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Theory of spin pumping through an interacting quantum dot tunnel coupled to a ferromagnet
with time-dependent magnetization
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We investigate two schemes for pumping spin adiabatically from a ferromagnet through an interacting quantum
dot into a normal lead that exploit the possibility to vary in time the ferromagnet’s magnetization, either
its amplitude or its direction. For this purpose, we extend a diagrammatic real-time technique for pumping to
situations in which the leads’ properties are time dependent. In the first scheme, the time-dependent magnetization
amplitude is combined with a time-dependent level position of the quantum dot to establish both a charge and a
spin current. The second scheme uses a uniform rotation of the ferromagnet’s magnetization direction to generate
a pure spin current without a charge current. We discuss the influence of an interaction-induced exchange field
on the pumping characteristics.
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I. INTRODUCTION

The last decades have seen intense research in the
field of spintronics, a branch of physics and electrical
engineering whose aim is to combine electrical and magnetic
functionalities in the same solid-state system by exploiting
the spin degree of freedom of the charge carriers.1–3 In
particular, mechanisms to generate and control spin currents
have been the object of several theoretical and experimental
investigations. A subset of these studies, which are particularly
relevant to the present paper, are focused on quantum-dot spin
valves, that is, devices made up of a quantum dot sandwiched
between two ferromagnetic leads. Experimentally, these
types of systems have been realized with self-assembled
InAs quantum dots,4–8 small metallic grains,9–13 nanowires,14

nanotubes,15–17 and molecular systems.18 Quantum dots
contacted with ferromagnetic leads have also attracted a
considerable theoretical interest.19–46

A possible mechanism to generate a pure spin current, that
is, a spin current without an associated charge current, relies on
a ferromagnet with a rotating magnetization. This mechanism
is the corner stone of recent spin-battery proposals.47–52 In
a related study, it has been predicted that the rotation of
the magnetization direction of a magnetic quantum dot that
is sandwiched between a ferromagnet and a normal lead
gives rise to charge pumping.53 Similarly, spin pumps using
time-dependent magnetic fields acting on a molecule have been
proposed.54,55 These time-dependent transport problems can
be formulated within the theory of charge and spin pumping
in mesoscopic structures.42,56–76 However, pumping usually
refers to the situation when the properties of the conductor
and not those of the leads (as it is the case for the spin
battery) are varied in time. The regime of adiabatic pumping
is realized when the period of the time variation is long
compared to the characteristic dwell time of the carriers in
the system. This regime is particularly interesting from the
theoretical point of view since it leads to an understanding of
the nonequlibrium caused by the explicit time dependence of
the system without introducing the additional complications

associated with higher-order terms in the frequency of the
time-dependent parameters.

In this paper, we focus on a spin battery realized in
a structure composed of a quantum dot tunnel coupled to
a ferromagnetic and a nonmagnetic lead. The spin-battery
operation is due to the time-dependent magnetization of
the ferromagnetic lead. We employ a diagrammatic real-
time theory for adiabatic pumping through quantum dots
with ferromagnetic leads42,70 that we extend to account for
time-dependent magnetizations. This approach consists in a
systematic perturbative expansion in powers of the tunnel-
coupling strengths and of the pumping frequency, while
treating the on-site Coulomb interaction on the quantum dot
exactly. We consider two different pumping schemes. First, we
choose the amplitude of the magnetization of the ferromagnetic
lead and the level position of the dot as pumping parameters.
Second, we pump by changing periodically the direction of
the magnetization. A sketch of the system under investigation
and of the two pumping schemes is shown in Fig. 1.

The main results we find are the following. In the first
pumping scheme, the pumped spin current is, in general,
accompanied with a finite charge current. There are, however,
special values of the system parameters, for which the pumped
charge current turns out to be zero due to a cancellation
of two counteracting contributions to the overall pumped
charge. As a consequence, in the first pumping scheme, the
generation of a pure spin current requires a fine tuning of the
system parameters. This is profoundly different to the second
pumping scheme in which the pumped charge vanishes for
any choice of the system parameters. We are able to derive a
compact analytical formula for the pumped spin current and
to discuss its dependence on the gate voltage, the ratio of
the tunnel couplings to the ferromagnet and the normal leads,
and the exchange field that acts on the quantum dot spin as a
consequence of a spin-dependent tunnel coupling of the dot
level to the ferromagnet.

This paper is structured as follows. After introducing the
model of the system in Sec. II, we extend in Sec. III the
diagrammatic real-time technique to calculate the pumped
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FIG. 1. (Color online) Sketch of the F-dot-N structure. It con-
sists of a quantum dot, tunnel coupled to a ferromagnetic and a
nonmagnetic lead, which are kept at the same chemical potential.
(a) Schematic description of pumping with the amplitude of the
magnetization of the ferromagnetic lead and the level-position ε of
the dot. (b) Schematic description of pumping with the x and y

components of the magnetization of the ferromagnetic lead.

charge and spin through systems including ferromagnets
with time-dependent magnetization. The diagrammatic rules
resulting from this are given in Sec. IV. The main part of the
paper is Sec. V where the results for both pumping scheme are
presented. We conclude by summarizing our results in Sec. VI.
To keep all formulas transparent, we set h̄ = 1 throughout the
paper.

II. MODEL

The Hamiltonian of the system reads H = Hdot + Hlead N +
Hlead F + Htun. The single-level quantum dot is described by
the Anderson impurity model:

Hdot =
∑

σ

ε d†
σ dσ + U n↑ n↓, (1)

where ε is the spin-degenerate energy level of the dot, U the on-
site Coulomb interaction, dσ (d†

σ ) the annihilation (creation)
operator of an electron on the dot with spin σ = ↑,↓, and
nσ = d†

σ dσ the corresponding number operator. The Hilbert
space for the quantum dot is four-dimensional. The basis states
are denoted by |0〉, |↑〉, |↓〉, and |d〉 = d

†
↑d

†
↓|0〉 corresponding,

respectively, to the dot being empty, singly occupied with spin
σ = ↑,↓, or doubly occupied.

The leads are modeled by reservoirs of noninteracting
electrons (kept at the same chemical potential μ, which we
set to zero) with Hamiltonians

Hlead N =
∑
k,σ

εk c
†
kσ ckσ (2)

Hlead F =
∑
k,α

Ekαa
†
kαakα, (3)

where ckσ (c†kσ ) is the annihilation (creation) operator for an
electron with spin σ and wave vector k in the normal lead,
while akα (a†

kα) is the annihilation (creation) operator of an
electron with majority/minority spin α = ± and wave vector
k in the ferromagnetic lead. The density of states �N(ω) =∑

k δ(ω − εk) in the normal lead is independent of spin. The
ferromagnet, on the other hand, is described by majority- and
minority-spin bands, Ekα = εk + Eα , that are shifted relative
to each other by a finite Stoner splitting 	E ≡ Ek− − Ek+.
This leads to a spin-dependent density of states �F,−(ω) =
�F,+(ω − 	E). The degree of spin polarization at energy ω

is characterized by P (ω) = [�F,+(ω) − �F,−(ω)]/[�F,+(ω) +
�F,−(ω)]. We remark that the majority and minority spin
direction in the ferromagnet (denoted by α = ±) may, in
general, be different from the spin quantization axis (with
σ = ↑,↓) that we choose for the quantum dot and the normal
lead. The corresponding Fermi operators are connected via the
transformation a

†
kα = ∑

σ Aασ a
†
kσ with

Aασ =
(

e−iϕ/2 cos(θ/2) eiϕ/2 sin(θ/2)

−e−iϕ/2 sin(θ/2) eiϕ/2 cos(θ/2)

)
, (4)

where the polar angle θ and azimuthal angle ϕ

define the ferromagnet’s magnetization direction êp =
(sin θ cos ϕ, sin θ sin ϕ, cos θ )T in the (time-independent) co-
ordinate system with the z axis chosen along the spin-
quantization axis of quantum dot and normal lead.

The tunnel coupling between dot and leads is described by
the spin-conserving tunneling Hamiltonian

Htun =
∑
k,σ

(VN c
†
kσ dσ + VF a

†
kσ dσ + H.c.), (5)

where VN and VF are the energy- and spin-independent
tunnel-matrix elements. Tunneling introduces a finite lifetime
of the dot states, characterized by the intrinsic linewidth
�N(ω) = 2π�N(ω)|VN|2 and �F,α(ω) = 2π�F,α(ω)|VF|2. For
later use, we define �F(ω) = [�F,+(ω) + �F,−(ω)]/2, which
implies P (ω) �F(ω) = [�F,+(ω) − �F,−(ω)]/2, or, equiva-
lently, �F,α(ω) = �F(ω)[1 + α P (ω)]. Finally, we define the
total intrinsic linewidth �(ω) = �F(ω) + �N(ω).

The main goal of this paper is to investigate charge
and spin pumping schemes relying on the variation of the
ferromagnet’s magnetization M(t) = M(t)êp(t), specifically
its amplitude M(t) or direction êp(t), in time. The variation of
the magnetization amplitude can be microscopically modeled
by time-dependent shifts of the majority and minority bands,
Eα(t), which leads to a time-dependent Stoner splitting
	E(t). The variation of the magnetization direction, on the
other hand, is described by time-dependent angles θ (t) and
ϕ(t) in Eq. (4), which leads to an explicit time dependence of
the operators ak±(t).

In order to achieve pumping in the adiabatic regime,
two system parameters need to be varied in time with a
relative phase. For a time-dependent magnetization direction,
these could be the x and y components of the polarization,
Px(t) = P sin θ (t) cos ϕ(t) and Py(t) = P sin θ (t) sin ϕ(t). If,
on the other hand, the magnetization direction is fixed and only
its amplitude is varied via a time-dependent Stoner splitting
	E(t), a second pumping parameter is needed. Therefore, in
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the following derivation, we allow for a time-dependent level
position ε(t), which can be experimentally controlled by a gate
voltage.

III. FORMALISM

The problem under consideration is, in general, complicated
since it combines a few interacting degrees of freedoms of the
quantum dot with a large number of noninteracting degrees of
freedom in the leads and an explicit time dependence. For a
time-independent Hamiltonian, it is possible to integrate out
the lead degrees of freedom to obtain an effective description
of the system in terms of the reduced density matrix. Then one
can perform a diagrammatic expansion of the time evolution
of the reduced density matrix to write the kinetic equations of
the reduced system.77,78

In the presence of an explicit time dependence of the
Hamiltonians describing the dot and/or the tunnel coupling,
the kinetic equations can still be formally derived but they
become much more complicated, such that a full solution is
only achievable in special cases.75 In the limit of adiabatic
pumping, however, the kinetic equations can be simplified
considerably by performing an adiabatic expansion, i.e., an
expansion in the pumping frequency � (or powers in time
derivatives of the pumping parameters), assuming that the
response of the system is much faster than the change of the
system parameters.42,70

In the present context, though, also the lead Hamiltonian
acquires a time dependence. This possibility is not included
in the diagrammatic technique presented in Ref. 70 where
a central step relies on integrating out the lead degrees of
freedom for which a time-independent equilibrium distribution
is assumed. In order to treat time-dependent lead Hamiltonians,
we start by performing an adiabatic expansion already at the
very first step for the Hamiltonian before integrating out the
lead degrees of freedom. The expansion should be performed
about the time t at which the charge and spin currents are
calculated. At any different time τ , the Hamiltonian H (τ ) =
H0(t) + V (τ ) is approximated by

H0(t) = Hdot(t) + Hlead N + Hlead F(t), (6)

V (τ ) = Htun + (τ − t)[Ḣdot(t) + Ḣlead F(t)]. (7)

Higher time derivatives of Hdot and Hlead F are neglected
in the adiabatic expansion. The time derivative of the dot
Hamiltonian is given by

Ḣdot(t) = ε̇
∑

σ

d†
σ dσ . (8)

To derive the time derivative of the ferromagnetic lead,
we use ȧkσ = 0 (in Schrödinger picture) to obtain ȧ

†
kα =

α(θ̇/2)a†
kα−i(ϕ̇/2)(α cos θ a

†
kα − sin θ a

†
kα), where we intro-

duced the notation α = −α. This yields

Ḣlead F(t) =
∑
k,α

Ėα a
†
kαakα

+ 	E

2

∑
k,α

(−θ̇ + iαϕ̇ sin θ )a†
kαakα, (9)

which includes non-spin-flip (diagonal) terms in the first and
spin-flip (off-diagonal) ones in the second line.

We remark that there is no time derivative of the tunnel
Hamiltonian since it does not depend explicitly on time, which
is evident from Eq. (5). For integrating out the lead degrees of
freedom, however, it is convenient to rewrite in the following
the tunneling Hamiltonian in terms of the majority/minority
electron operators by using the time-dependent transforma-
tion (4).

After having separated the Hamiltonian H (τ ) into the
time-independent part H0(t) of the decoupled system and
the correction V (τ ) due to tunneling and the explicit time
dependence of the system parameters, we can continue in a
similar way as in the derivation of the diagrammatic rules
for a time-independent system.77,78 First, we express the
quantum-statistical expectation value of any operator A at time
t as integral over the Keldysh contour K that runs from time
τ = −∞ to t and then back to −∞,

〈A(t)〉 = tr

[
�0TK exp

(
−i

∫
K

dτV (τ )I

)
A(t)I

]
. (10)

The Keldysh time ordering operator TK orders all operators
along the Keldysh contour, the index I indicates interaction
picture with respect to H0(t), and ρ0 is the (full) density matrix
at time −∞. The latter is assumed to be a tensor product of the
density matrices for the quantum dot and the leads, with the
leads being in an equilibrium state determined by Hlead N and
Hlead F(t), respectively. By doing so, we neglect the nonequilib-
rium distributions of the ferromagnet. This is justified as long
as the time scale for spin relaxation towards equilibrium in the
ferromagnet is much shorter than the time scale for transport,
given by h̄/�. In that case, the nonadiabatic corrections of
the ferromagnet’s density matrix are negligible in comparison
to the nonadiabatic corrections of the transport processes, and
we only need to develop a theoretical description of the latter.
The next step is to expand the exponential in powers of V (τ )I .
In the diagrammatic language, each V (τ )I is represented by a
vertex. In the present context, there are three different types of
vertices: Htun (represented by a full circle) contains one dot and
one lead operator, Ḣdot(t) (represented by an empty circle) two
dot operators, and Ḣlead F(t) (represented by a double cross)
two lead operators.

At this stage, it is possible to perform the partial trace
over the lead degrees of freedom. By using Wick’s theorem,
we contract the lead operators in pairs. In the diagrams, each
contraction is represented by a tunneling line. The diagram for
the full time evolution of the reduced density matrix from −∞
to t is then a sequence of irreducible blocks, defined as the
parts of a diagram, where a vertical line at any time τ crosses
at least one tunneling line. This infinite series of irreducible
blocks can be summed up by a Dyson equation.

To obtain the kinetic equation for the matrix elements
pχ1

χ2
(t) = 〈χ2|�red(t)|χ1〉 of the reduced density matrix �red,

we use for the operator A in Eq. (10), the projector |χ2〉〈χ1|
with χ1,χ2 ∈ {0,↑,↓,d}. This leads to

d

dt
p(t) =

∫ t

−∞
dt ′ W(t,t ′)p(t ′), (11)
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where p is the vector of all relevant density matrix elements,
p = (p0,p↑,p↓,pd,p

↓
↑,p

↑
↓)T. The diagonal matrix element

pχ ≡ pχ
χ is the occupation probability of the state χ of the

dot, while the off-diagonal ones, p↓
↑ = (p↑

↓)∗ describe coherent
superpositions of up and down spins. The kernel W(t,t ′) is a
6 × 6 matrix that acts on the vector p(t ′). It represents an
irreducible block in the diagrammatic language and describes
transitions between the states at time t ′ and time t .

In order to distinguish the charge and the spin degrees of
freedom, it is convenient to parameterize the reduced density
matrix not by the six elements of the vector p but rather use the
probability vector P = (P0,P1,Pd )T = (p0,p↑ + p↓,pd )T and

the spin vector S = (Sx,Sy,Sz)T = (
p

↑
↓+p

↓
↑

2 ,i
p

↑
↓−p

↓
↑

2 ,
p↑−p↓

2 )T

instead. In this basis, the kinetic equations take the more
intuitive form

d

dt
P(t) =

∫ t

−∞
dt ′ Wp(t,t ′)P(t ′) + Ws(t,t

′)S(t ′), (12a)

d

dt
S(t) =

∫ t

−∞
dt ′ Mp(t,t ′)P(t ′) + Ms(t,t

′)S(t ′). (12b)

The matrix elements of the 3 × 3 matrices Wp(t,t ′), Ws(t,t ′),
Mp(t,t ′), and Ms(t,t ′) are the proper linear combinations
of the matrix elements of the 6 × 6 matrix W(t,t ′). The
first contribution to Eq. (12b), which depends on P, can
be interpreted as spin accumulation, while the second one
describes relaxation and coherent rotation of the spin S.

We remark here that spin rotational symmetry about a given
axis simplifies the structure of the kinetic equations (12a) and
(12b). The simplified form of the kinetic equations is derived
in Appendix A. This symmetry applies when the ferromagnet’s
magnetization direction êp is constant in time. But even for a
time-dependent êp(t), the spin rotational symmetry is present
for the instantaneous part of the kinetic equations (defined in
the next section).

A. Expansion of the kinetic equation

Although we have already linearized the time dependence
of the Hamiltonian H (τ ) about the time t , we still need
to perform a systematic adiabatic expansion for the kinetic
equations. For this task, we follow Ref. 70. The lowest
(instantaneous) order describes the equilibrium situation when
all parameters are frozen to their values at time t ,

0 = W(i)
t p(i)

t . (13)

The next-order (adiabatic) correction contains all contribu-
tions linear in the pumping frequency, i.e., with one first-order
time derivative appearing,

d

dt
p(i)

t = W(i)
t p(a)

t + W(a)
t p(i)

t + ∂W(i)
t

d
dt

p(i)
t . (14)

Here, the index t indicates the time with respect to which the
adiabatic expansion has been performed and the superscript
indicates the order of the adiabatic expansion. By construction,

W(a)
t contains exactly one empty circle or one double cross

vertex representing Ḣdot(t) or Ḣlead F(t), respectively. Further-
more, we have introduced the Laplace transform to define
the abbreviation W(i/a)

t = W(i/a)
t (z)|z=0+ = ∫ t

−∞ dt ′ W(i/a)
t (t −

t ′) as well as ∂W(i)
t = ∂W(i)

t (z)/∂z|z=0+ .
On top of the adiabatic expansion, we perform a systematic

perturbation expansion in powers of the tunnel-coupling
strengths �. The order of the expansion in the tunnel coupling
will be indicated by an integer superscript. For example, W(a,1)

t

indicates the first order in � of the adiabatic correction of the
kernel. This expansion is straightforward and can be easily
performed (details can be found in Ref. 70).

The perturbation expansion of the kernel starts in first order
in �, which corresponds to sequential tunneling processes
described by diagrams containing one tunneling line. The
perturbation expansion of the instantaneous probability vector
starts in zeroth order in �, since it corresponds to the
time-independent problem with all parameters frozen at time
t . Thus the normalization conditions read eT P(i,0)

t = 1 and
eT P(i,1)

t = 0 with eT = (1,1,1)T. The adiabatic correction (i.e.,
first order in pumping frequency ω) to the probabilities starts in
minus first order in � and obeys the normalization conditions
eT P(a,−1)

t = 0 and eT P(a,0)
t = 0. When going to the limit of

weak tunnel coupling, � → 0, one needs to keep in mind
that the adiabaticity condition, � � �, has to remain fulfilled.
Therefore, p(a,−1)

t ∝ �/� does not diverge.

B. Pumped charge and spin current

We are interested in the pumped charge and the pumped
spin (projected along a time-independent spin quantization
axis) through the quantum dot. The pumped charge and spin
currents flowing into the normal-metal lead can be written,
respectively, as

IN(t) = e

∫ t

−∞
dt ′eT WN,Q(t,t ′)p(t ′), (15a)

JN(t) = 1

2

∫ t

−∞
dt ′eT WN,S(t,t ′)p(t ′), (15b)

where WN,Q
t (t,t ′) = WN,↑

t (t,t ′) + WN,↓
t (t,t ′), and the matrix

elements of the kernel WN,σ
t (t,t ′) are evaluated with the same

diagrammatic rules as for Wt (t,t ′) but with the difference that
each diagram is multiplied with the number of electrons with
spin σ entering the normal lead during the transition minus
the ones leaving the normal lead. The z component of the
vector WN,S = (WN,Sx ,WN,Sy ,WN,Sz ) is given by WN,Sz =
WN,↑

t (t,t ′) − WN,↓
t (t,t ′), and the x and y components are

obtained by the same expression but with the spin quantization
axis being chosen along the x and y directions, respectively.

In the same way as for the kinetic equation, we perform
an adiabatic expansion of the charge and spin currents. The
instantaneous currents vanish since, in the absence of a bias
voltage, the instantaneous terms describe the equilibrium
situation.

By integrating the pumped charge and spin currents over
one pumping cycle T = 2π

�
, we obtain the pumped charge and
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FIG. 2. (Color online) Examples of diagrams belonging to the
instantaneous (i) and adiabatic (a) kernel in first order in the tunnel-
coupling strength �, respectively.

spin as

QX =
∫ T

0
IN(t) dt, (16a)

SX =
∫ T

0
JN(t) dt, (16b)

where the index X indicates the pumping parameters.

IV. DIAGRAMMATIC RULES

We explain here how to evaluate the instantaneous diagrams
W(i)

t = W(i)
t (z)|z=0+ and ∂W(i)

t = ∂W(i)
t (z)/∂z|z=0+ as well as

the first adiabatic correction W(a)
t .

A. Rules for the instantaneous diagrams

In the following, we write down the rules for the instanta-
neous diagrams W(i,n)

t (z) to nth order in the tunnel coupling.
An example of a diagram belonging to the instantaneous kernel
element (W(i,1)

t )0↑ and its adiabatic correction (W(a,1)
t )0↑ are

shown in Fig. 2. All diagrams contributing to these matrix
elements are presented and evaluated in Appendix B.

(1) Draw all topologically different diagrams with 2n full-
circle vertices connected in pairs by directed tunneling lines.
Assign a reservoir index r = N,F, an energy ω, and a spin
index (σ = ↑,↓ for r = N and α = ± for r = F) to each of
these lines. Assign quantum-dot states χ ∈ {0,↑,↓,d} and the
corresponding energies Eχ ∈ {0,ε,ε,2ε + U} to each element
of the Keldysh contour between two vertices. Furthermore,
draw an external line with the (imaginary) energy −iz from
the upper leftmost beginning of a dot propagator to the upper
rightmost end of a dot propagator.

(2) For each time segment between two adjacent vertices
(independent on whether they are on the same or on opposite
branches of the Keldysh contour) write a resolvent 1/R,
where R is the difference of left-going minus right-going
energies (including energies of tunneling lines and the external
line—the positive imaginary part of iz will keep all resolvents
regularized).

(3) The contribution of a tunneling line consists of a
prefactor 1/(2π ) and a factor �N(ω) for r = N or �F,α(ω) for
r = F. This is multiplied with f +(ω) ≡ f (ω) if the tunneling
is going backwards with respect to the Keldysh contour and
f −(ω) ≡ 1 − f (ω) if it is going forward. Here, f (ω) is the
Fermi function and �F,α(ω) = �F(ω)[1 + α P (ω)].

(4) Each full-circle vertex with an incoming or outgoing
tunneling line (with spin σ or α for r = N or r = F,
respectively) changes the dot state assigned to the Keldysh

contour by adding or removing an electron with spin σ . In
the case r = F, the matching of the different spin quantization
axes of dot and lead is achieved introducing a prefactor Aασ

for a vertex with an outgoing line and Aσα = (Aασ )∗ for a
vertex with an incoming line.

(5) The overall prefactor is given by (−i)(−1)b+c, where
b is the total number of vertices on the backward propagator
and c the number of crossings of tunneling lines. Furthermore,
there is a minus sign for each vertex connecting dot states |↑〉
and |d〉.

(6) Integrate over the energies of tunneling lines and sum
over the reservoirs and the spin indices of the leads.

B. Rules for the adiabatic diagrams

The adiabatic corrections to the kernels are described by
diagrams that contain one vertex that is associated with the
time derivative of the Hamiltonian. This may be an empty-
circle vertex for (τ − t)Ḣdot(t) or a double-cross vertex for
(τ − t)Ḣlead F(t), respectively. No tunneling line is attached to
the empty-circle vertex since Ḣdot(t) does not contain any lead
operator. In contrast, there are two lead operators in Ḣlead F(t).
As a consequence, two tunneling lines are coupled to a double-
cross vertex: first (with respect to the Keldysh contour) an
incoming and then an outgoing one.

When performing Wick’s theorem, the two lead operators
of the double cross may be contracted either with each other
or with two other lead operators of full-circle vertices. The
earlier possibility, however, does not contribute (any diagram
with such a self-contracted double cross vertex on the upper
propagator cancels with the diagram obtained from it by
moving the double-cross vertex to the lower propagator).

To evaluate the diagrams W(a,n)
t (z) the rules for W(i,n)

t (z)
need to be modified in the following way:

(1’) In addition to the 2n full circle vertices, there is either
one open-circle or one double-cross vertex which, in principle,
can sit everywhere on the contour. The latter is connected to
two tunneling lines of the ferromagnet: first (with respect to
the Keldysh contour) an incoming and then an outgoing line.
The double-cross vertex may be either diagonal or off-diagonal
in spin. In the first case, the two lines carry the same energy
ω and the same spin α. In the second case, one carries ω

and α, and the other one ω + α	E and α (≡ −α). Add an
external frequency line with (imaginary) energy −iz′ from the
empty-circle or double-cross vertex to the upper right corner
of the diagram.

(3’) When applying rule (3) for the two tunneling lines
connected to a double-cross vertex, only one prefactor
�F,α(ω)/(2π ) (the one of the line which carries ω and α) has
to be taken into account.

(4’) An empty-circle vertex comes with a factor Ėχ (t),
where Eχ (t) is the energy of the dot state χ assigned to the
Keldysh contour segment where the empty circle vertex is
placed. For a double-cross vertex that is diagonal in spin,
the factor is Ėα(t). The factor for a double-cross vertex off-
diagonal in spin is (	E/2)(−θ̇ + iαϕ̇ sin θ ), where α is the
spin of the outgoing line. Furthermore, one needs to perform
a first derivative with respect to z′ and then send z′ to 0+.

(5’) When applying rule (5), b is the total number of all
vertices (including full circle, empty circle, and double cross
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vertices). Similarly, the number c includes also crossings of
tunneling lines at a double cross vertex.

We remark that the contributions of diagrams with the
rightmost vertex being a double cross cancel out since for each
such diagram with the double cross on the upper propagator,
there is a partner diagram with the double cross on the lower
propagator that only differs by a minus sign due to rule (5).

Furthermore, we remark that for time-independent magne-
tization direction of the ferromagnet, θ̇ = ϕ̇ = 0, only double-
cross vertices diagonal in spin space appear. In this case, it is
possible to directly integrate in time over all positions of the
empty-circle or double-cross vertex between two full-circle
vertices. As a consequence, one does not need to explicitly
draw this empty-circle or double-cross vertex but the adiabatic
correction to the kernels are obtained from the same diagrams
as for the instantaneous ones with modified rules. This route
has been used in Ref. 70 to account for a time dependence of
the dot level position.

V. RESULTS

We start by deriving the expressions for the charge and spin
currents to lowest-order in the tunnel coupling strength. To this
order, only the instantaneous kernels W(i,1)

t to first order in �

enter both the instantaneous limit and the adiabatic correction
of the kinetic equations,

0 = W(i,1)
t p(i,0)

t , (17)

d

dt
p(i,0)

t = W(i,1)
t p(a,−1)

t . (18)

As a consequence, the kinetic equations and the expressions
for the pumped charge and spin current to this order are
independent of the pumping scheme, i.e., the choice of
pumping parameters. Furthermore, there is rotational spin
symmetry about the axis êp, i.e., the kinetic equations take
the form derived in Appendix A.

After explicit calculations that are summarized in
Appendix C, we obtain

I
(a,0)
N (t) = − e

�N
�

1 − P 2 �2
F

�2

d

dt
〈n〉(i,0), (19a)

J(a,0)
N (t) = �N

2�

P �F
�

1 − P 2 �2
F

�2

êp

d

dt
〈n〉(i,0), (19b)

for the charge and the spin current. The latter is polarized along
êp. Both currents have a similar dependence on P , �N, �F, and
the instantaneous part of the average number of electrons 〈n〉 =
P1 + 2Pd expanded to zeroth order in �. As a consequence, for
each moment in time, the ratio between the component of the
spin current J

(a,0)
N (t) = J(a,0)

N (t) · êp along the (instantaneous)
symmetry axis and the charge current is given by

J
(a,0)
N (t)

I
(a,0)
N (t)

= − 1

2e
P

�F

�
. (20)

In order to calculate the pumped charge and spin per cycle,
we need to specify the pumping scheme. As announced in
Introduction, we will consider two different scenarios.

A. Pumping scheme A: time-dependent
magnetization amplitude

In pumping scheme A, we assume that the magnetization
amplitude M(t) of the ferromagnet changes in time while its
direction remains fixed. Experimentally, this could be realized
by using paramagnetic diluted magnetic semiconductors,
which exhibit a large Zeeman splitting. A small, externally
applied magnetic field would, then, spin polarize the lead, and
the degree of spin polarization could be varied in time by
making the external field time dependent.

For pumping scheme A, it is convenient to choose the same
spin quantization axis for the dot and the ferromagnet, + =
↑ and − =↓. The variation of the magnetization amplitude
can be microscopically modeled by a time-dependent Stoner
splitting 	E = Ek− − Ek+.

To be more specific, the majority- and minority-spin bands
are shifted relative to each other in time, E±(t), in such
a way that both the Fermi energy and the total number
of electrons in the ferromagnet remain constant. This is, at
low temperature, fulfilled for Ė+/Ė− = −�F,−(εF )/�F,+(εF ).
As a consequence, both the polarization P (t) and tunnel-
coupling strength �F(t) vary in time. This alone does not
establish any adiabatic pumping since the time variations of
P (t) and �F(t) are in phase. Therefore we use the dot-level
position ε as another out-of-phase time-dependent parameter.
In this situation, there are two pumping cycles occurring
simultaneously: one cycle with {ε,P } and another cycle with
{ε,�F} as pumping parameters.

In the following, we concentrate on the limit of weak
pumping, i.e., we write the level position ε as well as the
polarization P or the tunnel-coupling strength �F as a sum
of the average value and a small variation, ε(t) = ε̄ + δε(t),
P (t) = P̄ + δP (t), and �F(t) = �̄F + δ�F(t), and expand the
pumped charge and spin to bilinear order in the variations.
Then, we integrate the charge and spin currents over one
pumping cycle to obtain the pumped charge and spin, respec-
tively. The latter are proportional to the area of the pumping
cycle in parameter space, quantified by the dimensionless
quantities η1 = ∫ T

0 dt δβε δṖ and η2 = ∫ T
0 dt δβε δ�̇F/�̄F

for the cycles with {ε,P } and {ε,�F}, respectively.
Before addressing the sum of the two pumping contribu-

tions, we analyze them separately. The reason is that their
relative weight to the total pumped charge and spin in the
weak-pumping regime depends on the ratio ν = P̄ η2/η1 that,
in turn, depends on details of the ferromagnet’s band structure.
To be specific, it depends, at low temperature, on the density of
states as well as the energy derivative of the density of states of
the majority and minority spins at the Fermi energy. Expressing
them in terms of the polarization P = P (εF) and the total den-
sity of states �F = �F(εF) = 1

2 [�F,+(εF) + �F,−(εF)] and their
derivatives P ′ = ∂P (ω)/∂ω|ω=εF and �′

F = ∂�F(ω)/∂ω|ω=εF

leads to

ν =
P 2

1−P 2
P ′
P

�′
F

�F
− 2 P 2

1−P 2
P ′
P

. (21)

For small polarizations P , the ratio ν scales as P 2 and is, thus,
also small. This means that in this case the main contribution
to pumping is due to the cycle with ε and P . For large
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polarizations, P → 1, on the other hand, ν → −1/2. It is easy
to show that for parabolic bands the following relation holds:
−1/2 � ν � 0.

For arbitrary band structures, however, also positive values
of ν are possible. This can be seen, e.g., for a weak ferromagnet
with a small Stoner splitting 	E by expanding the ratio ν in
	E,

ν ≈ 1

4
	E2

[
�′′

F

�F
−

(
�′

F

�F

)2]
, (22)

which is positive whenever �′′
F/�F > (�′

F/�F)2. For example,
ν > 0 is realized by a functional dependence of �F(ω) ∝ ω−α

with α > 0.

1. Contribution from pumping with ε and P

First, we consider {ε,P } as pumping parameters. The
procedure described above yields for the pumped charge QX

and pumped spin SX = SX · êp along the symmetry axis,

Qε,P = 2eη1
P̄

�̄2
F

�̄2
�̄N

�̄(
1 − P̄ 2 �̄2

F

�̄2

)2

d

dβε̄
〈n̄〉(i,0), (23a)

Sε,P = −1

2
η1

�̄F

�̄

�̄N

�̄

(
1 + P̄ 2 �̄2

F

�̄2

)
(
1 − P̄ 2 �̄2

F

�̄2

)2

d

dβε̄
〈n̄〉(i,0), (23b)

where η1 = ∫ T
0 dt δβε δṖ is the area of the pumping cycle

in parameter space, 〈n̄〉(i,0) is the instantaneous average
occupation number, where the level position has been replaced
by its time average ε̄, and �̄ = �̄N + �̄F.

The dependence of the pumped charge and spin on the
average polarization P̄ and the ratio of the tunnel coupling
to the ferromagnet and the total coupling, �̄F/�̄, is shown in
Figs. 3 and 4, respectively. The electrical charges and spins
flow in different directions, thus the particle and spin currents
flow in the same direction.

We find that both the pumped charge and spin vanish for
�̄F/�̄ going to zero, quadratically the former and linearly the
latter. For P̄ going to zero, the pumped charge goes linearly
to zero, while the pumped spin remains finite. In this limit,
the pumping scheme generates a pure dc spin current, i.e., a
finite spin current with no associated charge current. The spin-
pumping efficiency, defined as the pumped spin per pumped
charge, can be obtained immediately from Eq. (23) and it reads

R = −2e
Sε,P

Qε,P

= 1

2

(
�̄

P̄ �̄F
+ P̄ �̄F

�̄

)
. (24)

It is worth noticing that it becomes arbitrarily large for
P �̄F/�̄ → 0. In the limit P �̄F/�̄ → 1, the number of pumped
charges equals the one of the pumped spins.

2. Contribution from pumping with ε and �F

Next, we consider the contribution to the pumped charge
and spin that originates from pumping with ε and �F. This
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FIG. 3. (Color online) Pumped charge in units of eη1∂βε̄〈n̄〉(i,0)

as a function of (a) the time average of the lead polarization and
(b) the relative tunnel-coupling strength, respectively. The pumping
parameters are ε and P .

contribution coincides with the results obtained for pumping
by changing the properties of the scattering region (ε and �F)
in a F-dot-N structure, investigated in Ref. 42. In the limit of
weak pumping, we find

Qε,�F = eη2
P̄ 2 �̄2

F

�̄2
�̄N

�̄

(
2 − �̄F

�̄

) − �̄F

�̄

�̄N

�̄(
1 − P̄ 2 �̄2

F

�̄2

)2

d

dβε̄
〈n̄〉(i,0), (25a)

Sε,�F = −1

2
η2

P̄ �̄F

�̄

�̄N

�̄

(
1 + P̄ 2 �̄2

F

�̄2 − 2 �̄F

�̄

)
(
1 − P̄ 2 �̄2

F

�̄2

)2

d

dβε̄
〈n̄〉(i,0),

(25b)

where η2 = ∫ T
0 dt δβε δ�̇F/�̄F is the area of the pumping

cycle in parameter space, normalized by �̄F. The dependence
of the pumped charge and spin as a function of P̄ and �̄F/�̄

is shown in Figs. 5 and 6. As already remarked in Ref. 42, the
pumped spin changes signs as a function of �̄F/�̄, while the
pumped charge does not.

3. Total pumping efficiency and pure spin current

After having discussed separately the two contributions due
to pumping with {ε,P } and {ε,�F}, we now turn to address the
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FIG. 4. (Color online) Pumped spin in units of − 1
2 η1∂βε̄〈n̄〉(i,0)

as a function of (a) the time average of the lead polarization and
(b) the relative tunnel-coupling strength, respectively. The pumping
parameters are ε and P .

sum of the two. In Fig. 7, we show the total spin efficiency

R = −2e
Sε,P + Sε,�F

Qε,P + Qε,�F

, (26)

as a function of �̄F/�̄ for different values of ν and a
polarization P = 0.2. For ν = 0 (realized for flat bands around
the Fermi energy), we get only the contribution due to pumping
with ε and P , which diverges for �̄F/�̄ → 0. A divergence
of the spin efficiency indicates a pure spin current without a
charge current. However, for ν = 0, the pure spin current is
only asymptotically reached for �̄F/�̄ → 0 since in this limit
the amplitude of the spin current vanishes. A negative value
of ν removes the divergency (no pure spin current). The most
interesting case is realized for positive values of ν. In this case,
the divergence of the spin efficiency is shifted to finite values
of �̄F/�̄, which correspond to a pure spin current of finite
amplitude. The sign change of R at this point reflects a sign
change in the total pumped charge current.

B. Pumping scheme B: rotating lead magnetizatiom

In pumping scheme B, the magnitude M of the ferro-
magnet’s magnetization M(t) = Mêp(t) remains fixed but its
direction êp(t) = (sin θ cos ϕ(t), sin θ sin ϕ(t), cos θ )T rotates
about the z axis. The latter is used as the (time-independent)
quantization axis for the dot and normal lead electron spins
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FIG. 5. (Color online) Pumped charge in units of eη2∂βε̄〈n̄〉(i,0)

as a function of (a) the time average of the lead polarization and
(b) the relative tunnel-coupling strength, respectively. The pumping
parameters are ε and �F.

σ = ↑,↓, whereas the direction of the majority and minor-
ity spins α = ± of the ferromagnet changes in time. The
Stoner splitting 	E = Ek− − Ek+, on the other hand, remains
constant in time. To experimentally induce such a rotation
in the ferromagnet, one may make use of a ferromagnetic
resonance.

As mentioned above, adiabatic pumping requires the time-
variation of two system parameters with a relative phase.
In pumping scheme B, the two parameters are the x and y

components of the polarization, Px(t) = P sin θ cos ϕ(t) and
Py(t) = P sin θ sin ϕ(t). In contrast to pumping scheme A, we
do not need to vary the dot-level position in order to achieve
pumping.

In pumping scheme B, the azimuthal angle ϕ(t) of the ferro-
magnet’s magnetization direction is the only time-dependent
parameter. As a consequence, the instantaneous average dot
occupation 〈n〉(i,0) is constant in time. From Eqs. (19a) and
(19b), we deduce that both the charge and the spin current
vanish to lowest order in the tunnel coupling, I

(a,0)
N (t) = 0

and J(a,0)
N (t) = 0. It is, therefore, necessary to include the

next-order contribution in the perturbation expansion in the
tunnel-coupling strength.

An explicit calculation, presented in Appendix D, yields
a vanishing pumped charge current, I

(a,1)
N = 0, but a finite

pumped spin current, which can be nicely written in a compact
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analytical form:

J(a,1)
N = −� F�N

4�2

∂ε〈n〉(i,0)

τ
Q
rel

{[
1 + �N

�F

(
BτS

rel

)2

1 + (
BτS

rel

)2

]
(êp × ∂t êp) − �N

�F

BτS
rel

1 + (
BτS

rel

)2 ∂t êp

}
. (27)

Here, τ
Q
rel and τS

rel are the charge and spin relaxation times,
respectively, and B describes an interaction-induced exchange
field that is a consequence of the spin-dependent tunnel
coupling of the dot level to the ferromagnet.24,25,30 The explicit
expressions are given by

1

τ
Q
rel

= �[f +(ε) + f −(ε + U )], (28)

1

τS
rel

= �[f −(ε) + f +(ε + U )], (29)

B = �F P

π
P
∫

dω

[
f −(ω)

ω − ε
+ f +(ω)

ω − ε − U

]
, (30)

where � = �N + �F is the total tunnel-coupling strength, and
P
∫

dω denotes Cauchy’s principal value.
To get the pumped spin per cycle we need to integrate over

one pumping cycle. From the symmetry of the problem, it is
clear that the spin components along the x and y directions
average out, and only the z component survives. Since ∂t êp
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FIG. 6. (Color online) Pumped spin in units of − 1
2 η2∂βε̄〈n̄〉(i,0)

as a function of (a) the time average of the lead polarization and
(b) the relative tunnel-coupling strength, respectively. The pumping
parameters are ε and �F.

does not have any z component, it is only the term with êp ×
∂t êp that contributes to the finite pumped spin per cycle Sϕ .
We use (êp × ∂t êp) · êz = ϕ̇(t) sin2 θ and assume a constant
angular velocity, � = ϕ̇(t), to get

Sϕ = 1

4
� sin2 θ G0

[
1 + �N

�F

(
BτS

rel

)2

1 + (
BτS

rel

)2

]
(31)

expressed with the help of the dimensionless linear conduc-
tance (in units of e2/h)

G0 = −2π
�N �F

�2

∂ε〈n〉(i,0)

τ
Q
rel

(32)

of the F-dot-N structure for vanishing polarization.
The exchange field B enters the expression for the pumped

spin, Eq. (31), in combination with the spin relaxation time
τS

rel. This is quite natural since the latter defines the time
during that the exchange field acts on the quantum-dot spin
before it relaxes due to the dot electron leaving the dot or
another electron entering the dot via tunneling to or from the
leads, respectively. It is remarkable that the presence of the
exchange field enhances the pumped spin. To understand this,
we notice that the exchange field affects the spin dynamics in
two ways [for a mathematical support of the following physical
argument, see also Eq. (D6)]. It is clear that the exchange field
should induce a precession of an accumulated quantum-dot
spin about êp [last term in Eq. (D6)]. If this were the only
effect, the pumped spin into the normal lead would read
Sϕ = 1

4� sin2 θ G0/[1 + (BτS
rel)

2], i.e., the pumped spin would
be reduced by this precession. There is, however, another
contribution in which the exchange field enters, namely the
accumulation term [first term in Eq. (D6)]. This indicates that
already during the generation of the accumulated spin, the spin
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FIG. 7. (Color online) Total efficiency of the spin pump as a
function of the time averaged ratio �̄F/�̄ plotted for different values
of ν when the polarization is chosen to be P = 0.2.
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FIG. 8. (Color online) The factor (B τS
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2/[1 + (B τS
rel)

2] plotted
as a function of the dot level position ε for different choices of
the tunnel couplings, fixed Coulomb energy U = 20�, and fully
polarized ferromagnetic lead (P = 1).

dynamics induced by the exchange field plays a role and gives
a finite contribution to the adiabatic correction to the spin accu-
mulation. As a result of our calculation, we find that the com-
bination of the two effects leads to the form in Eq. (31) for the
pumped spin, which increases with increasing exchange field.

Due to the prefactor �N/�F in front of the term
(B τS

rel)
2/[1 + (B τS

rel)
2], the exchange field becomes more and

more important when increasing the tunnel coupling to the
normal lead. The latter term is plotted as a function of the dot
level ε in Fig. 8 for a constant value of the Coulomb on-site
energy U = 20�. It goes to zero for large values of |ε| and has
two maxima symmetrically positioned around its minimum at
ε = −U

2 . With increasing Coulomb interaction U , the maxima
reach the value one and the width of the peaks increases, which
leads for large values of the Coulomb interaction, as it is the
case chosen for Fig. 8, to a plateau with a slit.

In Fig. 9, we illustrate how the effect of the exchange field
depend on the tunnel couplings. We begin by choosing a weak
tunnel coupling to the normal lead.

Then, the second term of the pumped spin including the
exchange field is small compared to the first term and does not
play a role. The pumped spin in this situation is plotted as a
function of the dot level ε in Fig. 9(a) for different values of the
charging energy U . In the absence of Coulomb interaction on
the dot, there is one peak positioned at ε = 0. In the presence of
the Coulomb interaction on the dot, a second resonance appears
at ε = −U while the amplitude of the maxima is decreased
and stays constant for Coulomb interactions unequal to zero.

Next, we choose the tunnel couplings symmetrically, �F =
�N. A plot of the spin in this case is shown in panel (b)
of Fig. 9. The symmetric choice of the tunnel couplings
makes the amplitude of the pumped spin maximal. One can
see that the resonances are still at the same positions and
that only the amplitude of the maxima decreases at first but
increases with increasing Coulomb interaction. This is due to
the enhancement of the factor with increasing U . The shape of
the factor leads as well to a dip at the minimum for U = 10�.

The pumped spin for asymmetric tunnel couplings with
a strong coupling to the normal lead is plotted in Fig. 9(c).
Compared to the symmetric case, the overall amplitude has
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FIG. 9. (Color online) Pumped spin in units of 1
2 � sin2 θ as a

function of the level position ε of the dot for different values of the
Coloumb interaction U . The temperature is chosen to be kBT = �

and the ferromagnetic lead is assumed to be fully polarized (P = 1).
(a) The coupling to the ferromagnetic lead is strong (�F = 20�N).
(b) The coupling to the leads is chosen symmetric (�F = �N). (c) The
coupling to the ferromagnet is weak (20�F = �N).

been reduced and it increases more slowly with increasing
Coulomb interaction. The positions of the main resonances still
coincide. For this choice of the tunnel couplings, the exchange
field plays a crucial role. The value of the pumped spin is
increased for gate voltages between the resonances. This gives
rise to side peaks, one below ε = 0 and one above ε = −U .
These peaks overlap with the corresponding main peaks. They
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are visible as individual peaks only for large enough values of
the Coulomb interaction U .

We remark that the polarization of the ferromagnet enters
the expression of the pumped spin current (31) only via the
magnitude of the exchange field B. For vanishing Stoner
splitting 	E and, thus, the polarization going to zero, Eq. (31)
would still give a finite result. However, in this case the
assumption, discussed in Sec. III, that the spin-relaxation time
in the ferromagnet needs to be longer than the time it takes
to complete a transition between minority and majority states
is not verified and Eq. (31) cannot be applied any longer.
When this happens, the spin flip processes in the ferromagnet,
described by tunneling lines contacted with a double-cross
vertex, are cut by the spin relaxation time in the ferromagnet.

VI. CONCLUSIONS

We studied adiabatic charge and spin pumping through a
single-level quantum dot weakly tunnel-coupled to a normal
and a ferromagnetic lead with time-dependent polarization. To
this end, we extended a real-time diagrammatic approach to
account for a time variation of the ferromagnet’s properties. We
investigated two different pumping schemes. In the first one,
the amplitude of the ferromagnet’s polarization is changed in
time. To establish pumping, we chose the dot’s level position
as a second pumping parameter. A pure spin current without
any charge current is only possible for special choices of the
system parameters. The second pumping scheme relies on the
rotation of the magnetization direction of the ferromagnet. In
this case, the pumped charge current always vanishes, i.e., a
pure spin current is generated without fine tuning of the system
parameters.
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APPENDIX A: KINETIC EQUATIONS IN CASE OF
ROTATIONAL SPIN SYMMETRY

We consider the equations of the from d
dt

p = W p, where
the vector p of matrix elements of the reduced density matrix
is given by p = (p0,p↑,p↓,pd,p

↓
↑,p

↑
↓)T. Within this appendix,

the shortcut notation W p could either represent the time
convolution

∫ t

−∞ dt ′ W(t,t ′) p(t ′) or the product W(i)
t p(i)

t for
the kinetic equation in the instantaneous limit.

The basis change from p to P and S is accomplished by the
transformation

(
P

S

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1/2 1/2

0 0 0 0 −i/2 i/2

0 1/2 −1/2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

p. (A1)

In case of rotational spin symmetry about the axis êp, it is
convenient for the following derivation to quantize the spin

along this symmetry axis. In that basis, the kernel W reads

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

W00 W0↑ W0↓ W0d 0 0

W↑0 W↑↑ W↑↓ W↑d 0 0

W↓0 W↓↑ W↓↓ W↓d 0 0

Wd0 Wd↑ Wd↓ Wdd 0 0

0 0 0 0 W
↓↓
↑↑ 0

0 0 0 0 0 W
↑↑
↓↓

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the zeros for the off diagonal matrix elements in the
fifth and sixth columns and row are a consequence of the spin
symmetry.

As a result, the kinetic equations for P and S read

d

dt
P = Wp P + vp (S · êp),

d

dt
S = (vacc · P)êp − S‖

τ
‖
S

− S⊥

τ⊥
S

+ B S × êp,

where we split the spin vector S = S‖ + S⊥ into a parallel,
S‖ = (S · êp)êp, and a perpendicular part, S⊥ = S − S‖, and
we made use of the abbreviations

Wp =

⎛
⎜⎝

W00
1
2

∑
σ W0σ W0d∑

σ Wσ0
1
2

∑
σσ ′ Wσσ ′

∑
σ Wσd

Wd0
1
2

∑
σ Wdσ Wdd

⎞
⎟⎠ ,

vp =

⎛
⎜⎝

W0↑ − W0↓∑
σ (Wσ↑ − Wσ↓)

Wd↑ − Wd↓

⎞
⎟⎠ ,

vacc =

⎛
⎜⎝

1
2 (W↑0 − W↓0)

1
4

∑
σ (W↑σ − W↓σ )

1
2 (W↑d − W↓d )

⎞
⎟⎠ ,

1

τ
‖
S

= −1

2
(W↑↑ − W↓↑ + W↓↓ − W↑↓),

1

τ⊥
S

= −1

2
(W↑↑

↓↓ + W
↓↓
↑↑) = −�W

↑↑
↓↓,

B = − i

2
(W↑↑

↓↓ − W
↓↓
↑↑) = �W

↑↑
↓↓.

The right-hand side of the kinetic equation for the spin
is split into three parts. The first one is independent of S
and describes spin accumulation. The second one models the

r,ω,α

0

0

0 0

0

−iz−iz

0

0

0

+

∋,

r,ω,α

∋,

FIG. 10. Example of the diagrams that are needed to calculate
the matrix element (W(i,1)

t )0↑ belonging to the instantaneous kernel in
first order in the tunnel-coupling strength �.
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relaxation of the parallel and perpendicular components of the
accumulated spin. And finally, the third term gives rise to a
coherent rotation of the spin.

We observe that the spin symmetry has several conse-
quences: only the spin component parallel to the symmetry
axis êp enters the kinetic equation for P, the spin accumulation
is along êp, the spin relaxation is rotationally symmetric

about êp, and the spin rotation is about the symmetry
axis êp.

APPENDIX B: EXAMPLES OF DIAGRAMS

The diagrams contributing to the matrix element (W(i,1)
t )0↑

in instantaneous and first order in � are shown in Fig. 10.
Applying the diagrammatic rules, we obtain

(
W(i,1)

t

)
0↑ = −2

∫
dω �

[
f −(ω)

ε − ω + iz

]
z=0+

{
�N

2π
+ �F(ω)

2π
[1 + P (ω)] cos2 θ

2
+ �F(ω)

2π
[1 − P (ω)] sin2 θ

2

}
= f −(ε)[� + P �F cos θ ].

We now calculate the adiabatic correction to the instantaneous kernel in first order in � for finite ϕ̇ but θ̇ = 0 (this is necessary
only for pumping scheme B). Applying the rules (1’)-(6’), we have to draw for the kernel element (W(a,1)

t )0↑ the diagrams shown
in Fig. 11 and get(

W(a,1)
t

)
0↑ = ϕ̇(t)

2
sin2 θ

∑
α∈{+1,−1}

∫
dω

�F(ω)

2π
[1 + α P (ω)]α	E

×
{

∂

∂z′

[
�

(
1

ε − ω − α 	E + iz

1

ε − ω + iz′ + iz

)]
z = 0+
z′ = 0+

[f −(ω) f −(ω + α 	E) + f +(ω) f −(ω + α 	E)]

+ ∂

∂z′

[
�

(
1

α 	E + iz′ + iz

1

ε − ω + iz′ + iz

)]
z = 0+
z′ = 0+

[−f −(ω) f +(ω + α 	E) + f +(ω)f −(ω + α 	E)]

}

= ϕ̇(t)

2
sin2 θ

[
�F ∂ε f (ε) + 2

	E
P �F f −(ε)

]
.

In the second step, we neglected the energy dependence of P and �F. It is crucial that before doing this, one needs to shift the
integration variable ω such that 	E does not appear anymore explicitly in the integral. For the presented example, this is done by∫

dω
�F(ω)

2π
[1 + α P (ω)]

f −(ω)

ε − ω + i0+ = �F

2π
[1 + α P ]

∫
dω

f −(ω)

ε − ω + i0+ ,∫
dω

�F(ω)

2π
[1 + α P (ω)]

f −(ω + α 	E)

ε − ω − α 	E + i0+ =
∫

dω′ �F(ω′ − α 	E)

2π
[1 + α P (ω′ − α 	E)]

f −(ω′)
ε − ω′ + i0+

=
∫

dω
�F(ω)

2π
[1 − α P (ω)]

f −(ω)

ε − ω + i0+

= �F

2π
[1 − α P ]

∫
dω

f −(ω)

ε − ω + i0+ .

APPENDIX C: PUMPED CHARGE AND SPIN CURRENT TO LOWEST ORDER IN TUNNELING

We make use of the rotational spin symmetry to rewrite the kinetic equations (17) and (18), see Appendix A. An explicit
calculation of the kernels yields

0 = W(i,1)
p P(i,0)

t + v(i,1)
p

(
S(i,0)

t · êp

)
, (C1a)

0 = (
v(i,1)

acc · P(i,0)
t

)
êp − S(i,0)

t

τ S
rel

+ B S(i,0) × êp, (C1b)

for the instantaneous limit and
d

dt
P(i,0)

t = W(i,1)
p P(a,−1)

t + v(i,1)
p

(
S(a,−1)

t · êp

)
, (C2a)

d

dt
S(i,0)

t = (
v(i,1)

acc · P(a,−1)
t

)
êp − S(a,−1)

t

τ S
rel

+ B S(a,−1)
t × êp, (C2b)

for the adiabatic correction.
The matrix W(i,1)

p and vector v(i,1)
p appearing in the kinetic equations for P are given by

W(i,1)
p = �

⎛
⎜⎝

−2f +(ε) f −(ε) 0

2f +(ε) −f −(ε) − f +(ε + U ) 2f −(ε + U )

0 f +(ε + U ) −2f −(ε + U )

⎞
⎟⎠ , (C3)
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v(i,1)
p = 2 P� F

⎛
⎜⎝

f −(ε)

−f −(ε) + f +(ε + U )

−f +(ε + U )

⎞
⎟⎠ . (C4)

In the kinetic equations for the spin, we have introduced

v(i,1)
acc = P� F

⎛
⎜⎝

f +(ε)
1
2

[−f −(ε) + f +(ε + U )
]

−f −(ε + U )

⎞
⎟⎠ (C5)

as well as the spin relaxation time τS
rel defined by 1/τS

rel =
�[f −(ε) + f +(ε + U )] and the interaction-induced exchange
field B = �F P

π
P
∫

dω[ f −(ω)
ω−ε

+ f +(ω)
ω−ε−U

], where P
∫

dω denotes
Cauchy’s principal value. Here and in the following, we drop
the energy dependence of the tunnel coupling �r (ω) ≡ �r and
the polarization P (ω) ≡ P . The generalization to an arbitrary
energy dependence is straightforward.

As discussed in Appendix A the right-hand side of the
kinetic equation for the spin, Eq. (C1b) has quite an intuitive
interpretation. The first term describes spin accumulation. As a
consequence of the spin rotational symmetry, the accumulation
is along êp. The second term models spin relaxation. For
our model, the relaxation turns out to be isotropic, i.e.,
the relaxation times for the spin components parallel and
perpendicular to the symmetry axis êp are identical and
denoted by the same τS

rel in the following. The third term
describes a coherent rotation of the accumulated spin about
an effective exchange field along the magnetization direction
of the ferromagnetic lead. Its magnitude B depends on the dot
level position ε and is, thus, tunable via the gate voltage. It
strongly depends on the Coulomb interaction. In fact, when
the energy dependence of �F and P can be neglected, the
exchange field vanishes in the absence of interaction U = 0.
In addition to the predicted spin rotation,24,30 the exchange

field leads to a splitting of the Kondo resonance,25 which has
been experimentally confirmed recently.6,17,18

From the kinetic equations (C1) and (C2), together with the
normalization conditions eT P(i,0)

t = 1 and eT P(a,−1)
t = 0, we

determine the probabilities and the spin P(i,0)
t , P(a,−1)

t , S(i,0)
t , and

S(a,−1)
t , respectively. We find that the instantaneous probabili-

ties to lowest order in the tunnel coupling are the equilibrium
values for the decoupled dot, thus the spin vanishes,

S(i,0)
t = 0, (C6)

and the remaining occupation probabilities are simply given
by Boltzmann factors,

P(i,0)
t = 1

1 + 2e−βε + e−β(2ε+U )

⎛
⎜⎝

1

2e−βε

e−β(2ε+U )

⎞
⎟⎠ , (C7)

where β = 1/(kBT ) is the inverse temperature. It follows
that the instantaneous average occupation number 〈n〉(i,0) =
P

(i,0)
1 + 2P

(i,0)
d of the quantum dot in lowest order in � is

〈n〉(i,0) = 2f +(ε)

f +(ε) + f −(ε + U )
. (C8)

The adiabatic corrections are given by

P(a,−1)
t = −τ

Q
rel

1

1 − P 2 �2
F

�2

d

dt
P(i,0)

t , (C9a)

S(a,−1)
t = τS

rel

2

P �F
�

1 − P 2 �2
F

�2

d

dt
〈n〉(i,0)êp, (C9b)
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FIG. 11. (Color online) Diagrams contributing to the matrix element (W(a,1)
t )0↑ of the adiabatic correction to the kernel in first order of the

tunnel-coupling strength �.
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where τ
Q
rel is the charge relaxation time given by 1/τ

Q
rel =

� [ f +(ε) + f −(ε + U ) ]. The adiabatic correction to the
probabilities depends on the spin polarization of the ferro-
magnetic lead and on the tunnel-coupling strengths to both
leads. Setting the polarization P to zero, we obtain the result
for an N-dot-N structure.70 The accumulated spin has only a
component along the symmetry axis êp.

We proceed in the same way for the charge and the spin
currents flowing into the normal lead. We denote the charge
current by IN and the spin current by JN. The instantaneous
currents vanish, since the leads are kept at the same chemical
potential (no bias voltage is applied). For the adiabatic
corrections, we find

I
(a,0)
N (t) = −evN(i,1) · P(a,−1)

t , (C10a)

J(a,0)
N (t) = S(a,−1)

t

�N

�

1

τS
rel

, (C10b)

where we defined the vector

vN(i,1) = 2 �N

⎛
⎜⎝

f +(ε)
1
2

[−f −(ε) + f +(ε + U )
]

−f −(ε + U )

⎞
⎟⎠ .

We remark that the accumulated spin does not enter the
expression for the charge current and the probability vector
does not enter the expression for the spin current. This is a
consequence of the fact that the currents are evaluated in the
normal lead, which is not spin polarized.

The lowest-order contribution to the adiabatic current, given
by Eqs. (C10a) and (C10b), is linear in � and independent of
�, in contrast to the dc current through a system with an
applied transport voltage, which scales with �. Since � � �,
the pumped current goes to zero for vanishing tunnel coupling
as it should. Plugging in the results for the probability vector
and the spin, we finally obtain Eqs. (19a) and (19b).

APPENDIX D: PUMPED CHARGE AND SPIN CURRENT TO
FIRST ORDER IN TUNNELING FOR PUMPING SCHEME B

In pumping scheme B, the azimuth angle ϕ(t) is the
only time-dependent parameter. As a consequence, P(a,−1)

t

and S(a,−1)
t as given by Eqs. (C9a) and (C9b) vanish, which

leads to a vanishing charge and spin current to lowest
order in the tunnel coupling, I

(a,0)
N (t) = 0 and J(a,0)

N (t) = 0.
It is, therefore, necessary to include the next order in the
perturbation expansion in the tunnel-coupling strength. The
adiabatically pumped charge and spin currents to next order,

I
(a,1)
N (t) = −evN(i,1) · P(a,0)

t , (D1a)

J(a,1)
N (t) = S(a,0)

t

�N

�

1

τS
rel

, (D1b)

depend on P(a,0)
t and S(a,0)

t . The latter are obtained from the
kinetic equations to next-to-lowest order in the tunnel-coupling
strength.

The kinetic equations expanded to next order in the tunnel
coupling simplify if we use P(a,−1)

t = 0 and S(i,0)
t = S(a,−1)

t =
0, resulting from Eqs. (C9a) and (C9b). Furthermore, when
solving the higher-order kinetic equations, it turns out that

P(i,1)
t is constant in time and that P(a,0)

t = 0. This can be
easily understood noting that the rotation of the ferromag-
net’s magnetization direction does not affect the probability
distribution for empty, single, and double occupation. It
immediately follows that the pumped charge current is always
zero. Furthermore, we find that S(i,1)

t is always parallel to êp.
This is consistent with the fact that in the instantaneous limit
êp is a symmetry axis.

To simplify the presentation, we immediately make use
of these results when writing down and solving the kinetic
equations in the following. To obtain the pumped spin current,
we need S(a,0). The latter is determined from the adiabatic
correction to the kinetic equation for the spin,

d

dt
S(i,1)

t = M(a,1)
p P(i,0)

t − S(a,0)
t

τ S
rel

+ B S(a,0)
t × êp. (D2)

All other terms that would formally appear in the expansion are
vanishing, as mentioned above. While τS

rel and B are already
known, and M(a,1)

p is straightforwardly constructed by applying

the diagrammatic rules, the spin S(i,1)
t entering on the left hand

side is still unknown. To determine the latter, we write down the
instantaneous kinetic equations for the spin in next-to-lowest
order in the tunnel coupling, which immediately yields

S(i,1)
t

τ S
rel

= (
v(i,1)

acc · P(i,1)
t + v(i,2)

acc · P(i,0)
t

)
êp (D3)

but depends on P(i,1)
t . To close the set of equations, we write

down the instantaneous kinetic equations for the probabilities
in next-to-lowest order in the tunnel coupling,

0 = W(i,1)
p P(i,1)

t + W(i,2)
p P(i,0)

t + v(i,1)
p

(
S(i,1)

t · êp

)
, (D4)

and multiply it from the left with qT = (0,1,2), since qT ·
W(i,1)

p = 2�/(P�F)(v(i,1)
acc )T and qT · v(i,1)

p = −2P�F/(�τS
rel).

This allows us to solve for S(i,1)
t and arrive at

S(i,1)
t

τ S
rel

= v(i,2)
acc · P(i,0)

t − P�F
2�

qT W(i,2)
p P(i,0)

t

1 − P 2 �2
F

�2

êp. (D5)

Now, v(i,2)
acc and W(i,2)

p can be evaluated with the help of the
diagrammatic rules.

We remark that the kinetic equation (D2) for the adiabatic
correction S(a,0)

t to the spin contains two source terms. One is
given by the time derivative of the instantaneous spin S(i,1)

t .
Since the latter is, for symmetry reasons, directed along êp,
the time derivative is along ∂t êp. The other source term is
the adiabatic correction to the spin accumulation M(a,1)

p P(i,0)
t ,

which has components along êp × ∂t êp and ∂t êp.
Collecting everything, Eq. (D2) reads

0 = −1

4

∂ε〈n〉(i,0)

τ
Q
rel

(
�F

�
êp × ∂t êp − B τS

rel ∂t êp

)

− S(a,0)
t

τ S
rel

+ B S(a,0)
t × êp (D6)

and we can eventually solve for the adiabatic correction of
the spin and plug this into Eq. (D1b) to get the pumped spin
current as given in Eq. (27).
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and C. Schönenberger, Nat. Phys. 1, 99 (2005).
16A. Jensen, J. R. Hauptmann, J. Nygård, J. Sadowski, and P. E.
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