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Soft parametric resonance for hot carriers in graphene
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We show that hot carriers scattered by optic phonons in graphene undergo an anomalous parametric resonance
when modulated by an ac field, at about half of the frequency ωF = 2πeFvf /h̄ωop, corresponding to ballistic
acceleration up to the phonon energy ωF = 2πeFvf /h̄ωop in the presence of a dc field F . The resonance occurs
in the terahertz range and is tunable with dc electric fields. Dephasing between the current and the ac field also
exhibits a nonzero minimum at resonance for weak elastic scattering, while increasing monotonously with ac
frequency for strong elastic scattering. The overall effect would also manifest in a long-range spatially varying
periodic potential.
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I. INTRODUCTION

The peculiar band structure of graphene with a zero-gap,
linear-dispersion relation between energy and momentum,
E = h̄vf |k| where vf ∼ 108 cm/s,1,2 is much larger than
the saturation velocity in semiconductors,3 makes a unique
material for studying massless Dirac fermions in solids, with
technological opportunities for high-performance electronics.
Hence, in high electric fields F , it is well known that carriers
can accelerate ballistically before being scattered by high-
energy optical phonons (OPs) (h̄ωop ∼ 0.2 eV) causing carrier
velocity saturation.4,5 This produces a back-and-forth motion
of carriers in k space between monochromatic OP energy
and the Dirac point with a time period τF = h̄ωop/eFvf ,6,7

which results in a carrier velocity overshoot8 and even damped
oscillations during the transient to steady state, when the field is
suddenly turned on.6,7 While these oscillations were predicted
to occur in GaAs at low temperature so that h̄ωop � kBT

[h̄ωop(GaAs) = 36 meV], they were limited to low fields
(F ∼ 50–100 V/cm, τF ∼ 30 ps)6 to prevent intervalley
scattering, whereas strong Coulomb scattering arising from
the charged dopants would offset the effect. In graphene,
the absence of an energy gap guarantees carriers without
requiring dopants, while the large OP energy and weak
acoustical-phonon (AP) scattering9 allows its manifestation at
room temperature with ramifications in THz technology, since
the oscillation frequency ωF = 2π/τF ∝ F ∼ 1 THz (F =
2 kV/cm) is tunable with the electric field. If a periodic (ac)
field is superposed onto the dc field, the frequency of the back-
and-forth carrier motion is modulated by the ac frequency, as
a parametric oscillator. As a result, the amplitude of the carrier
velocity or current oscillations is expected to be resonantly
enhanced when the ac frequency ω matches a particular value
η of the natural frequency ωF , i.e., ω = ηωF .10 However, there
are distinct differences between the usual parametric resonance
(PR) and this type of hot-carrier resonance: First, the natural
oscillations are strongly damped as a result of the probabilistic
nature of the carrier-OP interaction that relaxes carrier energy
at different times and momenta once they reach, and even
overshoot, the OP energy. Second, the system is strongly
dissipative as the OP relaxation is responsible for bringing
back the carriers to the low-energy Dirac point. Consequently,
the resonance is anticipated to be “soft” i.e., with a broad peak

in the oscillation amplitude vs ω, and to manifest for different
η values than normal PR.

Because of these distinctive features, we show in this work
the anomalous nature of this type of resonance that manifests
for η ∼ 1/2 instead of η ∼ 2 in normal PR.10 We also find
that the dephasing between the current and ac field exhibits
a minimum as a function of the ac field frequency for weak
damping by AP or other low-energy scattering, and softens to
become monotonic at high damping for all ac field strengths.

II. OPTIC-PHONON SCATTERING
AND HOT-CARRIER MODEL

Our system consists of electrons in the conduction band of
graphene under the influence of a spatially homogeneous and
time-dependent electric field F (t). The electric field takes the
form F (t) = Fo + F1 cos(ωt) and is applied along the positive
kx direction, where Fo is a permanent constant field, F1 is a
constant such that 0 < F1/Fo < 1, and ω is the frequency of
the applied field. The momentum space is divided into the
low (I) and high (II) energy regions bounded by the critical
momentum kc that corresponds to electron energy h̄vF kc =
h̄ωop (Fig. 1). In the low-energy region I, charge carriers are
ballistically accelerated towards the critical circle kc while
interacting with low-energy scattering agents (e.g., APs or
impurities). In the high-energy region II, the carriers lose all
their energy by OP emission and are scattered back into the
low-energy region. For this process to occur, the electric-field
maximum is low enough such that electrons move back and
forth between regions I and II only, with negligible probability
to reach E � 2h̄ωop.

Because of the probabilistic nature of carrier transport, we
solve a large-signal Boltzmann transport equation (BTE) that
accounts for low-energy scattering (damping), e.g., by impuri-
ties and AP.7,11 The BTE in the two regions can be written as7

∂fI (�k,t)
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FIG. 1. (Color online) Quasiballistic carrier acceleration fol-
lowed by OP scattering in the 2D k space of graphene. The circle
corresponds to the electronic energy h̄ωop.

where fI (�k,t) and fII (�k,t) are the time-dependent momentum
distribution functions (DF) in the low- and high-energy
regions, respectively, and e is the electronic charge. Equa-
tion (1a) describes electron transport at low energy, where the
left-hand side (LHS) accounts for the transient drift, while the
first term on the right-hand side (RHS) accounts for low-energy
scattering, i.e., AP and impurities scattering. The second term
on the RHS of Eq. (1a) accounts for low energy carrier repop-
ulation caused OP emission. Equation (1b) describes electron
transport at high energy (E � h̄ωop), where the LHS and the
RHS account for transient drift, and electron depopulation due
to OP emission, respectively.7 In Eq. (1a), the function fo(�k)
is the Fermi-Dirac DF (kF > 0), Sop(�k,�k′) is the OP transition
rate between the states �k and �k′, and τLE is the relaxation time.7

In this analysis, the temperature of the graphene sample is as-
sumed to be T = 300 K, so nq � 1, and we can neglect phonon
absorption. However, we observed that our model is also valid
at lower T , as the DF profile larger than the thermal broadening
is essentially determined by high-field carrier dynamics, as
long as the Coulomb scattering (dopant concentration) can be
kept weak, as shown in Ref. 7 and later on in this analysis.
We note that at this temperature, and if we choose EF = kBT

above the Dirac point in fo(�k), the carrier concentration is nc ≈
1.8 × 1011 cm−2, which is low enough to neglect intercarrier
scattering on the DF. Moreover, the hole concentration is even
smaller to significantly affect the carrier dynamics in the con-
duction band so that interband transition can be neglected.12

A. Self-consistent solution of Boltzmann transport equation

The procedure is to solve Eq. (1b) for fII (�k,t) and substitute
the solution in Eq. (1a) to solve for fI (�k,t).7,13 The DFs in the
two regions are then matched on the boundary k = kc.

By using the substitution κ = kx + β(t), where

β(t) = − e

h̄

∫ t

0
F (s)ds, (2)

the LHS of Eq. (1) transforms into eF [β−1(κ − kx)]∂
gI,II /h̄∂kx , where gI,II (kx,ky ; κ) = fI,II [kx,ky,β

−1(κ − kx)],
and β−1 is the inverse function of β so that β−1β(t) = t .

Consequently, the general solution of Eq. (1b) takes the form

fII (kx,ky,t) = fb

{
ky,β

−1
[
β(t) + kx − k0

x

]}
M(kx,ky,t),

(3)

where fb(ky,t) = fII (k0
x,ky,t) is the time-dependent DF eval-

uated at the boundary k = kc, and k0
x = √

(kc)2 − (ky)2. The
M(kx,ky,t) factor given by

M(kx,ky,t) = exp

(
− h̄

e

∫ kx

k0
x

dp τop
−1(p,ky)

F {β−1[β(t) + kx − p]}
)

is the decay function caused by OP emission of hot carriers,
and 1/τop(�k) = ∑

�k′ Sop(�k,�k′). Equation (3) is then substituted
into Eq. (1a) to solve for fI (�k,t). The matching conditions
fb(ky,t) = fI (k0

x,ky,t) = fII (k0
x,ky,t) of the two solutions fI

and fI I at the boundary lead to an integral equation of the
form

fb(ky,t) = f 1
b (ky,t) + h̄

(2π )2e

∫ k0
x

−k0
x

dp

×
∫

d�k′ Sop(�k′,�k)

∣∣∣∣
kx=p

fII (�k′,t ′)

× exp

(
t ′ − t

τLE

)/
F (t ′), (4)

where the function f 1
b (ky,t) is the solution fI (k0

x,ky,t) in the
absence of OP scattering, and t ′ is a retarded time such that
β(t ′) = β(t) + k0

x − p (see Supplemental Material in Ref. 14).
The second term on the RHS of Eq. (4) accounts for the
contribution of OP emission to the DF at the boundary, and the
summation is taken over states �k′ in the high-energy region.
Equation (4) is solved by iteration, and the solution for fb(ky,t)
is expressed as a series,

fb(ky,t) = f 1
b (ky,t) + f 2

b (ky,t) + f 3
b (ky,t) + · · · (5)

which converges since the function M(kx,ky,t) is a decreasing
exponential and f n

b ∝ (1/2π )n−1. The solution for fb(ky,t)
used throughout this analysis is obtained by neglecting terms
of O[(1/2π )3] and higher in the series (5). Once fb(ky,t) is
known, the DFs in both regions are readily obtained.

The two-dimensional (2D) current density on the plane is
given by

Jx(t) = −4evF

∑
�k

f (�k,t) cos(φ), (6)

where φ is the angle between �k and the kx axis, and f (�k,t) is
the DF in the two regions.

III. RESULTS

In this analysis, we use Fo = 1 kV/cm and express
the applied frequency in units of ω/ωF . We also define a
dimensionless damping parameter γ to gauge the strength of
low-energy scattering as γ = τop(k = 1.5kc)/τLE.7 We choose
τop for k = 1.5kc as the intermediate value between kc and 2kc

as 1/τop(kc) = 0.
Figure 2 shows the current density versus time for different

values of γ and two field strengths at resonance, i.e., when
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FIG. 2. (Color online) Current density for three different values
of the damping γ at resonance (ω ≈ 0.56ωF ). (a) F1/Fo = 0.1;
(b) F1/Fo = 0.8.

ω ≈ 0.56ωF (see Fig. 3). It is seen that the amplitudes of
current density oscillations increase as the applied field F1

increases compared to Fo as a larger population of electrons
escapes low-energy scattering to reach the OP energy. At the
same time, electrons also reach lower velocities during the
negative cycles of F1. For this reason, the current density
swing increases with F1/Fo. One also notices distortions in
the current density oscillations at large fields [Fig. 2(b)] as the
electron population competes between the natural oscillations
at ωF and the oscillations imposed by the F1 field. As expected,
it is also seen that the current density amplitude decreases with
increasing γ as a result of increased electron scattering in the
low-energy region, thereby lowering the carrier velocity.

Figure 3 shows plots of current density amplitude versus
frequency for different values of γ and F1/Fo. In the figure, the
amplitude is defined as the difference between the maximum
and minimum values of the current density. As seen from the
plots, parametric resonance is achieved when ω/ωF ≈ 0.56.
This unexpected result is due to the fact that electrons take
about τF ∼ h̄kc/eF to reach the OP energy, and an additional
τF to lose their energy once they reach the OP energy, as they
can still accelerate before losing their energy. Consequently,
the oscillation period is about 2τF and ωresonance ∼ ωF /2,
which is the same as the current oscillations arising during
the transient in the presence of the dc field Fo alone.7,15 This
anomalous value is due to the fact that the modulation of the
ac field acts only upon the first half of the natural period, i.e.,
when carriers are field driven toward the OP energy, while the
second half of the period when OPs are emitted is stochastic
with a more complicated dependence on the field [see Eq. (3)],
which is why the PR frequency is not exactly half of the natural
frequency ωF . From the figure, the oscillation amplitudes
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FIG. 3. (Color online) Current density amplitude vs frequency for
three different values of the damping parameter γ . (a) F1/Fo = 0.1;
(b) F1/Fo = 0.5; (c) F1/Fo = 0.8.
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FIG. 4. (Color online) Normalized values of the oscillating part
of the current density vs time. Left column, F1/Fo = 0.1; right
column, F1/Fo = 0.8. Top row: γ = 0.01; middle row: γ = 0.1; and
bottom row: γ = 0.3. Blue curve: ω/ωF = 0.001; red curve: ω/ωF ≈
0.56; green curve: ω/ωF = 2.3; and black curve: normalized ac
field.

increase with γ , which as explained in Fig. 2 is due to increased
scattering at low energy, sending back electrons close to the
k = 0 region, thereby further reducing the minimum values of
the current density. The maximum values of the current density
are not as affected because a substantial population of electrons
is still able to reach high energies, even at high γ . Also, we
see from the plots that the amplitude increases with F1/Fo,
as expected, since the difference between current density
maxima and minima increases with F1/Fo. Even though PR is
achieved, it is rather “soft” because of the strongly dissipative
nature of the back-and-forth motion of charge carriers in
the constant field followed by OP emission. Obviously, this
effect is more pronounced for the higher values of γ (low-
energy scattering) and F1/Fo (OP scattering) seen in the
figure.

Figure 4 shows normalized current densities and electric
fields versus time for different values of the parameters ω/ωF

and γ at low electric fields (F1/Fo = 0.1, left column), and
high fields (F1/Fo = 0.8, right column). At low fields, the
current is sinusoidal as expected from the linear response
to the field. It is also observed that at very low frequencies
(ω/ωF = 0.001) and in the quasiballistic regime (γ = 0.01,
top left column), the current density is 180◦ out of phase
with the field. In this case, as the field slowly decreases from
t = 0 to t = π/ω, the electronic system evolves adiabatically
from a regime in high fields to that in low fields, which
depletes the charge carriers in the high-energy region (k > kc)
and increases their concentration in the low-energy region
(k < kc). The current increases as the number of electrons
with high kx values (kc/2 < kx < kc) in the low-energy region
increases as a result of quasiballistic transport that results in a
streamed DF. This situation is clearly seen in Fig. 5 (top row,
first two panels), which shows the change in the DF with time
�f = f [ωt = (n + 1)π/2] − f [ωt = nπ/2]. From t = π/ω

to t = 2π/ω, the current decreases as the field increases
because the electrons that penetrate deep into the high-energy
region (k > kc) with kx � ky are scattered by OP emission
equally to all k′ = k − ω/vf values. Indeed, the absence of q

(phonon wave-vector) dependence in the deformation potential
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FIG. 5. (Color online) 2D color plot of the electron distribution function difference �f (as defined in the text, and normalized to the
carriers density) in k space (normalized units of k/kc) at four different times for field ratio F1/Fo = 0.1 and damping γ = 0.01. Dashed circles
correspond to the boundary k = kc between the low- and high-energy regions. Top row: ω/ωF = 0.001. Bottom row: ω/ωF = 0.56.

OP matrix element contributes to randomizing the DF,16

specifically populating low-energy k states away from the field
direction. This effect results in lowering the current (Fig. 5, top
row, last two panels). In Fig. 4 (left column, top), we see that
the phase between the current and the field reaches a minimum
for frequencies approaching resonance (ω/ωF = 0.56). This
effect is better understood as the field increases from t = π/ω

to t = 3π/2ω, then to t = 2π/ω, when the ac and the dc fields
combine to enhance the back-and-forth motion of carriers
between the low-energy k states (Fig. 5, bottom row, third
panel) and the high-energy k states (fourth panel and first
panel). For frequencies higher than resonance (ω/ωF � 0.56),
the dephasing between current and electric field starts to
increase again (Fig. 6).

One also observes that as low-energy damping increases
(γ = 0.1 and γ = 0.3; Fig. 4, left column), the dephasing
between the current and the field at frequencies below
resonance decreases (Fig. 6), as low-energy collisions result
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FIG. 6. (Color online) Phase of the current density [compared
to F (t)] for different values of the damping γ and field ratio
F1/Fo = 0.1.

in diffusive transport that scatter electrons with high kx states,
thereby changing the streamed DF into a wider (ky states)
DF with lower current density. At intermediate damping
(γ = 0.1), there is even a slight maximum before resonance,
but above resonance the dephasing increases monotonically
for all damping.

In higher ac fields (Fig. 4, right column), aside from the fact
that the current curves are distorted by transport nonlinearity
caused by competition between the dc and ac fields, our results
concerning the phase difference between the oscillating F1

field and the current densities are qualitatively the same. One
notices, however, that the distortions do not affect the current
at resonance, which remains quasisinusoidal. The effect of
γ on the current density phase is also seen in Fig. 6. As
expected, current density lags behind the electric field before
resonance, but the dephasing also drops around resonance for
low damping.

IV. CONCLUSIONS

Although our analysis is performed for time-dependent ac
fields in the condition of spatial uniformity, it is also valid in
the inverse condition of long-range periodically (oscillatory)
modulated potential V (x) = V (x + d) in the steady state.
This can be seen from Eqs. (1), where the time-dependent
differential ∂/∂t operator of the BTE LHS is replaced by
the spatially varying vf cos φ∂/∂x operator, for which φ ∼ 0
in streamed DFs. Therefore, by making the substitution t →
x/vf in our formalism, the resonance condition between the
periodic potential and the hot-carrier dynamics will arise for
Fo = h̄ωop/ηed. in the presence of an external field Fo, which
could be used as field detector.

Let us notice that for carrier oscillations to occur in
graphene, the electric field has to be high enough to escape
low-energy scattering agents, but not too high as to overshoot
the OP energy.7 Also, at high damping, more scattering occurs
in the low-energy region and the resulting oscillations are
promptly damped. This problem persists even with the addition
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of a high-amplitude ac field, and hence the wider resonance
peak at high γ in Fig. 3. As a result, clean graphene samples
should be used with low values of F1/Fo for this effect to be
observed, and be the basis for novel device applications either
as a THz source or detector.
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