
PHYSICAL REVIEW B 87, 155417 (2013)

Scattering of surface plasmon polaritons by one-dimensional surface defects
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The reduced Rayleigh equation for the scattering of a surface plasmon polariton incident normally on a
one-dimensional ridge or groove on an otherwise planar metal surface is solved by a purely numerical approach.
The solution is used to calculate the reflectivity and transmissivity of the surface plasmon polariton and its
conversion into volume electromagnetic waves in the vacuum above the metal surface. The results obtained are
compared with those of earlier calculations of these quantities.
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I. INTRODUCTION

There are at least two reasons why the scattering of surface
plasmon polaritons by surface defects is of interest in the
field of plasmonics.1 The energy mean free path of a surface
plasmon polariton can be decreased by the scattering out of
the beam caused by the presence of surface defects, so that it
is important for applications of these surface waves to be able
to calculate the cross section for such scattering. On the other
hand, surface defects of particular forms and sizes can scatter
surface plasmon polaritons in desirable ways. For example,
they can act as mirrors for surface plasmon polaritons,2 or as
flashlights,3,4 and can also focus them.5,6 The ability to control
the propagation of surface plasmon polaritons is central to their
use in devices. It is therefore important to be able to calculate
the scattered field when a surface plasmon polariton is incident
on a specified surface defect.

The scattering of surface plasmon polaritons by surface
defects of various types has been studied theoretically by
several approaches. The scattering from a circularly symmetric
protuberance or indentation on an otherwise planar metal
surface was investigated by means of a reduced Rayleigh
equation.7 The scattering from a dielectric rectangular par-
allelepiped on the planar surface of a metal film in the
Kretschmann attenuated total reflection geometry8 was cal-
culated by means of a Green’s function method.9 An effective
boundary condition was used in a calculation of the scattering
from dielectric defects defined by an anisotropic Gaussian
profile and by a hemiellipsoidal profile on a planar metal
surface.10

The majority of such scattering calculations however, have
been devoted to scattering from one-dimensional surface
defects, i.e., defects whose profiles are invariant along one
of the coordinate axes, such as an isolated groove or ridge.
In such studies the scattering of surface plasmon polaritons
by defects of various profiles was also investigated by several
different approaches. Thus, scattering from an isolated groove
or ridge11–14 or from an array of several parallel grooves
or ridges15 was studied by means of a simple impedance

boundary condition.16 In subsequent studies of scattering
from an isolated groove or ridge a more refined impedance
boundary condition was employed.17,18 Two different Green’s
function methods have also been applied to the solution of the
problem, namely a surface integral method19 and a volume
integral method.20–22 Finally, finite-difference time-domain
and boundary-element methods have been used in calculations
of the reflection of a surface plasmon polariton from a deep
groove.23

In this paper we present an approach to the scattering
of a surface plasmon polariton incident normally on a one-
dimensional nanoscale topographical surface defect on an
otherwise planar vacuum-metal defect, that has not been used
for this purpose until now, namely the use of the reduced
Rayleigh equation.24 Just as the use of an impedance boundary
condition eliminates the electromagnetic field in the metal
from consideration, so does the use of the reduced Rayleigh
equation. In this method the field in the metal is accounted
for through the boundary condition at the interface satisfied
by the field in the vacuum. This has the consequence that only
a single one-dimensional integral equation has to be solved
to obtain the amplitude of the scattered field, in contrast
with the pair of coupled one-dimensional integral equations
that have to be solved when a Green’s function approach is
used. The computational problem is simplified thereby. It is
a rigorous approach to scattering from defects with surface
profile functions for which the Rayleigh hypothesis25 is valid.
This will be discussed later in this paper. In the form used in this
paper it is applicable only to lossless metals. This restriction
is not a serious one because the surface plasmon polariton
energy mean free path is generally longer than the width of
a nanoscale surface defect, as will be discussed later in this
paper. It is a restriction that can be lifted at the expense of
having to solve a more complicated one-dimensional integral
equation for the scattering amplitude.

The approach developed in this paper will be applied to the
scattering of a surface plasmon polariton from grooves and
ridges on an otherwise planar surface defined by Gaussian and
triangular surface profile functions. Some of our results will
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be compared with those of earlier studies of scattering from
such defects.

II. THE SCATTERED FIELD

The system we study consists of vacuum in the region x3 >

ζ (x1), and a metal, characterized by an isotropic, frequency-
dependent, real dielectric function ε(ω), in the region x3 <

ζ (x1). The surface profile function ζ (x1) is assumed to be
a single-valued function of x1 that is differentiable, and is
sensibly nonzero over only a finite portion of the x1 axis about
its origin.

A surface plasmon polariton of frequency ω, whose sagittal
plane is the x1x3 plane, propagates in the +x1 direction along
the x1 axis. The single nonzero component of its magnetic field
in the region x3 > ζ (x1)max is the sum of an incident field and
a scattered field:

H>
2 (x1,x3|ω) = exp[ik(ω)x1 − β0(ω)x3] +

∫ ∞

−∞

dq

2π

×A(q|k(ω)) exp[iqx1 − β0(q,ω)x3], (2.1)

where

k(ω) = ω

c

[ |ε(ω)|
|ε(ω)| − 1

] 1
2

(2.2a)

β0(ω) = ω

c

[
1

|ε(ω)| − 1

] 1
2

(2.2b)

are the wave number of a surface plasmon polariton of
frequency ω at a planar vacuum-metal interface and the inverse
decay length of its field into the vacuum, respectively. Our
notation here indicates that we are working in the frequency
range in which ε(ω) is negative, which is the frequency range in
which surface plasmon polaritons exist. The function β0(q,ω)

is defined by

β0(q,ω) = [q2 − (ω/c)2]
1
2 ,

(2.3)
Reβ0(q,ω) > 0, Imβ0(q,ω) < 0.

The magnetic field in the region of the metal, x3 < ζ (x1)min,
can be written in a similar form:

H<
2 (x1,x3|ω) = exp[ik(ω)x1 + β(ω)x3] +

∫ ∞

−∞

dq

2π

×B(q|k(ω)) exp[iqx1 + β(q,ω)x3], (2.4)

where

β(ω) = ω

c

|ε(ω)|
[|ε(ω)| − 1]

1
2

(2.5a)

β(q,ω) = [q2 − ε(ω)(ω/c)2]
1
2 ,

(2.5b)
Reβ(q,ω) > 0, Imβ(q,ω) < 0.

The boundary conditions satisfied by H
≷
2 (x1,x3|ω) at

the interface x3 = ζ (x1) are the continuity of the tangential
components of the magnetic and electric fields across it,

H>
2 (x1,x3|ω) = H<

2 (x1,x3|ω) (2.6a)
∂

∂n
H>

2 (x1,x3|ω) = 1

ε(ω)

∂

∂n
H<

2 (x1,x3|ω), (2.6b)

where

∂

∂n
= 1

[1 + (ζ ′(x1))2]
1
2

(
−ζ ′(x1)

∂

∂x1
+ ∂

∂x3

)
(2.6c)

is the derivative along the normal to the surface at each point
of it, directed from the metal toward the vacuum.

When Eqs. (2.1) and (2.4) are substituted into Eqs. (2.6), we
obtain a pair of coupled integral equations for the coefficient
functions A(q|k(ω)) and B(q|k(ω)):

∫ ∞

−∞

dq

2π
A(q|k(ω)) exp[iqx1 − β0(q,ω)ζ (x1)] −

∫ ∞

−∞

dq

2π
B(q|k(ω)) exp[iqx1 + β(q,ω)ζ (x1)]

= − exp[ik(ω)x1 − β0(ω)ζ (x1)] + exp[ik(ω)x1 + β(ω)ζ (x1)] (2.7a)∫ ∞

−∞

dq

2π
A(q|k(ω))[−iqζ ′(x1) − β0(q,ω)] exp[iqx1 − β0(q,ω)ζ (x1)]

− 1

ε(ω)

∫ ∞

−∞

dq

2π
B(q|k(ω))[−iqζ ′(x1) + β(q,ω)] exp[iqx1 + β(q,ω)ζ (x1)]

= −[−ik(ω)ζ ′(x1) − β0(ω)] exp[ik(ω)x1 − β0(ω)ζ (x1)] + 1

ε(ω)
[−ik(ω)ζ ′(x1) + β(ω)] exp[ik(ω)x1 + β(ω)ζ (x1)]. (2.7b)

However, only the electromagnetic field in the vacuum is experimentally accessible. Therefore we need only the amplitude
A(q|k(ω)). A single integral equation for it can be obtained in the following way. We first multiply Eq. (2.7a) by [ipζ ′(x1) +
β(p,ω)] exp[−ipx1 + β(p,ω)ζ (x1)] where p is an arbitrary wave number, and then integrate the result with respect to x1. We
then multiply Eq. (2.7b) by −ε(ω) exp[−ipx1 + β(p,ω)ζ (x1)] and integrate the result with respect to x1. We finally add the
resulting pair of equations and obtain

∫ ∞

−∞

dq

2π

I (β(p,ω)−β0(q,ω)|p−q)
β(p,ω) − β0(q,ω)

[β(p,ω)β0(q,ω)−pq]A(q|k(ω))=−I (β(p,ω) − β0(ω)p − k(ω))
β(p,ω) − β0(ω)

[β(p,ω)β0(ω) − pk(ω)],

(2.8)
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where we have introduced the function I (γ |Q) defined by

exp[γ ζ (x1)] =
∫ ∞

−∞

dQ

2π
I (γ |Q) exp(iQx1). (2.9)

It follows from this result that

ζ ′(x1) exp[γ ζ (x1)] =
∫ ∞

−∞

dQ

2π

iQ

γ
I (γ |Q) exp(iQx1). (2.10)

Both of these relations were used in obtaining Eq. (2.8). For
the evaluation of I (γ |Q) we need the inverse relation

I (γ |Q) =
∫ ∞

−∞
dx1 exp(−iQx1) exp[γ ζ (x1)]. (2.11)

It is convenient to remove a delta function from the function
I (γ |Q) by rewriting Eq. (2.11) as

I (γ |Q) =
∫ ∞

−∞
dx1 exp(−iQx1){1 + exp[γ ζ (x1)] − 1}

= 2πδ(Q) + γ J (γ |Q), (2.12)

where

J (γ |Q) =
∫ ∞

−∞
dx1 exp(−iQx1)

exp[γ ζ (x1)] − 1

γ
. (2.13)

On substituting Eq. (2.12) into Eq. (2.8) we obtain the equation
satisfied by A(q|k(ω)) in the form

ε(ω)β0(p,ω) + β(p,ω)

ε(ω) − 1
A(p|k(ω)) +

∫ ∞

−∞

dq

2π
J (β(p,ω)

−β0(q,ω)|p − q)[β(p,ω)β0(q,ω) − pq]A(q|k(ω))

= −J (β(p,ω) − β0(ω)|p − k(ω))[β(p,ω)β0(ω) − pk(ω)].

(2.14)

The coefficient of A(p|k(ω)) on the left-hand side of this
equation vanishes when p = ±k(ω), where k(ω), defined
by Eq. (2.2a), is the wave number of the surface plasmon
polariton of frequency ω at a planar vacuum-metal interface.
This means that A(p|k(ω)) has simple poles at these values
of p. In a numerical solution of an integral equation it is
preferable for the unknown function being sought to be free
from singularities. Consequently, we introduce the function
a(p,ω) by

A(p|k(ω)) = a(p,ω)

ε(ω)β0(p,ω) + β(p,ω)
, (2.15)

so that a(p,ω) is free from singularities. The equation satisfied
by this function is

a(p,ω) − (ε(ω) − 1)
∫ ∞

−∞

dq

2π
J (β(p,ω) − β0(q,ω)|p − q)

× pq − β(p,ω)β0(q,ω)

ε(ω)β0(q,ω) + β(q,ω)
a(q,ω)

= (ε(ω) − 1)J (β(p,ω) − β0(ω)|p − k(ω))

× [pk(ω) − β(p,ω)β0(ω)]. (2.16)

This is the equation that will be solved numerically.
The magnetic field in the vacuum region scattered by the

surface defect is given by the second term on the right-hand
side of Eq. (2.1). When the expression for A(q|k(ω)) obtained

from Eq. (2.15) is substituted into Eq. (2.1), the scattered field
becomes

H>
2 (x1,x3|ω)sc =

∫ ∞

−∞

dq

2π

eiqx1−β0(q,ω)x3

ε(ω)β0(q,ω) + β(q,ω)
a(q,ω).

(2.17)

The surface plasmon polariton contribution to this field is given
by the residues at the poles of the integrand at q = ±k(ω). In
the vicinity of these poles we find that

1

ε(ω)β0(q,ω) + β(q,ω)

= ε(ω)β0(ω)

[ε2(ω) − 1]k(ω)

1

q − k(ω)
q ≈ k(ω) (2.18a)

= − ε(ω)β0(ω)

[ε2(ω) − 1]k(ω)

1

q + k(ω)
q ≈ −k(ω). (2.18b)

We now give ε(ω) an infinitesimal positive imaginary part to
define how the poles at q = ±k(ω) are to be dealt with. This
results in k(ω) acquiring an infinitesimal positive imaginary
part. The integral over q in Eq. (2.17) is then evaluated by
going into the complex q plane in the manner this was done in
Ref. 19, and employing the residue theorem. The result is

H>
2 (x1,x3|ω)sc,spp

= i
ε(ω)β0(ω)

[ε2(ω) − 1]k(ω)
exp[ik(ω)x1 − β0(ω)x3]a(k(ω),ω)

x1 > 0 (2.19a)

= i
ε(ω)β0(ω)

[ε2(ω) − 1]k(ω)
exp[−ik(ω)x1 − β0(ω)x3]a(−k(ω),ω)

x1 < 0. (2.19b)

Consequently, the transmitted surface plasmon polariton field
is

H>
2 (x1,x3|ω)tr,spp =

[
1 + i

ε(ω)

ε2(ω) − 1

β0(ω)

k(ω)
a(k(ω),ω)

]

× exp[ik(ω)x1 − β0(ω)x3] x1 > 0.

(2.20)

The first term on the right-hand side of this equation is the
contribution from the incident field, which is present even
in the absence of the surface defect. The reflected surface
plasmon polariton field is

H>
2 (x1,x3|ω)ref,spp = i

ε(ω)

ε2(ω) − 1

β0(ω)

k(ω)
a(−k(ω),ω)

× exp[−ik(ω)x1 − β0(ω)x3] x1 < 0.

(2.21)

The factor ε(ω)β0(ω)/{[ε2(ω) − 1]k(ω)} can be simplified to

ε(ω)

ε2(ω) − 1

β0(ω)

k(ω)
= − |ε(ω)| 1

2

ε2(ω) − 1
. (2.22)

III. THE REFLECTION, TRANSMISSION, AND
RADIATION COEFFICIENTS

To calculate the reflection, transmission, and radiation
coefficients we need first of all the total time-averaged incident
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flux crossing the plane x1 = −c to the left of the surface defect,
where the vacuum-dielectric interface is planar. It is given by

〈S1〉 = − c

8π
Re

∫ ∞

−∞
dx3E3(−c,x3|ω)H ∗

2 (−c,x3|ω), (3.1)

where S1 is the 1-Cartesian component of the Poynting vector,
and the angle brackets denote a time average. In p polarization
we have

E3(x1,x3|ω) = i
c

ωε

∂

∂x1
H2(x1,x3|ω), (3.2)

where ε is the dielectric constant of the medium in which the
field is being calculated. Thus, we have

〈S1〉 = c2

8πω
Im

∫ ∞

−∞
dx3

1

ε

∂

∂x1
H2(−c,x3|ω)H ∗

2 (−c,x3|ω).

(3.3)

The incident magnetic field can be written as

H>
2 (−c,x3|ω)inc = exp[−ik(ω)c − β0(ω)x3] x3 > 0

(3.4a)

H<
2 (−c,x3|ω)inc = exp[−ik(ω)c + β(ω)x3] x3 < 0.

(3.4b)

Consequently, we have

〈S1〉inc = c2

8πω
Im

∫ ∞

0
dx3ik(ω) exp[−2β0(ω)x3]

+ c2

8πωε(ω)
Im

∫ 0

−∞
dx3ik(ω) exp[2β(ω)x3]

= c2

16πω

k(ω)

β0(ω)

(
1 − 1

ε2(ω)

)
. (3.5)

The reflected surface plasmon polariton field at x3 = −c

can be written as

H>
2 (−c,x3|ω)ref = r(ω) exp[ik(ω)c − β0(ω)x3] x3 > 0

(3.6a)

H<
2 (−c,x3|ω)ref = r(ω) exp[ik(ω)c + β(ω)x3] x3 < 0,

(3.6b)

where

r(ω) = −i
|ε(ω)| 1

2

ε2(ω) − 1
a(−k(ω),ω). (3.7)

The total time-averaged flux of the reflected field is obtained
from Eq. (3.3) in the form

〈S1〉ref = c2

8πω
Im

∫ ∞

0
dx3(−i)k(ω)|r(ω)|2 exp[−2β0(ω)x3]

+ c2

8πωε(ω)
Im

∫ 0

−∞
dx3(−i)k(ω)|r(ω)|2

× exp[2β(ω)x3]

= − c2

16πω

k(ω)

β0(ω)
|r(ω)|2

(
1 − 1

ε2(ω)

)
. (3.8)

The reflectivity of the surface plasmon polariton is therefore

R(ω) = |〈S1〉ref|
〈S1〉inc

= |r(ω)|2

= |ε(ω)|
[ε2(ω) − 1]2

|a(−k(ω),ω)|2. (3.9)

To obtain the transmissivity of the surface plasmon po-
lariton, we need the total time-averaged flux crossing the
plane x1 = c to the right of the surface defect, where the
vacuum-metal interface is planar. The transmitted magnetic
field can be written as

H>
2 (c,x3|ω)tr,spp = [1 + t(ω)] exp[ik(ω)c − β0(ω)x3]

x3 > 0 (3.10a)

H<
2 (c,x3|ω)tr,spp = [1 + t(ω)] exp[ik(ω)c + β(ω)x3]

x3 < 0, (3.10b)

where

t(ω) = −i
|ε(ω)| 1

2

ε2(ω) − 1
a(k(ω),ω). (3.11)

Thus, the total time-averaged flux of the transmitted field is
obtained from Eq. (3.3) as

〈S1〉tr = c2

8πω
|[1 + t(ω)]|2Im

∫ ∞

0
dx3ik(ω) exp[−2β0(ω)x3]

+ c2

8πωε(ω)
|[1 + t(ω)]|2

× Im
∫ 0

−∞
dx3ik(ω) exp[2β(ω)x3]

= c2

16πω
|[1 + t(ω)]|2 k(ω)

β0(ω)

(
1 − 1

ε2(ω)

)
. (3.12)

The transmissivity of the surface plasmon polaritons is
therefore

T (ω) = 〈S1〉tr

〈S1〉inc
= |[1 + t(ω)]|2. (3.13)

To calculate the fraction of the total time-averaged incident
flux that is converted into volume electromagnetic waves in the
vacuum propagating away from the metal surface, we begin
by rewriting the scattered field, Eq. (2.17), in the form

H>
2 (x1,x3|ω)sc = i

∫ ∞

−∞

dq

2π

exp[iqx1 + iα0(q,ω)x3]

ε(ω)α0(q,ω) + α(q,ω)
a(q,ω),

(3.14)

where

α0(q,ω) = iβ0(q,ω) = [(ω/c)2 − q2]
1
2

(3.15)
Reα0(q,ω) > 0, Imα0(q,ω) > 0

and

α(q,ω) = iβ(q,ω) = [ε(ω)(ω/c)2 − q2]
1
2

(3.16)
Reα(q,ω) > 0, Imα(q,ω) > 0.

We now need the total time-averaged scattered flux crossing
the plane x3 = c above the metal. It is obtained from the 3-
Cartesian component of the Poynting vector of the scattered
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field,

〈S3〉 = c

8π
Re

∫ ∞

−∞
dx1E1(x1,c|ω)H ∗

2 (x1,c|ω). (3.17)

In p polarization we have

E1(x1,x3|ω) = −i
c

ωε

∂

∂x3
H2(x1,x3|ω), (3.18)

where ε is the dielectric constant of the medium in which the
field is being calculated. Thus, we have

〈S3〉 = c2

8πω
Im

∫ ∞

−∞
dx1

1

ε

∂

∂x3
H2(x1,c|ω)H ∗

2 (x1,c|ω).

(3.19)

Upon substituting Eq. (3.14) into Eq. (3.19) we obtain

〈S3〉rad = c2

8πω
Im

∫ ∞

−∞
dx1

∫ ∞

−∞

dq

2π

iα0(q,ω)a(q,ω)

ε(ω)α0(q,ω) + α(q,ω)

×
∫ ∞

−∞

dq ′

2π

a∗(q ′,ω)

ε(ω)α∗
0 (q ′,ω) + α∗(q ′,ω)

×ei(q−q ′)x1+i[α0(q,ω)−α∗
0 (q ′,ω)]x3

= c2

8πω
Im

∫ ∞

−∞

dq

2π
iα0(q,ω)

∣∣∣∣ a(q,ω)

ε(ω)α0(q,ω) + α(q,ω)

∣∣∣∣
2

× exp[−2Imα0(k,ω)x3]

= c2

8πω

∫ ω
c

− ω
c

dq

2π
α0(q,ω)

∣∣∣∣ a(q,ω)

ε(ω)α0(q,ω) + α(q,ω)

∣∣∣∣
2

.

(3.20)

It is convenient now to make the change of variable q =
(ω/c) sin θs , which yields

〈S3〉rad =
∫ π

2

− π
2

dθsPrad(θs), (3.21)

where

Prad(θs) = ω

16π2
cos2 θs

∣∣∣∣
[

a(q,ω)

ε(ω)α0(q,ω) + α(q,ω)

]
q= ω

c
sin θs

∣∣∣∣
2

= c2

16π2ω
cos2 θs

|a((ω/c) sin θs,ω)|2
[ε(ω) cos θ + (ε(ω) − sin2 θs)

1
2 ]2

.

(3.22)

The fraction of the incident flux that is radiated into the angular
interval (θs,θs + dθs) is then given by

〈S(θs)〉 = Prad(θs)

〈S1〉inc
= 1

π

|ε(ω)|
ε2(ω) − 1

× cos2 θs

|a((ω/c) sin θs,ω)|2
[ε(ω) cos θs + (ε(ω) − sin2 θs)

1
2 ]2

.

(3.23)

IV. THE NUMERICAL SOLUTION OF EQUATION (2.16)

In solving Eq. (2.16) numerically we begin by noting that
β0(q,ω) is purely imaginary for |q| < (ω/c) and is purely real
for |q| > (ω/c). Because we work in the frequency range in
which ε(ω) is negative, and because we have assumed that it

is real, β(q,ω) is real for all values of q. The infinite region of
integration is then truncated to the finite region (−Q,Q), where
Q is typically in the range 6(ω/c) − 7(ω/c). We consider the
integration of a function f (p|q)a(q) with respect to q over
this region.

The interval [−(ω/c),(ω/c)] is divided into 2N + 1 subin-
tervals, each of width �q1 = 2(ω/c)/(2N + 1), so that

∫ ω
c

− ω
c

dqf (p|q)a(q) =
N∑

n=−N

∫ (n+ 1
2 )�q1

(n− 1
2 )�q1

dqf (p|q)a(q), (4.1)

where

f (p|q) = ε(ω) − 1

2π
J (β(p,ω) − β0(q,ω)|p − q)

× pq − β(p,ω)β0(q,ω)

ε(ω)β0(q,ω) + β(q,ω)
. (4.2)

We assume that a(q,ω) is a slowly varying function of q within
each subinterval. We therefore evaluate it at the midpoint of
each subinterval and remove it from the integral. In this way
we obtain

∫ ω
c

− ω
c

dqf (p|q)a(q) ∼=
N∑

n=−N

a(n�q1)
∫ (n+ 1

2 )�q1

(n− 1
2 )�q1

dqf (p|q)

∼= �q1

N∑
n=−N

f (p|n�q1)a(n�q1). (4.3)

This is essentially the extended midpoint rule. It should be
noted that as the frequency ω is changed,so is the integration
grid,i.e.,so is �q1.

In the interval (ω/c) < q < Q we have to proceed more
carefully,because f (p|q) has a simple pole at q = k(ω) >

(ω/c). We define a new integration mesh �q2 in this interval
by k(ω) − (ω/c) = (m∗ + 1

2 )�q2, where m∗ is an integer. The
choice m∗ = 1 is a reasonable one, since k(ω) − (ω/c) is
typically of the order of 0.05(ω/c) − 0.06(ω/c). If we then
assume that the difference Q − (ω/c) ≈ 5(ω/c) can be written
as Q − (ω/c) = (M + 1)�q2, this fixes the value of M at
approximately 125.

The integral we have to evaluate now becomes

∫ Q

ω
c

dqf (p|q)a(q) =
M∑

m = 0
m 	= m∗

∫ ω
c
+(m+1)�q2

ω
c
+m�q2

dqf (p|q)a(q)

+
∫ ω

c
+(m∗+1)�q2

ω
c
+m∗�q2

f (p|q)a(q). (4.4)

We have separated the contribution from the interval (ω/c +
m∗�q2, ω/c + (m∗ + 1)�q2) because it is in this interval that
f (p|q) has a simple pole and can be written as

f (p|q) = g(+)(p|q)

q − k(ω)
, (4.5)
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where

g(+)(p|q)

= 1

2π
J (β(p,ω) − β0(q,ω)|p − q)

× [pq − β(p,ω)β0(q,ω)][ε(ω)β0(q,ω) − β(q,ω)]

[ε(ω) + 1][q + k(ω)]
.

(4.6)

If we give ε(ω) an infinitesimal positive imaginary part only
in the denominator of Eq. (4.5), so that k(ω) acquires an
infinitesimal positive imaginary part, Eq. (4.4) becomes

∫ Q

ω
c

dqf (p|q)a(q) ∼=
M∑

m = 0
m 	= m∗

a

(
(ω/c) +

(
m + 1

2

)
�q2

)

×
∫ ω

c
+(m+1)�q2

ω
c
+m�q2

dqf (p|q)

+ a

(
(ω/c) +

(
m∗ + 1

2

)
�q2

)

×
∫ ω

c
+(m∗+1)�q2

ω
c
+m∗�q2

dqg(+)(p|q)

×
[

1

(q − k(ω))P
+ iπδ(q − k(ω))

]
.

(4.7)

The notation (1/x)P denotes the principal part of (1/x),
namely (1/x)P = limη→0+ (x/(x2 + η2)). If we recall that
(ω/c) + (m∗ + 1

2 )�q2 = k(ω), this result can be rewritten as
∫ Q

ω
c

dqf (p|q)a(q)

= �q2

M∑
m = 0

m 	= m∗

f

(
p|(ω/c) +

(
m + 1

2

)
�q2

)

× a

(
(ω/c) +

(
m + 1

2

)
�q2

)

+ a(k(ω))
∫ k(ω)+ 1

2 �q2

k(ω)− 1
2 �q2

g(+)(p|q) − g(+)(p|k(ω))
q − k(ω)

+ iπg(+)(p|k(ω))a(k(ω)). (4.8)

The integral in this expression has no singularity and is
evaluated using a fine mesh.

The integral over the interval −Q < q < −(ω/c) is treated
in the same way, with the result

∫ − ω
c

−Q

dqf (p|q)a(q)

∼= �q2

M∑
m = 0

m 	= m∗

f

(
p| − (ω/c) −

(
m + 1

2

)
�q2

)

× a

(
−(ω/c) −

(
m + 1

2

)
�q2

)
− a(−k(ω))

×
∫ k(ω)+ 1

2 �q2

k(ω)− 1
2 �q2

dq
g(−)(p|−q) − g(−)(p|−k(ω))

q − k(ω)

− iπg(−)(p|−k(ω))a(−k(ω)), (4.9)

where

g(−)(p|q)

= 1

2π
J (β(p,ω) − β0(q,ω)|p − q)

× [pq − β(p,ω)β0(q,ω)][ε(ω)β0(q,ω) − β(q,ω)]

[ε(ω) + 1][q − k(ω)]
.

(4.10)

When the wave number p is given the discrete values that
q takes in the three integration domains, a [2(N + M) + 3]
× [2(N + M) + 3] matrix equation is obtained for the values
of the function a(q,ω) at these values of q. From this equation
the functions a(±k(ω)) are obtained because ±k(ω) are among
the 2(N + M) + 3 values q takes in evaluating the integral in
Eq. (2.16).

V. RESULTS

To illustrate the preceding results we have calculated the
reflection and transmission of a surface plasmon polariton
incident normally on a ridge or groove on an otherwise planar
silver surface, and its conversion into volume electromagnetic
waves in the vacuum. The dielectric function for silver was
assumed to have the free electron form

ε(ω) = 1 − ω2
p

ω2
, (5.1)

with a value of the plasma frequency given by ωp = 11.76 ×
1015 s−1. This value was obtained from the value of the surface
impedance ξ = [ε(ω)]−

1
2 = −0.227i at a wavelength λ =

600 nm used by Nikitin, López-Tejeira, and Martı́n-Moreno17

in their study of the scattering of a surface plasmon polariton
by a one-dimensional defect on a silver surface. Our choice of
this value makes possible a comparison of some of our results
with some of theirs.

In our first illustrative example the surface profile function
ζ (x1) is assumed to have the Gaussian form

ζ (x1) = A exp
(−x2

1

/
R2

)
. (5.2)

It describes a ridge when A is positive, and a groove when A

is negative. The function J (γ |Q) corresponding to this profile
function is

J (γ |Q) =
√

πR

γ

∞∑
n=1

(γA)n√
nn!

exp

(
−R2Q2

4n

)
. (5.3)

For the values of A and R used in the present calculations, no
more than the first 20 terms in this expansion were needed to
obtain converged results.

We consider first the frequency dependence of the transmit-
tance T (ω), the reflectance R(ω), and the emittance S(ω), when
a surface plasmon polariton is incident on the groove or ridge
defined by Eq. (5.2) whose 1/e half width R is fixed at R = 250
nm, while its amplitude A is given the values A = ±40 nm,
±60 nm, and ±80 nm. The spectral range within which these
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FIG. 1. The frequency dependence of the
transmittance, reflectance, emittance, and their
sum, when a surface plasmon polariton is
incident normally on a Gaussian surface defect,
defined by Eq. (5.2), on an otherwise planar
silver surface. The values of the parameters
assumed in obtaining these results are ωp =
11.76 ×1015 s−1, R = 250 nm, and A = 40 nm
(——) and A = −40 nm(- - - -).

functions are calculated is 0 < ω < ωp/
√

2, i.e., the range
within which a surface plasmon polariton at a vacuum-free
electron metal interface exists.

In Fig. 1 we present plots of T (ω),R(ω),S(ω), and the sum
R(ω) + S(ω) + T (ω) as functions of frequency for a defect
defined by A = ±40 nm. The transmittance T (ω) has a single
minimum for both a ridge and a groove, and the emittance S(ω)
has a single maximum for both surface profiles, as does the
reflectance R(ω). We see from these results that the reflectance
is smaller than the transmittance and emittance by a factor
of about one thousand. The differences between the values
of T (ω),R(ω), and S(ω) for a ridge and a groove are not
large. The minimum value of the transmittance is larger for a
ridge than for a groove, the maximum value of the emittance
is smaller for a ridge than for a groove, and the maximum
value of the reflectance is larger for the ridge than for the
groove. Finally, unitarity (energy conservation) is satisfied
with an error smaller than approximately 0.02%. Although
this is a necessary condition for the correctness of our results,
its satisfaction does not guarantee their correctness.

When the amplitude of the surface defect is increased to
|A| = 60 nm (Fig. 2), the results for T (ω),R(ω),S(ω), and
their sum are qualitatively similar to those presented in Fig. 1.

However, there are some quantitative differences. The minima
in the transmittance of both a ridge and a groove occur at
smaller values of this function, but the minimum value of the
transmittance is again larger for a ridge than for a groove. The
maxima in the emittance and reflectance of both a ridge and a
groove occur at larger values of these functions. However, the
maximum value of the emittance is larger for a groove than for
a ridge, while the maximum value of the reflectance is larger
for the ridge than for the groove. These characteristics of the
frequency dependencies of the transmittance, emittance, and
reflectance are maintained when the amplitude of the surface
defect is increased to |A| = 80 nm (Fig. 3).

It should be noted that unitarity is satisfied with an error
smaller than about 0.025–0.5%. in all of the cases considered.
Moreover, the frequency at which the maxima and minima of
the transmittance, emittance, and reflectance occur is almost
unaffected by changes in |A| as R remains fixed, and has the
value ω/ωp

∼= 0.45 in all of the cases considered.
We now turn to the angular distribution of the emittance,

S(θs). We assume that the frequency of the incident surface
plasmon polariton is ω/ωp = 0.267, which corresponds to a
wavelength λ = 600 nm. The 1/e half width of the surface
defect is fixed at a value R = 250 nm, while the amplitude A

0 0.2 0.4 0.6
0.8

0.85

0.9

0.95

1

ω/ω
p

T
ra

ns
m

itt
an

ce

0 0.2 0.4 0.6
0

0.5

1

1.5

ω/ω
p

R
ef

le
ct

an
ce

× 
10

3

0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

ω/ω
p

E
m

itt
an

ce

0 0.2 0.4 0.6
0.999

0.9995

1

1.0005

1.001

ω/ω
p

S
um

FIG. 2. The same as Fig. 1, but for
|A| = 60 nm.
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FIG. 3. The same as Fig. 1, but for
|A| = 80 nm.

of the defect takes the values A = 12, 40, 60, and 80 nm for
the case of a ridge, and the values A = −12,−40,−60, and
−80 nm for the case of a groove. The results are presented in
Fig. 4.

Two principal results can be obtained from the figure. The
first is that a groove converts more of the energy in the incident
surface plasmon polariton into volume electromagnetic waves
in the vacuum than does a ridge, for each value of |A|. The

second is that for all the values of |A| for which Fig. 4 was
calculated, the radiation pattern has a maximum at a scattering
angle θs = 30◦. We will return to this result later in this section.

Until now we have considered spectral dependencies of
the transmittance, emittance, and reflectance when the width
of the surface defect is fixed and its amplitude is varied. We
now consider the transmittance, emittance, and reflectance of
the surface defect as functions of its width when its amplitude
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FIG. 4. The angular dependence of the emittance when a surface plasmon polariton whose wavelength is λ = 600 nm is incident normally
on a Gaussian surface defect, defined by Eq. (5.2), on an otherwise planar silver surface. The values of the parameters assumed in obtaining
these results are ωp = 11.76 × 1015 s−1, R = 250 nm, and |A| = ±12 nm (a), ±40 nm (b), ±60 nm (c), and ±80 nm (d). In each case the solid
curve depicts the result for a ridge, while the dashed curve depicts the result for a groove.
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FIG. 5. The dependence of the transmittance, reflectance, and emittance of a Gaussian ridge or groove on an otherwise planar silver surface
on 2R/λ, when a surface plasmon polariton whose wavelength is λ = 600 nm is incident normally on it. The amplitude of the defect is |A| = 12
nm. The solid (——) and dashed (- - - -) curves in each case depict the results for a ridge and a groove, respectively, obtained by the approach
of this paper. The dotted (· · · ·) and the dash-dotted (− · − · −·) curves in each case depict the results for a ridge and a groove, respectively,
obtained in Ref. 17.

is fixed, as is the wavelength of the incident surface plasmon
polariton. In Fig. 5 we present plots of these functions versus
2R/λ, in the interval 0 � 2R/λ � 1, when the frequency of
the surface plasmon polariton is ω/ωp = 0.267 (λ = 600 nm),
while the amplitude of the surface defect is |A| = 12 nm. Four
curves are presented for each function. The solid curve (——)
and the dashed curve (- - - - -) in each case depict the results
obtained for a ridge and a groove, respectively, by the approach
of this paper. The dotted curve (· · · · ·) and the dashed-dotted
curve (− · − · −·) in each case depict the results for a ridge and
a groove, respectively, calculated by Nikitin, López-Tejeira,
and Martı́n-Moreno. It should be noted that the width a of
the Gaussian defect in Ref. 17 is 2R in our notation. While
the results for the ridge obtained by the two approaches are in
quite good agreement, the results for a groove agree less well.

Finally, in Fig. 6 we consider the angular dependence of
the emittance, S(θs), when a surface plasmon polariton whose
wavelength is λ = 600 nm is incident normally on a Gaussian
groove defined by Eq. (5.2). The value of the parameter A

assumed in obtaining the results presented in this figure is
A = −12 nm, while 2R/λ takes the values (a) 0.1, (b) 0.25,
(c) 0.5, (d) 0.6, and (e) 0.8. In each case the solid curve depicts
the result obtained by the approach of this paper, while the
dashed curve depicts the result obtained in Ref. 17. Both sets
of results show that for small values of 2R/λ the radiation
is predominantly in the backward direction. However, for
values of 2R/λ larger than approximately 0.5 the radiation is
predominantly in the forward direction. Thus, one can modify
the radiation pattern in useful ways by increasing R for a fixed
value of −A.

When we compare the results presented in Figs. 4 and 6
we see that it is varying the width of the groove while keeping
its depth fixed that controls the scattering angle at which the
maximum scattered intensity occurs. Keeping the width of

the groove fixed while increasing its depth does not change
the scattering angle at which the maximum scattered intensity
occurs.

The results obtained by both approaches are qualitatively
similar. However, the results obtained by the use of an
impedance boundary condition17 are systematically smaller
than those obtained by the approach presented in this paper.
This is also reflected in the results for the emittance in the
scattering from a groove presented in Fig. 5. The results shown
in Figs. 5 and 6 give an indication of the accuracy of results
obtained with the use of an impedance boundary condition in
calculations of the scattering of surface plasmon polaritons by
surface defects.

As a second example of the use of the approach developed
in this paper, we consider the scattering of a surface plasmon
polariton by a triangular groove or ridge. The surface profile
function in this case is given by

ζ (x1) = −h + h

a
|x1| 0 � |x1| � a (5.4a)

= 0 |x1| � a. (5.4b)

When h is positive this function defines a groove; when h

is negative it describes a ridge. The scattering of a surface
plasmon polariton by a defect with this profile does not appear
to have been studied by any approach until now. The function
J (γ |Q) obtained for this form for the surface profile function is

J (γ |Q) = −2
a

γ
sinc(Qa) − 2ah

(γ h)2 + (Qa)2
e−γ h

+ 2a

γ

1

(γ h)2 + (Qa)2
(γ h cos Qa + Qa sin Qa),

(5.5)

where sincx = sin x/x.
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FIG. 6. The angular dependence of the emittance when a surface plasmon polariton whose wavelength is λ = 600 nm is incident normally
on a Gaussian groove defined by Eq. (5.2) with A = − 12 nm, on an otherwise planar silver surface. The values of 2R/λ assumed in obtaining
these results are (a) 0.1, (b) 0.25, (c) 0.5, (d) 0.6, and (e) 0.8. In each case the solid curve (——) depicts the result obtained by the approach of
this paper, while the dashed curve (- - - - -) depicts the result obtained in Ref. 17.

The functions T (ω),R(ω),S(ω), and their sum are plotted
in Fig. 7 as functions of frequency for a triangular groove
defined by h = 40 nm and a = 250 nm. If we compare these
results with those presented in Fig. 1 for a Gaussian groove
with the same depth and nearly the same width, we see that
the ones in Fig. 7 display more structure, especially for ω just
below ωp/

√
2. The transmittance has maxima and minima at

the frequencies where the emittance has minima and maxima.
The reflectance is again smaller than the transmittance and
emittance by a factor of approximately one thousand. Unitarity
is well satisfied by these results at frequencies up to ω/ωp 
0.5, and has an error no larger than about 2% at the highest
frequencies.

The angular distribution of the emittance, S(θs), is presented
in Fig. 8 for the case in which a surface plasmon polariton is
incident normally on a triangular surface defect when the half
width of the defect is fixed at the value a = 250 nm, while its
amplitude |h| assumes the values |h| = 12 nm, 40 nm, 60 nm,
and 80 nm. The wavelength of the incident surface plasmon
polariton is assumed to be λ = 600 nm. In contrast with the
results presented in Fig. 4, it is seen in Fig. 8 that a triangular
ridge converts more of the energy in the incident surface
plasmon polariton into volume electromagnetic waves in the
vacuum than does a groove, for each value of |h|. Moreover,
for all the values of |h| for which Fig. 8 was calculated, the
radiation pattern has a maximum at a scattering angle θs = 10◦.
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FIG. 7. The frequency dependence of the transmittance, reflectance, emittance, and their sum, when a surface plasmon polariton is incident
normally on a triangular groove, defined by Eq. (5.4), on an otherwise planar silver surface. The values of the parameters assumed in obtaining
these results are ωp = 11.76 × 1015 s−1, a = 250 nm, and h = 40 nm.

The insensitivity of the scattering angle at which S(θs) has a
maximum to the amplitude of the defect for a fixed value of

its width seems to be a general property of one-dimensional
topographical surface defects.
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FIG. 8. The angular dependence of the emittance when a surface plasmon polariton whose wavelength is λ = 600 nm is incident normally
on a triangular surface defect, defined by Eq. (5.4), on an otherwise planar silver surface. The values of the parameters used in obtaining these
results are ωp = 11.76 × 1015 s−1, a = 250 nm, and |h| = 12 nm (a), 40 nm (b), 60 nm (c), and 80 nm (d). In each case the solid curve depicts
the result for a ridge, while the dashed curve depicts the result for a groove.
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FIG. 9. The dependence of the transmittance, reflectance, and emittance of a triangular ridge or groove on an otherwise planar silver
surface on 2a/λ, when a surface plasmon polariton whose wavelength is λ = 600 nm is incident normally on it. The amplitude of
the defect is |h| = 12 nm. The solid (——) and dashed (- - - -) curves in each case depict the results for a ridge and a groove,
respectively.

In Fig. 9 we plot the dependence of the transmittance,
reflectance, and emittance of the triangular defect as functions
of its width when its amplitude is fixed, as is the wavelength
of the incident surface plasmon polariton. The wavelength of
the incident surface plasmon polariton is λ = 600 nm, and the
amplitude of the defect is |h| = 12 nm. The transmittance is
seen to be slightly larger for a ridge than for a groove, and
to have a shallow minimum for 2a/λ  0.42. The emittance
and reflectance are both smaller than the transmittance by
a factor of approximately one thousand for this shallow
defect.

We conclude this section by presenting the angular de-
pendence of the emittance, S(θs), when a surface plasmon
polariton of wavelength λ = 600 nm is incident normally
on a triangular surface defect, defined by Eq. (5.4) with
|h| = 12 nm. The width of the defect 2a/λ takes the values
0.1, 0.25, 0.5, 0.6, and 0.8 in Figs. 10(a)–10(e), respectively.
In each case the solid curve depicts the result for a ridge, while
the dashed curve depicts the result for a groove. For values
of 2a/λ up to about 0.7, the radiation is predominantly in the
backward direction, while for values of 2a/λ larger than this
value the radiation is predominantly in the forward direction.
Scattering from a ridge yields a larger maximum value of S(θs)
for small values of 2a/λ, but for values of 2a/λ larger than 0.5
it is scattering from a groove that yields the larger maximum
value of S(θs). Thus, for this surface profile as well altering
the directionality of the emittance can be done by varying its
width while keeping its amplitude fixed.

VI. DISCUSSION

In this paper we have first derived the reduced Rayleigh
equation for the scattering of a surface plasmon polariton
incident normally on a one-dimensional topographical defect
on an otherwise planar metal surface in contact with vacuum.

We have then applied this equation to the determination of the
scattering coefficients for defects defined by a Gaussian profile
function and by a symmetric triangular profile function. Two
assumptions underlie the present work, namely that the use
of the Rayleigh hypothesis is valid, and that the dielectric
function can be assumed to be real. We consider these two
assumptions in turn.

The conditions for the validity of the Rayleigh hypothesis
have been studied by many authors.26–33 Hill and Celli28

have presented a simple method for determining the limits
of validity of Rayleigh’s method, while van den Berg and
Fokkema30 have used a somewhat different approach to
determine these limits for a one-dimensional perturbation of a
planar surface. The latter authors have determined these limits
for a surface defect defined by the profile function given by
Eq. (5.2). They find that for A > 0 the Rayleigh hypothesis
is valid for 0 < A/R < 0.429, while for A < 0 it is valid
for −0.694 < A/R < 0. Thus the Gaussian profiles we have
studied are defined by values of A/R for which the Rayleigh
hypothesis is valid. The results presented here can therefore
be regarded as having been obtained by means of rigorous
calculations.

The situation with respect to the triangular surface defect
defined by the profile function (5.4) is subtler. If a surface
profile function is not an analytic function of x1, for example
if it has corners, then according to a theorem of Millar27 in
general the Rayleigh hypothesis is not valid.28,34 However,
it has been found by several authors that the Rayleigh
method yields accurate results even when it is used outside
its domain of analytical validity, and when it is applied
to nonanalytic surface profile functions in calculations of
the dispersion curves for surface waves propagating across
periodically corrugated surfaces.35–37 It has been suggested
that the accuracy of the method outside its domain of validity is
asymptotic in nature.28,38 By this is meant that the accuracy of
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FIG. 10. The angular dependence of the emittance when a surface plasmon polariton whose wavelength is λ = 600 nm is incident normally
on a triangular surface defect, defined by Eq. (5.4) with |h| = 12 nm, on an otherwise planar silver surface. The values of 2a/λ assumed in
obtaining these results are (a) 0.1, (b) 0.25, (c) 0.5, (d) 0.6, and (e) 0.8. In each case the solid curve (——) depicts the result for a ridge, while
the dashed curve (- - - - -) depicts the result for a groove.

the result calculated (surface wave dispersion curve, scattering
efficiency) improves as the number of terms in the expansion
of the scattered wave in terms of outgoing wave functions
is increased up to some critical value, and then worsens as
additional terms are included. In the present case of an isolated
surface defect summation over outgoing wave functions is
replaced by integration. It was found that as the interval of
integration (−Q,Q) in the numerical solution of Eq. (2.16)
is expanded by increasing Q, the result for the scattering
amplitude improves until a critical value of Q is reached, and
then worsens as Q is increased beyond this value. We have
always used results obtained with this critical value of Q.

We now turn to a discussion of the assumption the the
dielectric function ε(ω) of the metal can be taken to be real.
This assumption is justified when the energy mean free path
of a surface plasmon polariton on a lossy metal surface is so
long that the component of the Poynting vector of the surface
wave in the direction of its propagation decreases so little in
its transit of the defect that results for a lossless metal can be
used instead.

To make this argument quantitative, we write ε(ω) in the
form ε(ω) = ε1(ω) + iε2(ω), where ε1(ω) is negative while
ε2(ω) is positive in the frequency range of interest. The energy
mean free path of a surface plasmon polariton of frequency ω
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at a planar vacuum-metal interface is then given by

�spp(ω) = c

ω

|ε1(ω)| 1
2 (|ε1(ω)| − 1)3/2

ε2(ω)
. (6.1)

The dielectric function of silver at a wavelength λ = 2πc/ω =
600 nm, obtained by a linear interpolation of data in the
paper of Johnson and Christy39 is ε(ω) = −15.91 + i0.435.
This result for the real part of ε(ω) differs from the value of
−19.41 used in Ref. 17, but this difference is not significant
for our argument. The value of �app(ω) obtained from this
value of ε(ω) and Eq. (6.1) is �spp(ω) = 51.63 μm. This is
more than 100 times larger than the widths of our defects,
which in most of our examples are 500 nm. This result means
that the surface plasmon polariton loses less than one percent
of the energy with which it enters the defect as it transits
the defect. If the reflectance and transmittance of the surface
plasmon polariton are calculated in terms of the values of
the 1-component of the Poynting vector of the reflected and
transmitted fields evaluated at the entrance and exit points of
the defect, respectively,19 the errors in the calculations of these
functions with a real dielectric function instead of a complex
one should be smaller than one percent.

We have studied quantitatively how the frequency depen-
dence of the transmittance, emittance, and reflectance of a
ridge differ from those of a groove for a Gaussian surface
defect, and have found that these differences are in fact very
small. The frequencies at which the spectral dependencies of
the transmittance, emittance, and reflectance have their minima
or maxima are only very weakly dependent on the values of the
parameters A and R that define this surface defect. The spectral
dependencies of these functions for a triangular groove have
more structure than those for the Gaussian defect, especially
in the high frequency limit. The accuracy of these calculations
decreases as ω/ωp increases past ω/ωp = 0.66.

The angular dependencies of the emittance for a ridge and a
groove are quite close to each other for a Gaussian defect, and
a little less so for the triangular defect. The emittance is in the
forward direction for each value of |A| and |h| for the Gaussian
and triangular defects, respectively, and although its strength
increases as the amplitude of the defect increases with its width
held constant, the scattering angle at which the emittance is a
maximum is independent of the magnitude of the amplitude.
This result suggests that the excitation of a surface plasmon po-
lariton by illuminating a Gaussian or triangular ridge or groove
by a p-polarized volume electromagnetic wave incident from
the vacuum will be most efficient when the polar angle of inci-
dence equals the angle at which the emittance is a maximum.40

When we fix the frequency (wavelength) and the magnitude
of the amplitude of the Gaussian or triangular defect while we
increase the width of the defect, we find that the transmit-
tance has a single broad minimum while the emittance and
the reflectance each have a single broad maximum. In the
case of the Gaussian defect, with the choices λ = 600 nm and
|A| = 12 nm, we can compare our results with those of Ref. 17,
which were obtained by the use of an impedance boundary
condition. There is a qualitative agreement between the two
sets of results for the ridge and the groove, and semiquantitative
agreement. The quantitative agreement is best for the results
for a ridge, but less good for a groove.

Similar results are obtained for the angular dependence of
the emittance when a surface plasmon polariton of a fixed
frequency is incident on a Gaussian groove of fixed depth and
variable width. The results obtained by the present approach
are in qualitative agreement with those obtained in Ref. 17, but
the latter results are systematically smaller than the former. The
width of the groove at which the emittance changes from being
primarily in the backward direction to being primarily in the
forward direction is the same in the results obtained by our
approach and by the one of Ref. 17.

When we fix the wavelength of the incident surface
plasmon polariton and the magnitude of the amplitude of
the triangular surface defect while its width is increased, the
angular dependence of the emittance is qualitatively similar
to that for a Gaussian defect. For small values of the width
the emittance is primarily in the backward direction, with the
ridge producing the greater maximum intensity. As the width
of the defect is increased the emittance becomes primarily
in the forward direction, with the greater maximum intensity
now being produced by the groove. Thus, again the radiation
pattern can be controlled by varying the width of the defect.

Although the approach developed here can be applied to
studies of the scattering of a surface plasmon polariton by
multiple, parallel, one-dimensional surface defects, or to the
scattering of a surface plasmon polariton pulse from one or
more surface defects, we have applied it here to the case of a
single surface defect. We plan to study extensions of the present
study to multiple defects and pulses in subsequent work.

In conclusion, we have developed an approach to the
study of the scattering of surface plasmon polaritons by
one-dimensional topographic surface defects on a planar
surface that is correct, accurate, and computationally simple
to implement, even if it has some limits on its applicability,
as long as it is used within these limitations, and in some
cases even outside these limitations. It is based on the method
of reduced Rayleigh equations, a method that has been used
successfully in many studies of various properties of structured
metallic, dielectric, elastic, and magnetic surfaces. We have
compared some of the results obtained by this approach with
those obtained by a different earlier approximate approach
and have obtained good agreement with them, which provides
a kind of independent confirmation of those earlier results.
Among our new results the most striking is the insensitivity
of the directionality of the emittance to variations of the
amplitude of the defect for a fixed value of its width. This
result has a useful consequence for the excitation of a surface
plasmon polariton by illuminating such a defect by a volume
electromagnetic wave.
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