled to
two metallic leads, while the mechanical part is described by
a single vibrational degree of freedom describing the bending
mode.22 The interaction between electronic and mechanical
parts is described by means of a simple charge-displacement
coupling.16,21 Due to a very large separation between slow
vibrational and fast electronic time scales, it can be shown
that the CNT bending mode mechanical dynamics is ruled
by a classical Langevin equation.21,24–30 In other terms, the
vibrating CNT can be fruitful described as an effective
harmonic spring embedded in a nonequilibrium environment
consisting of both the nanotube itself and by the macroscopic
voltage-biased leads. Furthermore, the external antenna effects
are included introducing a forcing term in the Langevin
equation. In Ref. 16, we explored the nonlinear vibrational
regime of the CNT dynamics, showing that nonlinear effects
are obtained by applying large external antenna amplitudes
due to the dynamical effects. We were also able to reproduce
qualitatively, in the linear response regime, the shape of the
CNT bending mode frequency renormalization curve as a
function of electronic gate and bias voltages. In particular,
we were able to predict features (formation of a double
dip feature), at that time not yet observed, that have found
successive experimental observation.12

In this paper we extend the approach developed in Ref. 16
to the case when the a transverse magnetic field is applied
to the CNT device. The application of a field perpendicular to
the current flux introduces an electronic tunneling phase which
depends on the mechanical CNT displacement and therefore
modifies all the terms describing the CNT-resonator dynamics.
The effective force acting on the resonator is modified by
a pure nonequilibrium correction term proportional to the
magnetic field as well as to the electronic current.31 This
provides an interesting resonance frequency renormalization
effect as a function of the magnetic field strength. We find that,
increasing the magnetic field, the peculiar features (single or
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double dip) observed in the bending mode resonance frequency
against gate voltage curves get distorted and acquire a dip-peak
structure that should be experimentally observed. In particular,
this effect should be more easily detectable at bias voltages that
exceed the broadening due to tunnel coupling. Our analysis
concerns also the study of the device response when the CNT-
resonator motion is actuated by an external antenna at fixed
frequency and amplitude. In this case, the current-gate voltage
characteristic exhibits specific structures corresponding to
the mechanical resonances (antenna frequency equal to the
bending mode frequency).

Finally, we explored the effect of the external magnetic
field on the mechanical damping experienced by the CNT
studying the behavior of quality factors. The magnetic field is
shown to provide an additional damping mechanism for the
CNT mechanical motion. Interestingly, a quadratic decrease
of the quality factor Q as a function of the external magnetic
field strength emerges, in quantitative agreement with the
experiment performed in Ref. 1. We’ve also shown that, at a
fixed gate, bias voltage, and temperature, if charge and current
variations of the opposite sign occur, damping increases and
Q is reduced. Vice versa, charge and current variations of
the same sign reduce damping with a consequent increase of
quality factors.

The paper is organized as follows: In Sec. II we discuss the
model, In Sec. III we construct, by means of the adiabatic
approximation, the stochastic Langevin equation for the
dynamics of the CNT resonator including magnetic field and
external antenna effects. In Sec. IV we present numerical
results.

II. MODEL

We consider the system sketched in Fig. 1, which shows a
single wall CNT suspended between two normal-metal leads.
An external magnetic field H is applied perpendicular to the
CNT oscillation plane. We also restrict the CNT mechanical
degrees of freedom to the low-frequency bending mode and
model it as a harmonic oscillator with frequency ω0.

The electronic part of the CNT device is modeled as a
single electronic level coupled to the leads through standard
tunneling terms.16,24 The electronic Hamiltonian is

Ĥel = Ugated̂
†d̂ +

∑
k,α

V H
k,α(x)ĉ†k,αd̂ + H.c. +

∑
k,α

εk,αĉ
†
k,αĉk,α,

(1)

where the CNT’s electronic level has energy Ugate with creation
(annihilation) operators d̂†(d̂). The operators ĉ

†
k,α(ĉk,α) create

FIG. 1. (Color online) A carbon nanotube (CNT) subject to an
external magnetic field H suspended between two normal-metal leads
biased by a voltage eVbias.

(annihilate) electrons with momentum k and energy εk,α =
Ek,α − μα in the left (α = L) or right (α = R) free metallic
leads. The chemical potentials in the leads μL and μR are
assumed to be biased by an external voltage eVbias = μL − μR .

In the presence of a magnetic field, the phases of the
tunneling amplitudes with the leads depend on the CNT
displacement x,33,34

V H
k,L(x) = Vk,Le−ıpx, V H

k,R(x) = Vk,Reıpx, (2)

where p = δeHL/2h̄ gives the CNT momentum change
induced by the Lorentz force when an electron tunnels from the
CNT to a lead, and δ � 1 is a numerical factor determined by
the spacial profile of the fundamental mode.35 Above, e is the
modulus of the electron charge, h̄ is the Plank constant, and L

is the CNT length. Slow time varying tunneling amplitudes
Vk(t) are also relevant in the case of adiabatic quantum
pumping through quantum dots.25,36 Furthermore, when the
external magnetic-field values are sufficiently small, such as
the Zeeman splitting is negligible compared to broadening due
to tunnel coupling, we can neglect the effect of the electronic
spin degrees of freedom.

For the sake of simplicity, we will suppose symmetric
coupling Vk,L = Vk,R and a flat density of states for the
leads ρk,α �→ ρα , considered as thermostats at finite temper-
ature T , within the wide-band approximation (Vk,α �→ Vα ,
α = L,R).21,37 Definitely, the total tunneling rate is h̄� =∑

α=L,R h̄�α , with �α = 2πρα|Vk,α|2/h̄.
The Hamiltonian of the mechanical degree of freedom is

given by

Ĥosc = p̂2

2m
+ 1

2
mω2

0x̂
2, (3)

characterized by the frequency ω0 and the effective
mass m (k = mω2

0). The charge-displacement interaction is
provided by37,38

Ĥint = λx̂n̂, (4)

where λ is the charge-displacement coupling strength and n̂ =
d̂†d represents the electronic charge-density on the CNT.39

Definitely, the overall Hamiltonian is

Ĥ = Ĥel + Ĥosc + Ĥint. (5)

For the experiment discussed in Ref. 1, one has a strong
separation between vibrational (ω0 � 500 MHz � 2 μeV)
and electronic time scales (� � 50 Ghz) so that we can
solve our model in the adiabatic limit, ω0/� � 1. The
experimental values of bias voltages and temperatures allow
also a semiclassical treatment of the oscillator dynamics.24,29,40

In this paper, we will measure lengths in units of x0 = r , where
r is a small fraction of CNT radius (r = 60 pm) appropriate
to resolve the CNT bending dynamics at relatively small
temperatures (T � 25 mK). For the sake of simplicity, we
will indicate dimensionless displacement variable with x.
Energies are measured in units of h̄� = 200 μeV, and times in
units of t0 = 1/ω0. In terms of these units, the dimensionless
spring constant is k/mω2

0 � 1, since, following Ref. 1,
the effective mass of the nanotube is m = 1.3 × 10−21 kg.
Definitely, the adiabatic ratio is ω0/� = 0.01, while the
dimensionless temperature kBT = 0.01. Magnetic fields are
measured in terms of the quantity B = H

H0
where our magnetic
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field unit is H0 = 2h̄/eLr � 16.6T , since the CNT length
is L � 700 nm. Throughout this paper, we keep fixed the
dimensionless charge-displacement coupling strength to λ =
0.1 (our force unit is h̄�/r), corresponding to an estimate
Ep = λ2/2k � 1μeV , implying a moderate coupling between
the electronic and vibrational degrees of freedom (Ep/h̄ω0 =
0.5). Summarizing, the regime of the relevant parameters is
h̄ω0 � Ep � kBT � eV eff

bias � h̄�.
In the next section, we show how adiabatic approximation

works on the coupled electron-oscillator problem in the
presence of a transverse magnetic field.

III. ADIABATIC APPROXIMATION

As analyzed in the previous section, we work in the physical
regime where the vibrational motion of the CNT resonator is
“slow” with respect to all electronic energy scales and can be
considered “classical”: ω0 � �. This regime of the parameters
leads to the adiabatic approximation for the electronic prob-
lem. In contrast to previous works that treated the adiabatic
approximation in the absence of a magnetic field,24–26 we
here investigate the effect of a transverse magnetic field on
the electronic problem described by the Hamiltonian Eq. (5).
We remark that the adiabatic approximation has been used
successfully for the study of spectral and transport properties
of organic semiconductors.41–43 In Appendix A, we have
discussed in detail how the adiabatic approximation for the
electronic problem works in the presence of a transverse
magnetic field. In next subsection, we show that, even in
the presence of a transverse magnetic field, the dynamics
of the CNT resonator can be accurately described by a
stochastic Langevin equation. Moreover we discuss the spatial
dependence of the coefficients obtained in the adiabatic
expansion of the electronic charge density and current.

A. Langevin equation for the oscillator

In the absence of a magnetic field, the effect of the electronic
bath and the charge-displacement coupling on the oscillator
dynamics gives rise to a stochastic Langevin equation with a
position dependent dissipation term and white noise force.24

As in Ref. 16, even in the present case the equation for the
oscillator dynamics can be written as follows:

mẍ + A(x)ẋ = F(0)(x) +
√

D(x)ξ (t) + Aext cos(ωextt),
(6)

〈ξ (t)〉 = 0, 〈ξ (t)ξ (t ′)〉 = δ(t − t ′),

where ξ (t) is a standard white-noise term. We have included in
our schematization the effect of an external antenna exciting
the motion of the CNT, where Aext, ωext represent the antenna
amplitude and frequency, respectively. In this section, we
describe how all the terms appearing in the above equation
modify in the presence of an external transverse magnetic
field.

The total force acting on the CNT resonator is

F = −kx − λ〈n̂〉(x,v) + H̃ 〈Î 〉(x,v). (7)

The linear elastic force exerted on the oscillator is modified
by two relevant nonlinear correction terms: the former is
proportional to the electronic charge density on the CNT level

Eq. (A7), while the latter is proportional to the electronic cur-
rent Eq. (A17). The first term, due to the charge-displacement
interaction on the CNT resonator and proportional to λ was
already discussed in Refs. 2 and 16. Far from equilibrium
and in the presence of a magnetic field, a magnetomotive
coupling between the CNT-resonator displacement and the
electronic flow comes into play. Actually, the transverse
magnetic field introduces a phase in the electronic tunneling
that is proportional to the CNT displacement as well as
on the field strength. This originates a Lorentz-like additive
correction, linear in the magnetic field strength and in the
electronic current, to the average force acting on the resonator
[last term in Eq. (7)].

In the limit of the adiabatic approximation, the force Eq. (7)
can be decomposed in different expansion terms. It explicitly
depends on the oscillator position x through Ugate(x) = Ugate +
λx and velocity v. The force is

F (x,v) = F(0)(x) + F(1)(x,v), (8)

where

F(0)(x) = −kx − λ〈n̂〉(0)(x) + H̃ 〈Î 〉(0)(x), (9)

and

F(1)(x,v) = −λ〈n̂〉(1)(x,v) + H̃ 〈Î 〉(1)(x,v)

= −A(x)v. (10)

The total damping term A(x) is given by three contributions,

A(x) = Aλ(x) + AH (x) + AHλ(x), (11)

where both

Aλ(x) = λR(1)(x), (12)

coming from the charge-displacement coupling, and

AH (x) = −H̃U(2)(x), (13)

due to magnetic field coupling, are positive definite. The
function AHλ(x) is proportional to both charge-displacement
coupling strength λ and magnetic field H ,

AHλ(x) = λR(2)(x) − H̃U(1)(x), (14)

and is not positive definite. Remarkably, we have verified that
the whole sum appearing in Eq. (11) is positive definite for
the parameter regime discussed in this paper. This shows that,
using a spinless fermionic model in the presence of normal
(not ferromagnetic) electronic leads, the CNT resonator
experiences no negative damping regions.

In our description, a fluctuating term has to be included
to take correctly into account the effect of the bath degrees
of freedom. When a magnetic field is present, the force-force
fluctuations are given by three contributions (see Appendix B),

〈δF̂ (t)δF̂ (t ′)〉 = λ2〈δn̂(t)δn̂(t ′)〉
− H̃λ[〈δn̂(t)δÎ (t ′)〉 + 〈δÎ (t)δn̂(t ′)〉]
+ H̃ 2〈δÎ (t)δÎ (t ′)〉, (15)

where we get a mixed current-density fluctuation contribution
[〈δn̂(t)δÎ (t ′)〉 + 〈δÎ (t)δn̂(t ′)〉], and a current-current fluctua-
tion contribution 〈δIα(t)δI (t ′)〉 to the noise.
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In the adiabatic limit, exploiting the effect of the “fast”
electronic environment on the oscillator motion, one derives

〈δF̂ (t)δF̂ (t ′)〉 = D(x)δ(t − t ′), (16)

where in the presence of a magnetic field we have

D(x) = Dλ(x) + DH (x) + DH,λ(x), (17)

with

Dλ(x) = λ2h̄

∫
dh̄ω

2π
G<

(0)(ω,x)G>
(0)(ω,x)

= λ2h̄

∫
dh̄ω

2π

h̄�LfL(ω) + h̄�RfR(ω)

[(h̄ω − Ugate(x)]2 + [h̄�]2/4)2

×{h̄�L[1 − fL(ω)] + h̄�R[1 − fR(ω)]} (18)

and

DHλ(x) = eH̃

2
λ

∫
dh̄ω

2π

∣∣Gr
(0)(ω,x)

∣∣2
C(ω,x)

× (
�

L,>
(0) (ω)�L,<

(0) (ω) − �
R,<
(0) (ω)�R,>

(0) (ω)
)

= eλH̃

∫
dh̄ω

2π

h̄�L + h̄�R

{[h̄ω − Ugate(x)]2 + [h̄�]2/4}2

×{[h̄�L]2fL(ω)[1 − fL(ω)] − [h̄�R]2fR(ω)

× [1 − fR(ω)]}, (19)

where C(ω,x) = −2ImGr
(0)(ω,x) is the electronic spectral

function of the electronic level defined in Eq. (A9). The
noise strength contribution coming from current-current
fluctuations is

DH (x) = e2

h̄
H̃ 2

∫
dh̄ω

2π
[fL(ω) − fR(ω)]2T (ω,x)

× [1 − T (ω,x)] + {fL(ω)[1 − fL(ω)]

+ fR(ω)[1 − fR(ω)]}T (ω,x), (20)

where T (ω,x) = h̄�
4 C(ω,x). In the absence of bias voltage,

one has D(x) = 2kBT A(x), that is, the fluctuation-dissipation
condition is verified for each fixed position x. Moreover, it is
possible to show that in the chosen units, the dimensionless
damping A(x) [Eq. (11)] and diffusive term D(x) [Eq. (17)]
result proportional to the adiabatic ratio ω0/�.

It is important to point out that, when there is no intrinsic
charge-displacement coupling (λ = 0), in the absence of the
antenna effects and at zero bias (Vbias = 0), the oscillator is
still governed by a Langevin equation

mẍ + AH (x)ẋ = kx +
√

DH (x)ξ (t), (21)

with a harmonic force F(0)(x) = −kx, an intrinsic positive-
definite dissipative term AH (x), and a diffusive term DH (x)
proportional to the thermal current-current noise. Looking at
Eqs. (13) and (20) together with Eq. (10), one can clearly
see that a natural quadratic dependence of damping and
diffusive strength on the magnetic field emerges. This can
be explained observing that, even at zero bias voltage, the
electronic tunneling events, whose phase is dependent linearly
on the CNT displacements as well as on the magnetic-field
strength, perturb the CNT mechanical motion with a force
with zero average (due to 〈Î 〉 = 0, H̃ can be also different
from zero) and square mean proportional to the magnetic
field square. Definitely, even in the absence of external bias

voltage Vbias, the magnetic field applied perpendicular to the
CNT couples to the bending mode dynamics behaving as a
surrounding thermal bath at leads temperature kBT .

We end this section pointing out that our system is
conceptually different from those discussed in Refs. 34 and 30.
In Ref. 34, the authors use a normal and a ferromagnetic lead
and observe negative damping and consequent nanoelectrome-
chanical self-excitations of the CNT-resonator system. In that
case, a strong correlation of tunneling processes of spin up and
spin down electrons is realized from and to the leads, which
results in a pumping of energy in the mechanical vibrating
CNT. Instead, when the CNT is described as a single spinless
electronic level, electrons tunnel randomly from the leads to
the CNT dot (and vice versa) and interact with the mechanical
resonator through a coupling between the CNT charge density
and the CNT displacement x. By virtue of this interaction,
uncorrelated random tunneling events from and to the leads
(assumed at equilibrium) perturb the CNT displacement x,
resulting in a diffusive motion of the mechanical resonator.
Indeed, in this case the positive damping or friction is induced
by the retardation of the electronic degrees of freedom, which
do not respond immediately to a change in x (first nonadiabatic
correction).24,29 When a transverse magnetic field is applied,
electronic tunneling processes lead to random changes of the
nanotube momentum, which results in a diffusive motion in
its phase space. Therefore, even in the presence of a magnetic
field, the effect of the electronic environment on the vibrating
CNT can be described by an uncorrelated (multiplicative)
white noise and positive definite friction. As we will see below,
at thermodynamic equilibrium, the noise strength is directly
related to the electronic current-current fluctuations across the
CNT dot which are naturally positive definite and proportional
to the friction term Eq. (13). Finally, we mention that in Ref. 30,
it has also been verified that in the case of a double quantum dot
with the oscillator coupled with the difference of population
between the dots, one can have a negative friction term in some
regions of configuration space of the oscillator.

B. Spatial dependence of the Langevin equation coefficients

In this section we perform a systematic study of the spatial
dependence of the total force, the damping (see Fig. 3) and
diffusive terms (see Fig. 4) as a function of the bias voltage as
well as on the magnetic-field strength.

As concerns the total force acting on the CNT resonator,
we point out that, for the magnetic field strengths investigated
in this paper, the effective potential preserves its parabolic
shape with a displaced minimum and renormalized curvature.
For instance, when a left-to-right current flows through the
device (see the sketch in Fig. 1) in the presence of a positive
magnetic field (outgoing from the sketch reported in Fig. 1),
the CNT-resonator effective potential minimum is displaced
towards positive displacements x with respect to the minimum
set by the charge-displacement interaction [see Figs. 2(a)
and 2(b)]. In Fig. 2, one can observe that the minimum
of the effective potential acting on the resonator depends
linearly on the magnetic field strength. This comes from the
linear dependence on the magnetic field of the Lorentz-like
correction term to the force, Eq. (9). In particular, as shown
in Fig. 2(a), in the low bias regime for the device (small
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FIG. 2. (Color online) (a) Minimum of the effective potential
[coming from the force Eq. (9)] affecting the CNT resonator as a func-
tion of the magnetic field at low bias eVbias = 0.1h̄� (Vbias = 20 μV
in our units). Solid (black) line indicates Ugate = 0, dashed (red)
line Ugate = 0.45 (Vbias = 90 μV in our units), dotted (green) line
Ugate = 1.0 (Vbias = 200 μV in our units). (b) Same as above at large
bias eVbias = 1.5h̄� (Vbias = 300 μV in our units). Solid (black) line
indicates Ugate = 0, dashed (red) line Ugate = 0.75 (Vbias = 150 μV
in our units), dotted (green) line Ugate = 1.5 (Vbias = 300 μV in our
units).

compared to the broadening of the CNT level), the larger
is the gate voltage, the smaller is the displacement of the
potential minimum as a function of the external magnetic field
with respect to the shift produced by the charge-displacement
interaction [whose position is indicated by a (black) square
for Ugate = 0, a (red) circle for Ugate = 0.45 (Vbias = 90 μV in
our units), and a (green) triangle Ugate = 1.0 (Vbias = 200 μV
in our units)]. This can be explained observing that in the low
conducting regime of the device the resonator is less effectively
coupled with the electronic subsystem. In the large bias regime
[Fig. 2(b)], a smaller magnetic field is sufficient to displace
the potential minimum of the same quantity produced by the
sole charge-displacement interaction on the CNT. Again,
the larger the gate voltage, the smaller the displacement of the
potential minimum as a function of the external magnetic field
with respect to the shift produced by the charge-displacement
interaction.

The renormalization of the effective potential curvature,
that is, of the resonance frequency of the resonator, will be
discussed in subsection A of the next section.

In this section, we limit ourselves to discuss the damping
term A(x), since for the diffusive term D(x), unless explicitly
stated, a similar analysis can be done. As shown above [see
Eq. (11)], we can distinguish between three contributions to the
friction affected by the oscillator: a pure charge-displacement
contribution Aλ(x), depicted in Fig. 3 with a solid (black) line,
already discussed in Refs. 24 and 30; a damping contribution
due to current-current fluctuations AH (x), depicted in Fig. 3
with a dotted (blue) line; a mixed damping term due to
current-density fluctuations (not positive definite), indicated
by AλH (x) and depicted in Fig. 3 with a short-dashed (red)
line. The total damping A(x) is reported with a dashed (pink)
line. As one can observe in panel (a), at low bias voltage, when

FIG. 3. (Color online) Spatial dependence of the dimensionless
damping coefficient A(x) at low bias (a)–(c) and at large bias voltage
applied (d)–(f). See main text for discussion.

the external magnetic field strength is smaller than charge-
displacement coupling λ, the damping contributions coming
from the current-current AH (x) and current-density AλH (x)
fluctuations are negligible with respect to that generated by
the pure charge-displacement contribution Aλ(x). In panel (a),
Aλ(x) and AH (x) have a single peak structure centered at
x − 2Ugate/λ � 0, while AλH (x) is an odd symmetric function
with respect to this point. We point out that these peculiar
structures are visible only at larger values of magnetic field
[Figs. 3(b) and 3(c)]. The total damping affecting the resonator
is peaked at configurations where large density variations
take place |x − 2Ugate/λ| < h̄�/λ. Indeed, the density of
the CNT level goes from a region x − 2Ugate/λ < −h̄�/λ

corresponding to almost completely filled states (〈n〉 ∼ 1) to
a region x − 2Ugate/λ > h̄�/λ corresponding to completely
empty states (〈n̂〉 ∼ 0). Definitely, the CNT level experiences
a unit charge variation across the |x − 2Ugate/λ| < h̄�/λ

region.12,16

At large bias voltages applied [panel (b)], Aλ(x) has
two peaks centered at x − 2Ugate/λ � eVbias/2λ and x −
2Ugate/λ � −eVbias/2λ, respectively. AH (x) shows the same
behavior, while AλH (x) is an odd symmetric function with
respect to these two points. As in panel (a), AH (x) and
AλH (x) are negligible with respect to Aλ(x). The total damping
affecting the resonator is peaked at configurations where the
CNT level experiences a half unit charge variation across the
|x − 2Ugate/λ ± eVbias/2λ| < h̄�/λ regions.12,16

When the external magnetic field is turned on, an enhanced
damping as well as as noise strength emerges with a quadratic
dependence on the magnetic field intensity, Eqs. (11)–(17). In
Figs. 3(b) and 3(c), one can observe that, as the dimensionless
ratio B/λ is equal to 1, the total damping affecting the
resonator is only slightly perturbed by the application of the
magnetic field. At low bias, A(x) preserves its single peak
structure with an enhanced strength [dashed (pink) curve
in Fig. 3(b)]. At large bias, the strength of the two peaks
becomes asymmetric, with an enhanced damping of the peak
at x − 2Ugate/λ � −eVbias/2. This effect can be explained as
follows: When a magnetic field is applied to the device, the
resonator starts to feel even the variations of the electronic
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FIG. 4. (Color online) Spatial dependence of the dimensionless
diffusive coefficient D(x) at large bias voltage applied (a)–(c). See
main text for discussion.

current flowing through the CNT as a function of the gate
voltage [see Eq. (9)]. These current variations are positive for
x − 2Ugate/λ < 0 and negative otherwise. At x − 2Ugate/λ �
−eVbias/2, large negative variations of the electronic density
and positive variations of the electronic current cooperate
giving an enhanced damping.

We intend now to study the regime realized when the exter-
nal magnetic field strength is larger than charge-displacement
coupling strength λ. In this case, the contribution to the
damping coming from the current-current fluctuations AH (x)
are dominant with respect to those corresponding to charge-
displacement Aλ(x) and current-density AλH (x) fluctuations.
In the low bias regime, the total damping term preserves its
single peak structure which, due to the intrinsic asymmetry of
the current-density term AλH (x), is slightly distorted. For the
same reason, in the large bias regime, the double dip structure
of the total damping term is preserved with an enhanced
asymmetry. In the large magnetic field regime, it is important
to point out the particular spatial dependence of the noise
strength D(x) [Figs. 4(c)–4(f)]. Here, the noise contribution
due to the current-current fluctuations [DH (x)] emerges with
the characteristic double peak structure even at low bias regime
[dotted (blue) curve in Fig. 4(c)]. Comparing the dashed (pink)
curves in panel (c) of Figs. 3 and 4, one can observe that, even at
low bias voltage, the application of a large magnetic field drives
the CNT resonator far out of equilibrium, breaking the validity
of the Einstein relation D(x) = 2kBTeffA(x) with an effective
temperature. Far from equilibrium, this relation is strictly valid
only at very low bias voltages.24,40 In order to clarify this point,
in Fig. 5(b) we have plotted the ratio D(x)/2A(x) as a function
of the CNT displacement x, for small bias voltage eVbias = 0.1
keeping fixed λ = 0.1 and gate voltage Ugate = 0.0. As the
reader can observe, the solid (black) line (representing the
result for zero magnetic field) can be safely considered
constant and lies above the thin straight line representing the
equilibrium temperature kBT = 0.1. For small bias voltages
(eVbias < 0.4h̄�) the nonequilibrium electronic bath affects
the CNT vibrating dynamics as a standard thermal bath at an
effective temperature that in this case is kBTeff � 0.104. In
Fig. 5(a), we have shown how the ratio D(x)/2A(x) against

FIG. 5. (Color online) (a) Spatial dependence of the ratio
D(x)/2A(x) at fixed gate voltage Ugate = 0.0 and zero magnetic
field B = 0.0, electron-oscillator coupling λ = 0.1, temperature
kBT = 0.1, for different values of the bias voltage: solid (black)
line eVbias = 0.0, dashed (red) line eVbias = 0.25, dotted (green) line
eVbias = 0.5, and dashed-dotted (blue) line eVbias = 1.0. (b) Same as
(a) at fixed gate voltage Ugate = 0.0 and bias voltage eVbias = 0.1,
for different values of the magnetic field strength: solid (black) line
B = 0.0, dashed (red) line B = 0.1λ, dotted (green) line B = 1.0λ,
and dashed-dotted (blue) line B = 5.0λ.

displacement x starts to differ more and more from the straight
equilibrium line kBT = 0.1 as the bias voltage is increased.

When the magnetic field is turned on, the D(x)/2A(x)
curves get asymmetric as a function of displacement deviating
more and more from a straight line as the magnetic field
strength is increased. One can note that, even for the case
with B = 5λ, the dotted (green) line curve deviates from the
equilibrium temperature line by 10% at most for negative
displacements and by 20% at most for positive displacements.
The origin of this asymmetrization effect can be ascribed
the to so-called mixed terms, AλH (x) and DλH (x) which are
not positive definite. They are negative for x − 2Ugate/λ < 0,
where one has electronic density and electronic current
variations of opposite sign (this region is characterized by
an enhanced damping), and positive otherwise.

In the next section, we study numerical results of our
model concerning mechanical properties of CNT resonator
(resonance frequency and quality factor) as well as the
electronic observables inherent to the transport problem (I -V
characteristic).

IV. MECHANICAL AND ELECTRONIC
CHARACTERISTICS OF THE DEVICE

Given the assumption about the separation between the
slow vibrational and fast electronic (tunneling) time scales,
the problem of evaluating a generic observable (electronic or
not) of the system reduces to the evaluation of that quantity
for a fixed position x and velocity v of the oscillator, with the
consequent averaging over the stationary probability distribu-
tion P (x,v). From the solution of the Langevin equation (6),
one can determine the distribution P (x,v) which allows us to
calculate all the electronic observables O:

〈O〉 =
∫

dxdvP (x,v)O(x,v). (22)
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We analyze in the next section the effects of the magnetic
field on the mechanical as well as electronic properties of the
device.

A. Resonance frequency renormalization
and current-voltage curves

In this section, we address the magnetic field effects on the
renormalization of the CNT-resonator resonance frequencies
and its back-action effects on the current voltages curves of
the device. In order to study the CNT resonance frequency
renormalization as a function of the gate voltage, we have
compared results coming from two ways of evaluation of
the resonance frequencies. In the first method, referred to
as static, we evaluate the position of the minima of the
static potential arising from the generalized force acting on
the resonator [Eq. (9)]. In the second method, referred to as
dynamic + antenna, we have analyzed, at every fixed value of
the gate voltage, all the traces of electronic current as a function
of the antenna frequency reporting with a red thin (blue thick)
line the resonance frequency values with positive (negative)
current change �I = I − I0 with respect to background value
I0 obtained in the absence of the antenna [see Figs. 6(b)–6(d)].

In Fig. 6, we report the resonance frequencies of the CNT
resonator as a function of the gate voltage comparing the two
methods outlined above. We address the low bias regime in
panels (a) and (b), while the large bias regime is investigated in
panels (c) and (d). In Fig. 6(a), different curves, from thicker to
thinner, refer to increasing magnetic field applied to the device
B = 0.0–1.5–3.0. The same description was done in panel (c),

FIG. 6. (Color online) (a) Resonator frequency against effective
gate voltage calculated as minimum of the effective potential in
the static approximation at small bias eVbias = 0.1h̄� for different
magnetic field values: solid thick line B = 0.0, solid normal-
thickness line B = 1.5, solid thin line B = 3.0. (c) Same as (a) at
large bias eVbias = 1.5h̄� for different magnetic field values: from
thicker to thinner line B = 0.0–0.1–0.2–0.3–0.4. (b)–(d) Resonator
frequency calculated using an external antenna (with Aext = 10−3)
at mechanical resonance against effective gate voltage for same
parameters of (a)–(c), respectively. Dashed (red online) and solid
(blue online) portions of each curve indicate resonance frequency
values with positive and negative current change �I , respectively. In
(d), only curves referring to magnetic field strengths B = 0.0–0.2–0.4
are reported.

where different curves refer to increasing magnetic field in the
range B = 0.0–0.2–0.4. The thicker (black) lines in panels
(a) and (c), corresponding to the absence of magnetic field,
reproduce qualitatively all results experimentally observed in
Ref. 12: when bias voltages are smaller than the broadening
due to tunnel coupling [panel (a)], the resonance frequency
shows a single dip as a function of gate voltage. At bias voltages
that exceed the broadening due to tunnel coupling [panel
(c)], the resonance frequency shows a double dip structure.
Actually, in this regime, the onset of a double dip structure was
already predicted by us in Ref. 16. It is important to point out
that the resonance frequency renormalization curves obtained
in the presence of the external antenna [Figs. 6(b)–6(d)] have
the same qualitative behavior (as a function of the gate) of those
obtained in the static approach. In the presence of an external
antenna with a finite amplitude, renormalization effects in the
resonance frequencies are less pronounced due to nonlinear
softening.2,16

As already analyzed in Refs. 2 and 16, when the device is
in a low current-carrying state, a peak in the current-frequency
curve signals the mechanical resonance [whose position is
indicated by thin (red) lines in Figs. 6(b)–6(d)], while in a high
current-carrying state, a dip in the current-frequency curves is
observed [whose position is indicated by thick (blue) lines
in Figs. 6(b)–6(d)]. In the presence of a transverse magnetic
field, the different character of low and high conducting states,
signaled by a peak or a dip in current-frequency curves, is
preserved [curves (2) and (3) in Figs. 6(b)–6(d)].

The peculiar features of CNT-resonator frequency renor-
malization as a function of the gate can be explained as follows.
In the absence of magnetic field, the resonator frequency
renormalization is maximum at electronic configurations
where the the CNT level experiences the largest charge-density
variations against the gate voltage,

keff = k + λ2 ∂〈n̂〉
∂Ugate

∣∣∣∣
x=xmin

. (23)

Actually, at low bias voltages, a unit charge density variation
across the region where the small conduction window is placed
|Ugate| < h̄� [solid (black) thick line in Fig. 6(a)] occurs.
At large bias voltages, the CNT frequency renormalization
is larger at electronic configurations where the CNT level
experiences a half unit charge variation, that is, at |Ugate −
eVbias/2| < h̄� and at |Ugate + eVbias/2| < h̄�.

When the transverse magnetic field is turned on, the
above scenario modifies as follows. The resonator frequency
renormalization is larger at electronic configurations where the
CNT level experiences the largest charge density and current
variations against the gate voltage,

keff = k + λ2 ∂〈n̂〉
∂Ugate

∣∣∣∣
x=xmin

− λH̃
∂〈Î 〉
∂Ugate

∣∣∣∣
x=xmin

. (24)

At low bias voltage, the single dip feature in the CNT-resonator
resonance frequency gets distorted [solid normal-thickness
line in Fig. 6(a)] and acquires, in the limit of large magnetic
field [solid thin line in Fig. 6(a)], a dip-peak structure that could
be experimentally observed. Actually, the peak observed at
Ugate � 0.3 corresponds to a hardening of the CNT-resonator
resonance frequency. This effect can be explained as follows:
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FIG. 7. (Color online) (a) Resonator frequency against magnetic
field strength calculated as minimum of the effective potential in
the static approximation at small bias eVbias = 0.1h̄� for different
gate voltage values: solid (black) line Ugate = 0.0, dashed (red) line
Ugate = 1.0, dashed (red) line marked with a full circle Ugate = −1.0,
dotted (green) line Ugate = 2.0, dotted (green) line marked with a full
circle Ugate = −2.0. (b) Same as (a) at large bias eVbias = 1.5h̄� for
same gate voltage values of (a).

when a magnetic field is applied to the device, the resonator
starts to feel even the variations of the electronic current
flowing through the CNT as a function of the gate voltage [see
Eq. (24)]. These current variations are positive for Ugate < 0
and negative otherwise. At Ugate � 0.3, the positive (due to the
positive sign of the magnetic field) variations of the electronic
current overcome the negative variation of the electronic
density giving a hardening in the CNT resonance frequency.
At Ugate � −0.25, one has negative variations of both density
and current, obtaining a more pronounced softening in the
resonance frequency. The effect outlined above is more
pronounced in the large bias regime [see Fig. 6(c)]. Here,
the magnetic field gives an enhanced softening dip at Ugate �
−eVbias/2 and a hardening peak at Ugate � eVbias/2, where
positive variations of the electronic current cooperate with
negative variation of the electronic density. In both low and
high bias regime, the hardening effect outlined above could be
experimentally observed.

We can now complete the analysis of renormalization
frequency effects by studying their dependence on the mag-
netic field strength at fixed gate voltage. In Fig. 7(a), we
show the resonance frequency curves in the low bias voltage
eVbias = 0.1 regime obtained in the static approximation
against magnetic field strength for different values of the
gate voltages. Both in the low [panel (a)] and high voltage
regimes [panel (b)], one can observe that only when the
device is in high conducting state [solid (black) curve for
Ugate = 0.0] the resonance frequency curves show a quadratic
dependence on the magnetic field strength. We have verified
numerically that this quadratic behavior is present only for a
very narrow interval of gate voltage values |Ugate| < 0.2h̄�.
When the device is pushed to low conducting states [dashed
Ugate = 1 (red) and dotted Ugate = 2 (green) lines in Fig. 7(a)]
the resonance frequency curves change character showing
a linear dependence on the magnetic field strength (in the
range of magnetic field values experimentally investigated,
|B| < 1). In particular, for positive gate voltages one has an

increase of the frequency going towards a hardening effect. For
negative gate voltages (curves are marked with full circles),
frequency decreases obtaining an enhanced softening. In the
high voltage bias regime, the same behavior can be observed,
but with a larger renormalization of frequencies in the magnetic
field strength interval. This difference is easily understood
observing that in this case the correction to the CNT frequency
is proportional to the magnetic field strength [see Eq. (24)].
The effect outlined above can be explained as follows. When
the device is in a high conducting state (|Ugate| < 0.2h̄�), the
CNT dynamics is effectively strongly coupled to the electronic
current flow. In this case, the equilibrium displacement xmin

(discussed in the previous section in Fig. 2) of the CNT is
more easily tunable as a function of the magnetic field strength
giving an effective quadratic dependence of the last term of
Eq. (24) on it (actually ∂〈Î 〉

∂Ugate
|x=xmin gets a linear dependence

on H ). When the device is in a low conducting state, the CNT
equilibrium displacement xmin depends only slightly on the

magnetic field strength, therefore the coefficient ∂〈Î 〉
∂Ugate

|x=xmin in
Eq. (24) is practically constant in all the range of physically
investigated magnetic field values.

Coming back to Fig. 7(a), one can see that in the low bias
regime and for Ugate = 0.0 frequency decreases for positive
magnetic field strength and then reaches a minimum for
B � 0.8. On the contrary, in the high bias voltage regime
[panel (b)], the frequency has a minimum for a smaller
value of the magnetic field B � 0.05. We have verified
numerically that for Ugate = 0 the minimum position of the
frequency-magnetic feld curve is proportional to the magnetic
field strength for which one has a zero displacement for the
CNT, Bmin ∝ B(x = 0)/2. These two quantities go to zero
increasing the bias voltage. This behavior can also be expected
looking at Fig. 2(b), where one can see that, if the bias voltage
is sufficiently large, a smaller and smaller positive magnetic
field is required to put the CNT displacement to zero.

The peculiar renormalization frequency effects discussed
above have a nontrivial back-action effects on the electronic
density and current-gate voltage characteristic of the device.
In Fig. 8, we study the electronic CNT level density and
current as a function of the gate voltage in the presence of
an external antenna at fixed amplitude and frequency ωext =
0.9975 [corresponding to the horizontal line in Fig. 6(b)]
in the low bias regime of the device.44 When the external
antenna frequency becomes equal to the proper frequency of
the resonator, we observe a dip structure in both density and
current at a gate voltage corresponding to high conducting
states of the device [solid (black) line in Figs. 8(a) and
8(b)]. This feature, that could be experimentally observed,
is considered as a “dip” with respect to corresponding curves
in the absence of antenna or with an antenna frequency far
from the range of the proper frequencies of the CNT resonator
(not shown in Fig. 8).

When a transverse magnetic field is applied to the device,
the CNT frequency renormalization profile as a function of the
gate voltage changes (see Fig. 6). Therefore, the mechanical
resonance condition between the external antenna frequency
and the proper frequency of the resonator occurs at different
electronic gate voltages. For sufficiently large magnetic fields,
the resonance can occur in correspondence of a low conducting
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FIG. 8. (Color online) (a) Average electronic current flowing
through the CNT level at low bias (eVbias = 0.1) as function of the
gate voltage for different values of the magnetic field and in the
presence of a external antenna applied to the device at fixed frequency
ωext = 0.9975 and amplitude: solid (black) line Aext = 10−3, dashed
(red) line B = 1.0Aext = 10−2.5, dotted (green) line B = 1.5Aext =
10−2.0, dashed-dotted (blue) line B = 1.0Aext = 10−2.5. (b) Average
electronic density on the CNT level for the same parameter values as
in (a). See the main text for detailed discussion.

state of the device. As one can observe in Figs. 8(a) and 8(b),
a dip structure in the electronic density at a more negative gate
voltage and corresponding current peak [dotted (green) and
dashed-dotted (blue) lines in Figs. 8(a) and 8(b)] is visible.
Actually, the above structures are broadened due the reduction
of the quality factor as a function of the magnetic field. In
the limit of very large magnetic fields, if we keep fixed the
amplitude of the external antenna, the fine structures outlined
above are completely washed out due to the decrease of the
device quality factors.

B. Device quality factors

One of the main findings of Ref. 1 is the observation of a
quadratic dependence of the device quality factor Q on external
magnetic field strength. Within our model, as also stressed
in the previous sections, such a quadratic dependence on B

emerges naturally. In order to include back-action effects of
the out-of-equilibrium electronic bath on the resonator, we
have calculated the average device quality factor as

Q =
∫ ∞

−∞
dx

1

A(x)
P (x), (25)

where A(x) is the total damping at a particular resonator
displacement x and P (x) is the reduced displacement distri-
bution probability of the CNT resonator. We have verified that
this particular way of extracting quality factors is completely
equivalent to measure the width half high in the current-
frequency curves obtained in the linear response to an external
antenna exciting the nanotube motion.16

Motivated by the experiment performed in Ref. 1 and by
recent experimental study on a similar CNT device,12 we here
performed a systematic study of the quality calculated from
our model as a function of the bias, gate voltage, as well as
on the magnetic field. In Figs. 9(a) and 9(b), we investigate

FIG. 9. Device quality factor as a function the gate voltage Ugate

for different magnetic field strengths at low (a) and large (b) bias
voltage. (c), (d) Same as above for the average total damping 〈A(x)〉
of the system. (a)–(c) Solid thick line B = 0.0, solid normal-thickness
line B = 1.5, and solid thin line B = 3.0. (b)–(d) Solid thick line
B = 0.0, solid normal-thickness line B = 0.2, and solid thin line
B = 0.4.

the device quality factor Q as a function of gate voltage in the
low and large bias voltage regime, respectively. In the absence
of a transverse magnetic field, we reproduce the qualitative
behavior obtained in the experiment of Ref. 12. When bias
voltages are smaller than the broadening due to tunnel
coupling, the quality factor shows a single dip feature [solid
(black) thick line in Fig. 9(a)]. At bias voltages that exceed (or
are equal to) the broadening due to tunnel coupling, the quality
factor shows a double dip structure [solid (black) thick line in
Fig. 9(b)]. This behavior, already addressed in Refs. 12 and 16,
can be easily explained looking at the average charge and
dissipation of the CNT resonator. As also discussed referring
to total damping affecting the CNT resonator in Sec. III B, at
low bias voltage and in the absence of magnetic field, the total
average damping affecting the resonator is peaked at electronic
configurations where the CNT level experiences a unit charge
variation across the region where the small conduction window
is placed |Ugate| < h̄� [solid (black) thick line in Fig. 9(c)]. At
large bias voltages, the conduction window, whose extension
is proportional to eVbias, becomes larger than the broadening
of the CNT level, so that the total average damping affecting
the resonator is peaked at electronic configurations where the
CNT level experiences half unit charge variations, that is,
at |Ugate − eVbias/2| < h̄� and |Ugate + eVbias/2| < h̄�. When
the transverse magnetic field is turned on, the above scenario
modifies as follows. At low bias voltages, the total damping
affected by the CNT resonator increases quadratically with the
field at every point in the configuration space of the oscillator.
Moreover, the CNT-resonator distribution probabilities P (x)
depend slightly on the magnetic field as well as on the gate
voltages and are actually centered at configurations close to
the harmonic potential minimum x � 0 in the absence of
charge-displacement interaction λ. The overall result is an
enhanced average total damping as one increases the magnetic
field [solid normal-thickness (B = 1.5) and thin (B = 3.0)
(black) lines in Fig. 9(c)] and a corresponding decrease of
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FIG. 10. Device quality factor as a function the magnetic field
strength B for different bias voltages (solid thick line eVbias = 0.1,
solid normal-thickness line eVbias = 0.75, and solid thin line eVbias =
1.5) at low (a) and high (b) conducting states. (c),(d) Device quality
factor as a function of the bias voltage eVbias for different magnetic
field strengths at low (c) and high (d) conducting states. (c) Solid
thick line B = 0.0, solid normal-thickness line B = 0.05, and solid
thin line B = 0.1. (d) Solid thick line B = 0.0, solid normal-thickness
line B = 0.25, and solid thin line B = 0.5.

the quality factor in all the gate voltage range investigated
[solid normal-thickness (B = 1.5) and thin (B = 3.0) (black)
lines in Fig. 9(a)]. At large bias voltage, the P (x) still
depends only slightly on the magnetic field but is very
spread on the configuration space. Therefore, the average in
Eq. (25) reproduces the spatial dependence structure of the
total damping coefficient reciprocal 1/A(x). The double peak
structure of the average total damping term [solid thick (black)
line in Fig. 9(d)] is canceled by the magnetic field, giving a
single peak at Ugate = eVbias/2 where a cooperation between
negative charge density and positive current variations take
place [solid normal-thickness (B = 0.2) and thin (B = 0.4)
(black) lines in Fig. 9(d)]. As a consequence, the quality
factor loses its double dip structure getting a single dip at
Ugate = −eVbias/2 [solid normal-thickness (B = 0.2) and thin
(B = 0.4) (black) lines in Fig. 9(b)].

We intend now to study the device quality factors as a
function of the transverse magnetic field B comparing different
conducting states of the device. In Fig. 10(a), one can observe
calculated device quality factors as a function of the magnetic
field at a low conducting state of the device (Ugate = 0.45).
Different curves, from thicker to thinner, refer to increasing
bias voltages applied eVbias = 0.1–0.75–1.5. At every fixed
bias voltage, a clear quadratic dependence of the total average
damping on the magnetic field strength is observed (not shown
in Fig. 10), with a Lorentzian shape of the quality factor
curves [see Fig. 10(a)]. It is important to point out that the
range of magnetic field strengths experimentally investigated
in Ref. 1, B = 0 − 3T , corresponds to small magnetic fields
in our units (we recall that H0 = 16.6T ). Remarkably, at low
bias and small magnetic fields, a quadratic decrease of the Q

against magnetic field is observed [see solid thick (black) line
in Fig. 10(a)]. In Fig. 11, we show the quantitative agreement
between experimental and calculated quality factors against
magnetic field when the device is in a low conducting state,

FIG. 11. (Color online) Device quality factor as a function
the magnetic field strength. Squares represent experimental values
obtained in Ref. 1 at T = 25 mK, Vbias = 0.3 mV, and distance from
the current peak Ugate = −90 mV. Solid (red) line is calculated Q at
kBT = 0.01, eVbias = 0.1, and Ugate = 0.45.

with eVbias = 0.1 and Ugate = −0.45. The slight increase of the
quality factor Q as a function of the field for small magnetic
fields is due to asymmetry introduced by the gate voltage
Ugate = 0.45 applied to the device [see also Fig. 10(a)]. For
gate voltage equal to zero, that in the high conducting state of
the device, the calculated Q against B curve is a parabola with
a maximum at zero magnetic field applied.

Coming back to Fig. 10(a), one can observe an interesting
increase of the quality factor peak as a function of the
bias voltage. In particular, for eVbias = 1.5 [thinner line in
Fig. 10(a)] a quality factor peak at B � Ugate/2 = 0.225
occurs. This can be directly related to the average total damping
dip, not shown in Fig. 10. This effect can be explained noting
that, when the bias voltage applied to the electronic device
is increased, a transition from a single peak to a double peak
structure in the spatial dependence total damping affected by
the CNT resonator can be observed [compare Figs. 3(a) and
3(d)], while at the same time, the displacement distribution
probabilities P (x) spread on the configuration space remain
centered at configurations close to the harmonic potential
minimum x � 0 characteristic of the low bias regime. The
overall result is a reduction of the average total damping
affecting the CNT resonator whose minimum is translated
by a quantity proportional to the gate voltage applied to the
device. This argument becomes even more clear when no gate
voltage is applied to the device which is therefore placed in
a high conducting state. In this case a perfect symmetry of
Q-factor curves with respect to zero magnetic field is obtained
[see Fig. 10(b)].

We end this section with a study of the device quality
factors as a function of the bias voltages and magnetic fields
comparing low and high conducting states of the device. In
Fig. 10(c), one can observe calculated device quality factors
as a function of the bias voltages at a low conducting state
of the device (Ugate = 0.45). Different curves, from thicker to
thinner, refer to increasing magnetic field applied to the device
B = 0.0–0.05–0.1. At zero magnetic field, a clear double dip
feature in the quality factor Q, as experimentally observed
in Ref. 12, is visible. This can be explained looking at the
average total damping and in terms of the average charge
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present on the CNT level. The total average damping, in
the absence of magnetic field, has two peaks at eVbias =
−2Ugate = −0.9 and at eVbias = 2Ugate = 0.9. Indeed, as also
discussed previously, the total average damping is peaked at
electronic configurations where the CNT level experiences
half unit charge variations, that is, at |Ugate − eVbias/2| < h̄�

and |Ugate + eVbias/2| < h̄�. Therefore, when the edges of the
conduction window (whose width is proportional to eVbias)
meet the CNT level energy (given by Ugate), a maximum
total average damping (minimum quality factor) is observed.
As also discussed in reference to Fig. 9, the double peak
structure of the average total damping term is canceled by the
magnetic field, giving a single peak at eVbias = −2Ugate where
a cooperation between negative charge density and positive
current variations takes place. As a consequence, the quality
factor loses its double dip structure getting a single dip at
eVbias = −2Ugate [solid normal-thickness (B = 0.05) and thin
(B = 0.1) (black) lines in Fig. 10(c)].

In Fig. 10(d), we show calculated device quality factors
as a function of the bias voltages at a high conducting state
of the device (Ugate = 0.0). Different curves, from thicker to
thinner, refer to increasing magnetic field applied to the device
B = 0.0–0.25–0.5. As above, at zero magnetic field, a single
dip feature in the quality factor Q, as experimentally observed
in Ref. 12, is visible. This behavior can be discussed with
the same argument given for discussing Figs. 9(a) and 9(b),
where a reduction of the total average damping as a function
of the bias voltage applied to the device was observed. Again,
a decrease of the quality factor in all the gate voltage range
investigated as a function of the magnetic field is observed [see
Fig. 10(d)].

V. CONCLUSIONS AND DISCUSSION

In conclusion, we have studied a CNT-based electronic
transistor in the presence of an external magnetic field
perpendicular to the current flux. The main result is that a
magnetic field can be used as a useful tool to tune and probe the
mechanical characteristic of the bending mode CNT dynamics.
Indeed, a Lorentz-like force acting on the electronic current
flowing through the CNT comes into play coupling with the
bending mode of the beam itself.

Within our approach, we were able to show that all the
terms describing the CNT-resonator dynamics are modified by
the external magnetic field. First of all, the total effective force
is modified by a pure nonequilibrium correction term propor-
tional to the magnetic field strength as well as to the average
electronic current. This provides several interesting resonance
frequency renormalization effects. The peculiar (single or
double dip) features in the CNT-resonator resonance frequency
against gate voltage, obtained in different conducting regimes
for the device, get distorted and acquire, in the limit of large
magnetic field, a peculiar dip-peak structure that should be
experimentally observed. Furthermore, resonance frequencies
depend quadratically on the magnetic field strength if the
device is a high conducting state, and linearly otherwise.

The transverse magnetic field has been shown to give also
an enhanced damping as well as a noise term originating from
the electronic phase fluctuations induced by the displacements
of CNT itself. In particular, a systematic study of device quality

factor as a function of gate and bias voltage in the presence
of the magnetic field has also been performed. All results are
discussed observing the average charge and electronic current
variations with respect to gate voltage applied to the device and
can be summarized as follows. At a fixed electronic conducting
regime, if negative charge variations and positive current
variations occur, one has an enhanced damping reducing
the quality factor of the device. Vice versa, negative charge
variations and negative current variations reduce damping with
a consequent increase of quality factors. Within our model, a
quadratic dependence of the device quality factor Q on external
magnetic field strength, experimentally observed in Ref. 1,
naturally emerges. This behavior is understood in terms of a
back-action of quantum electronic current flow fluctuations on
the bending mode dynamics.

Finally, when the device is actuated by an external antenna
at fixed frequency and amplitude, the device current-gate
voltage response is modified by fine structure features any time
the mechanical resonance with the proper nanotube oscillation
frequency occurs. These structures can be tuned as a function
of the external field and could be experimentally observed. In
this sense, we have shown that, only exciting the CNT motion
with application of an external radio-frequency antenna, one
can observe a magnetic field dependence of the electronic
current.

We point out that throughout this paper we do not take
into account a magnetic field with a component longitudinal
to the CNT resonator. This issue has been recently addressed
in Ref. 12 and explained in terms of a more sophisticated
theoretical schematization of the CNT-resonator electronic
structure which has a cylindrical quasi-one-dimensional shape.

We end this section noting that it could be of outstanding
interest to study the possibility to include quantum corrections
to the oscillator dynamics as well as spin degrees of freedom34

and electron-electron interaction effects45 in the low bias
regime. In particular, it has been recently proposed to study
the CNT bending mode dynamics by employing the spin-
orbit coupling between a single spin and nanomechanical
displacement46–48 in the presence of a magnetic field. Quan-
tum corrections becomes important when the resonator and
electronic time scales are of the same order on magnitude.
In this direction, it was shown in Ref. 33 that a magnetic
field applied perpendicular to the CNT results in negative
magnetoconductance due to quantum vibrations of the tube
inducing an Aharonov-Bohm-like effect49 on the electrons
crossing the device. Work in this direction is in progress.
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APPENDIX A: ADIABATIC APPROXIMATION FOR THE
ELECTRON PROBLEM IN THE PRESENCE OF A

MAGNETIC FIELD

In this appendix, we show how the adiabatic approximation
on the electronic CNT level Green function works in the
presence of a transverse magnetic field. Assuming a slow time
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dependence of electronic Green functions on the resonator
displacement x, we are able to calculate truncated expressions
for the CNT level Green functions which acquire a “slow”
time dependence and, at first order, a linear correction in the
oscillator velocity. As a result of the adiabatic approximation,
the truncated CNT level Green functions will depend on
the instantaneous value of the position and velocity of the
resonator Gr,a,<,>(ω,x,v).

The adiabatic expansion of the Fourier transformed retarded
CNT level Green function is

Gr (ω,x,v) = Gr
(0)(ω,x) + Gr

(1)(ω,x,v), (A1)

where the expression of Gr
(0)(ω,x) is

Gr
(0)(ω,x) = 1

h̄ω − Ugate(x) + ıh̄�/2
, (A2)

and that of Gr
(1)(ω,x,v) is

Gr
(1)(ω,x,v) = ıh̄U̇gate(x)Gr

(0)(ω,x)
∂Gr

(0)(ω,x)

∂h̄ω
. (A3)

Above, Ugate(x) = Ugate + λx and the dot indicates the time
derivative U̇gate = λ∂x

∂t
= λv.

Using the adiabatic approximation34 x(t1) − x(t2) �
ẋ(t0)(t1 − t2), we obtain for the lesser and greater components
of the leads’ self-energy in Fourier space

�<
leads(ω,v) � �<

leads,(0)(ω) + �leads,(1)(ω,v), (A4)

where the expression of �<
leads,(0)(ω) is

�<
leads,(0)(ω) = ı[h̄�LfL(ω) + h̄�RfR(ω)], (A5)

and that of �leads,(1)(ω,v) is

�leads,(1)(ω,v) = −ıeH̃

(
∂[h̄�LfL(ω) + h̄�RfR(ω)]

∂[eVbias]

)
v.

(A6)

Above, we have defined H̃ = 2ph̄/e. The adiabatic correction
to the lesser component of the leads’ self-energy in Eq. (A6) is
entirely due to the transverse magnetic field and represent one
of the main results of the present paper, in contrast to previous
works where magnetic field effects in the adiabatic expansion
were not considered.16,24,29,30,40

Definitely, for the CNT level occupation we get

〈n̂〉(x,v) � 〈n̂〉(0)(x) + 〈n̂〉(1)(x,v), (A7)

where at zero order in the adiabatic expansion

〈n̂〉(0)(x) =
∫

dh̄ω

4π
[fL(ω) + fR(ω)]C(ω,x), (A8)

with the spectral function C(ω,x) = −2ImGr
(0)(ω,x) of the

CNT level given by

C(ω,x) = h̄�

[h̄ω − Ugate(x)]2 + [h̄�]2/4
. (A9)

The first-order corrections in the adiabatic expansion are linear
in the oscillator velocity

〈n̂〉(1)(x,v) = v[R(1)(x) + R(2)(x)], (A10)

with

R(1)(x) = λ

�

∫
dh̄ω

2π
g

(1)
+ (ω)C(ω,x)T (ω,x), (A11)

R(2)(x) = eH̃

2

∫
dh̄ω

2π
g

(2)
+ (ω)C(ω,x), (A12)

where we have defined the transmission function T (ω,x)

T (ω,x) = h̄�Lh̄�R

{[h̄ω − Ugate(x)]2 + [h̄�]2/4} , (A13)

and

g
(1)
+ (ω) = −∂[fL(ω) + fR(ω)]

∂h̄ω
, (A14)

g
(2)
+ (ω) = −∂[fL(ω) + fR(ω)]

∂[eVbias]
. (A15)

Above, R(1)(x) is the the adiabatic correction to the density
related to the charge-displacement coupling described in the
interaction Hamiltonian Eq. (4), already described in many
papers in the literature.24,29,30 R(2)(x) is the adiabatic correction
exclusively due to magnetic-coupling effects modifying the
electronic phase of electrons flowing from the leads to the
CNT.

Finally, in the hypothesis of symmetric coupling to the
leads �L = �R , one can calculate the adiabatic expansion for
the symmetrized current 〈Î 〉 = [〈ÎL〉 − 〈ÎR〉]/2,

〈Î 〉(x,v) = e

h̄

∫
dh̄ω

2π
|Gr (ω,x)|2[�R,>(ω,v)�L,<(ω,v)

−�L,>(ω,v)�R,<(ω,v)]. (A16)

Using Eqs. (A1) and (A4), we get

〈Î 〉(x,v) � 〈Î 〉(0)(x) + 〈Î 〉(1)(x,v), (A17)

where

〈Î 〉(0)(x) = e�

∫
dh̄ω

8π
[fL(ω) − fR(ω)]C(ω,x), (A18)

with linear corrections in the oscillator velocity

〈Î 〉(1)(x,v) = v[U(1)(x) + U(2)(x)], (A19)

with

U(1)(x) = −eλ

2

∫
dh̄ω

2π
g

(1)
− (ω)C(ω,x)T (ω,x), (A20)

U(2)(x) = −e2

h̄
H̃

∫
dh̄ω

2π
g

(2)
− (ω)T (ω,x), (A21)

where we have defined

g
(1)
− (ω) = ∂[fL(ω) − fR(ω)]

∂h̄ω
, (A22)

g
(2)
− (ω) = ∂[fL(ω) − fR(ω)]

∂[eVbias]
. (A23)

As already discussed, referring to adiabatic corrections to
the average charge density of the CNT level, U(1)(x) is the
the adiabatic correction to the electronic current related to the
charge-displacement coupling described in the interaction
Hamiltonian Eq. (4), already described in Refs. 26 and 27.
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U(2)(x) is the adiabatic correction to the current exclusively
due to magnetic-coupling effects. As shown in Sec. III A1,
Eq. (A21) is one of the main results of the present paper,
describing the increase of damping acting on the CNT
resonator given by the application of a transverse magnetic
field.

APPENDIX B: CURRENT-CURRENT AND
DENSITY-CURRENT FLUCTUATIONS

In this appendix, we illustrate how the calculation of the
force-force fluctuation [Eq. (15)] can be performed with the
nonequilibrium Green-function approach. In particular, here
we show how one can calculate in the adiabatic approximation
the current-current

S(t,t ′) = 〈δÎ (t)δÎ (t ′)〉 (B1)

and the density-current

M(t,t ′) = 〈[δn̂(t)δÎ (t ′) + δÎ (t)δn̂(t ′)]〉 (B2)

fluctuation terms appearing in Eq. (15). Recalling that Î =
(ÎL − ÎR)/2, it is easy to see that S(t,t ′) is made of three
contributions,

S(t,t ′) = 1
2 [SL(t,t ′) + SR(t,t ′) + SLR(t,t ′)], (B3)

where

SL(t,t ′) = 〈δÎL(t)δÎL(t ′)〉, (B4)

SR(t,t ′) = 〈δÎR(t)δÎR(t ′)〉, (B5)

SLR(t,t ′) = −〈{δÎL(t),δÎR(t ′)}〉. (B6)

The density-current fluctuation term M(t,t ′) is given by

M(t,t ′) = 1
2 [MR(t,t ′) − ML(t,t ′)], (B7)

where

ML(t,t ′) = 〈{δÎL(t),δn̂(t ′)}〉, (B8)

MR(t,t ′) = 〈{δÎR(t),δn̂(t ′)}〉. (B9)

Above, {A,B} = AB + BA is an anticommutator. In this
appendix we limit to calculate SL(t,t ′) and ML(t,t ′) in the
adiabatic approximation, since for the other fluctuation terms
the derivation is similar.

We recall the expression for the current operator (through
the left barrier),50

IL = ıe

h̄

∑
k

[VL,kc
†
kd − V ∗

L,kd
†ck]. (B10)

We define δÎL(t) = ÎL(t) − 〈ÎL〉, and plan to evaluate the
correlation function (we set VL,k = Vk),

SL(t,t ′) = 1

2
〈{δÎL(t),δÎL(t ′)}〉

= 1

2
〈{IL(t),IL(t ′)}〉 − 〈ÎL〉2

= 1

2

(
ıe

h̄

)2 ∑
k,k′

[VkVk′ 〈c†k(t)d(t)c†k′(t ′)d(t ′)〉

−VkV
∗
k′ 〈c†k(t)d(t)d†(t ′)ck′(t ′)〉

−V ∗
k Vk′ 〈d†(t)ck(t)c†k′(t ′)d(t ′)〉

+V ∗
k V ∗

k′ 〈d†(t)ck(t)d†(t ′)ck′(t ′)〉] + H.c. − 〈ÎL〉2.

(B11)

The Fourier transform of S is called the noise spectrum;
in what follows we shall be particularly concerned with its
zero-frequency component, S(0) = ∫

d(t − t ′)S(t − t ′), that
is, the relevant quantity in the adiabatic expansion. In order to
evaluate the (nonequilibrium) expectation values occurring in
Eq. (B11) in a systematic way, we first define the following
contour-ordered two-particle Green functions (we follow
Ref. 50),

Gcd
1 (τ,τ ′) = ı2〈TCc

†
k(τ )d(τ )c†k′(τ ′)d(τ ′)〉,

Gcd
2 (τ,τ ′) = ı2〈TCc

†
k(τ )d(τ )d†(τ ′)ck′(τ ′)〉,

(B12)
Gcd

3 (τ,τ ′) = ı2〈TCd†(τ )ck(τ )c†k′(τ ′)d(τ ′)〉,
Gcd

4 (τ,τ ′) = ı2〈TCd†(τ )ck(τ )d†(τ ′)ck′(τ ′)〉.
The nonequilibrium noise correlator is then given by

SL(t,t ′) = 1

2

(
e

h̄

)2 ∑
k,k′

[VkVk′G
cd,>
1 (t,t ′)

−VkV
∗
k′G

cd,>
2 (t,t ′) − V ∗

k Vk′G
cd,>
3 (t,t ′)

+V ∗
k V ∗

k′G
cd,>
4 (t,t ′)] + H.c. − 〈ÎL〉2, (B13)

where G
cd,>
i (t,t ′) are the greater-than components of the

contour-ordered counterparts Gcd
i (τ,τ ′) defined in Eq. (B12).

In the adiabatic approximation, we consider the zero-order
terms of all Green functions G. After lengthy but straightfor-
ward calculations, starting from Eq. (B13) we get (we follow
Ref. 50)

S(t,t ′) = [SL(t,t ′) + SR(t,t ′) + SLR(t,t ′)]/2

= DH (x)δ(t − t ′), (B14)

where DH (x) is given by Eq. (20) of the main text. Equa-
tion (20) is a well-known, and important, result. The first
term accounts for thermal noise (i.e., it vanishes at zero
temperature), while the second term is a nonequilibrium term
(shot noise), which vanishes at zero bias.

For the mixed current-density contribution in the second
line of Eq. (15), we have (for the left lead)

ML(t,t ′) = 〈{δIL(t),δn(t ′)}〉
= 〈{IL(t),n(t ′)}〉 − 2〈ÎL〉2〈n̂〉2

= ıe

h̄

∑
kL

[
VkL

〈
c
†
kL

(t)d(t)d†(t ′)d(t ′)
〉

−V ∗
kL

〈
d†(t)ckL

(t)d†(t ′)d(t ′)
〉] + H.c.

− 2〈ÎL〉2〈n̂〉2. (B15)

As for the the current noise spectrum S, in what follows
we shall be particularly concerned with the zero-frequency
component of ML(t,t ′), ML(ω = 0) = ∫

d(t − t ′)ML(t − t ′),
that is, the relevant quantity in the adiabatic expansion. In order
to evaluate the (nonequilibrium) expectation values occurring
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in Eq. (B15) in a systematic way, we first define the following
contour-ordered two-particle Green functions:

GMcd
1,L (τ,τ ′) = ı2

〈
TCc

†
kL

(τ )d(τ )d†(τ ′)d(τ ′)
〉
,

(B16)
GMcd

2,L (τ,τ ′) = ı2
〈
TCd†(τ )ckL

(τ )d†(τ ′)d(τ ′)
〉
.

In terms of the previous Green function in Eq. (B16), The
nonequilibrium current-density noise correlator M is then
given by

ML(t,t ′) = ıe

h̄

∑
kL

[
VkL

G
Mcd,>
1,L (t,t ′) − V ∗

kL
G

Mcd,>
2,L (t,t ′)

]

+ H.c. − 2〈IL〉2〈n̂〉2, (B17)

where G
Mcd,>
i,L (t,t ′) are the greater-than components of the

contour-ordered counterparts GMcd
i,L (τ,τ ′) defined in Eq. (B16).

Following the same reasoning as in the previous section, one
can show that

ML(t,t ′) � e

h̄

{
G>(t,t ′)

[ ∫
C

dτ1G(t,τ1)�L(τ1,t
′)
]<

−G<(t ′,t)
[ ∫

C

dτ1�L(t,τ1)G(τ1,t
′)
]>

+G<(t,t ′)
[ ∫

C

dτ1G(t,t1)�L(τ1,t
′)
]>

−G>(t ′,t)
[ ∫

C

dτ1�L(t,τ1)G(τ1,t
′)
]<}

,

(B18)

where �L is the self-energy contribution due to the coupling to
the left lead and the integration is extended along the Keldysh
contour. The function

f (t,t ′) =
[ ∫

C

dτ1G(t,τ1)�L(τ1,t
′)
]<

(B19)

can be calculated using Langreth’s rules,50 giving

f (t,t ′) =
∫

dt1G
r (t,t1)�<

L (t1,t
′) + G<(t,t1)�a

L(t1,t
′), (B20)

where �a
L is the advanced component of the left lead

self-energy. In the adiabatic approximation, we consider the
zero-order terms of all functions G and �. After lengthy but
straightforward calculations, starting from Eq. (B18) we get

M(t,t ′) = [MR(t,t ′) − ML(t,t ′)]/2 = DHλ(x)δ(t − t ′),
(B21)

where DHλ(x) is given by Eq. (19).
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