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Spin valleytronics in silicene: Quantum spin Hall–quantum anomalous Hall insulators
and single-valley semimetals
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Valley-based electronics, known as valleytronics, is one of the keys to breaking through to a new stage of
electronics. The valley degree of freedom is ubiquitous in the honeycomb lattice system. The honeycomb lattice
structure of silicon, called silicene, is a fascinating playground of valleytronics. We investigate topological
phases of silicene by introducing different exchange fields on the A and B sites. There emerges a rich variety
of topologically protected states, each of which has a characteristic spin-valley structure. The single Dirac-
cone semimetal is such a state where one gap is closed while the other three gaps are open, evading the
Nielsen-Ninomiya fermion-doubling problem. We have newly discovered a hybrid topological insulator named
the quantum spin–quantum anomalous Hall insulator, where the quantum anomalous Hall effect occurs at one
valley and the quantum spin Hall effect occurs at the other valley. Along its phase boundary, single-valley
semimetals emerge, where only one of the two valleys is gapless with degenerated spins. These semimetals
are also topologically protected because they appear in the interface of different topological insulators. Such a
spin-valley-dependent physics will be observed by optical absorption or edge modes.
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I. INTRODUCTION

The intrinsic degrees of freedom of an electron are its
charge and spin, which lead to electronics and spintronics. The
valley degree of freedom on honeycomb lattices is expected
to provide us with the notion of valleytronics. Valleytronics
was originally proposed in graphene,1–3 where the states near
the Fermi energy are π orbitals residing near the K and
K ′ points at opposite corners of the hexagonal Brillouin
zone. The low-energy dynamics in the K and K ′ valleys
is described by the Dirac theory. The valley excitations
are protected by the suppression of intervalley scattering.
However, it is hard to realize valleytronics in graphene since
the gap is closed and since it is difficult to discriminate
between the K and K ′ points experimentally. In this context,
transition metal dichalcogenides4–7 become a new playground
of valleytronics, where a considerably large gap is open. In
the most recent experimental progress, the identity of valleys
manifests as valley-selective circular dichroism, leading to
valley polarization with circularly polarized light, offering a
possibility to a realization of valleytronics.3–7

Recently, another honeycomb system of silicon, named
silicene, has been experimentally synthesized8–10 and theo-
retically explored.11–14 As prominent properties, it consists
of buckled sublattices made of A sites and B sites, and the
Dirac electron has a mass. The buckled structure allows us to
control the Dirac mass independently at the K and K ′ points
by applying external fields such as electric field,12 exchange
field,13 and photoirradiation.14 It is possible to generate a rich
variety of topologically protected states in silicene, each of
which has a characteristic spin-valley structure.

In this paper we propose to make a full control of the Dirac
mass in order to search for new topological states together
with new spin-valley structures in silicene. The Dirac mass
can be fully controlled by four potential terms corresponding
to the spin and valley degrees of freedom, among which three
terms have already been studied.12–14 The last one is driven
by applying the staggered exchange field �M ≡ MA − MB ,

where MA and MB are exchange fields operating on the A

and B sites, respectively. These four terms move Dirac cones,
respecting the electron-hole symmetry. It is also possible to
introduce four other potential terms, which shift Dirac cones
so as to break the electron-hole symmetry. The typical one
is driven by applying the mean staggered exchange field
M ≡ 1

2 (MA − MB).
Well-known topologically protected states are quantum

spin Hall (QSH) insulator15 and quantum anomalous Hall
(QAH) insulator.16–21 They are characterized by the helical
and chiral gapless edge modes, respectively, according to
the bulk-edge correspondence.22–24 The QAH effect is the
quantum Hall effect without Landau levels, while the QSH
effect is the quantum Hall effect of spins rather than charges.

By introducing the staggered exchange field �M , we obtain
rich phase diagrams as illustrated in Figs. 1 and 3. First of
all, we are able to generate the spin-polarized QAH (SQAH)
insulator together with single Dirac-cone (SDC) semimetals
along its phase boundaries (Fig. 2). The SDC semimetal is
a remarkable state that has one massless Dirac cone and
three massive Dirac cones, evading the Nielsen-Ninomiya
fermion-doubling problem.25 Second, a new finding is the
quantum spin–quantum anomolous Hall (QSQAH) insulator.
It is a new type of topological insulator such that, e.g., the
QAH effect is realized at the K point while the QSH effect is
realized at the K ′ point (Fig. 4). Third, another new finding is
a single-valley (SV) semimetal such that, e.g., the gap is open
(closed) at the K (K ′) point with spin degeneracy. It is different
from the SDC state which has only one closed gap without spin
degeneracy. These spin-valley-dependent band structures will
be experimentally observed by spin-valley-selective circular
dichroism.3–7,26 We point out that a (semi)metallic state
appearing at the phase boundary between two topologically
distinctive insulators is also protected topologically. We may
call it a topological (semi)mental.

In what follows we use notations sz = ↑ ↓, tz = A,B,
η = K,K ′ in indices and sz = ±1, tz = ±1, η = ±1 in
equations for the spin, the sublattice pseudospin, and the valley,
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FIG. 1. (Color online) Phase diagram in the �Ez-�M plane.
Heavy lines represent phase boundaries where the band gap closes.
There are three types of topological insulators as indicated by QSH
with (0,1) and SQAH with (±1, 1

2 ). There are two types of trivial
band insulators as indicated by AF and CDW. There emerge the SDC
semimetal and the SV semimetal in the phase boundary. A circle
shows a point where the energy spectrum is shown in Fig. 2. The gap
closes at Ez = ±17 meV/Å on the Ez axis and at �M = ±λSO on
the �M axis.

respectively. We also use the Pauli matrices σa and τa for the
spin and the sublattice pseudospin, respectively.

II. HAMILTONIAN

Silicene is well described by the tight-binding model,15,27

H = −t
∑
〈i,j〉α

c
†
iαcjα + i

λSO

3
√

3

∑
〈〈i,j〉〉αβ

νij c
†
iασ z

αβcjβ

− i
2

3
λR2

∑
〈〈i,j〉〉αβ

t izc
†
iα(σ × d̂ij )zαβcjβ, (1)

where c
†
iα creates an electron with spin polarization α at

site i in a honeycomb lattice and 〈i,j 〉/〈〈i,j 〉〉 run over all
the nearest/next-nearest-neighbor hopping sites. The first term
represents the usual nearest-neighbor hopping with the transfer
energy t = 1.6 eV. The second term represents the effective
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FIG. 2. (Color online) The band structures of zigzag silicene
nanoribbons at the points indicated in the phase diagram (Fig. 1).
The vertical axis is the energy in units of t , and the horizontal axis is
the momentum. We can clearly see the Dirac cones representing the
energy spectrum of the bulk. Lines connecting the two Dirac cones
are edge modes.
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FIG. 3. (Color online) Phase diagram in the M-�M plane. Heavy
lines represent phase boundaries. There are five types of topological
insulators as indicated by QAH with (±2,0), QSQAH with (±1,1/2),
and QSH with (0,1). There is one trivial band insulator, as indicated by
AF. There emerge the mQAH metal and the TM in the phase boundary.
A circle shows a point where the energy spectrum is calculated and
shown in Fig. 4. The gap closes at M = ±λSO on the M axis and at
�M = ±λSO on the �M axis.

spin-orbit (SO) interaction with λSO = 3.9 meV, and νij = +1
if the next-nearest-neighboring hopping is counterclockwise
and νij = −1 if it is clockwise with respect to the positive
z axis. The third term represents the Rashba interaction with
λR2 = 0.7 meV, where t iz = ±1 for i representing the A (B)
site; d̂ij = dij /|dij | with the vector dij connecting two sites i

and j in the same sublattice.
The low-energy effective Hamiltonian is given by the Dirac

theory around the Kη point. The Hamiltonian (1) yields

H 0
η = h̄vF(ηkxτx + kyτy) + λSOητzσz

+ aλR2ητz(kyσx − kxσy), (2)

where vF =
√

3
2 at is the Fermi velocity with the lattice constant

a = 3.86 Å.
A great merit of silicene is that we can introduce various

potential terms into the Hamiltonian by taking advantage
of its bucked structure. There exist eight commuting terms
which we are able to introduce into the Dirac Hamiltonian (2).
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FIG. 4. (Color online) The band structures of silicene nanorib-
bons at marked points in the phase diagram (Fig. 3). The vertical axis
is the energy in unit of t , and the horizontal axis is the momentum.
Lines connecting the two Dirac cones are edge modes.
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They are

Hpqr = λpqrη
p(σz)

q(τz)
r , (3)

where p,q,r = 0 or 1.
The coefficient of τz is the Dirac mass, to which four terms

contribute. They are Hpqr with r = 1. First, H111 is nothing
but the SO coupling term with λ111 = λSO. Second, H001 is the
staggered sublattice potential term12 with λ001 = �Ez, which is
controlled by applying electric field Ez, where � = 0.23 Å is
the sublattice separation. Third, H101 is the Haldane term28

with strength λ101 = λ�, which is controlled by applying
photoirradiation.14 Finally, H011 is the new term we propose
to analyze in the present work. As we see, it is the staggered
exchange term with λ011 = �M . We summarize the property
of the Dirac mass term Hpq1 with respect to the time-reversal
symmetry (TRS), the spin rotation symmetry (SRS), and the
sublattice pseudospin symmetry (SLS)29 as

Hpq1 Potential term TRS SRS SLS

111 Kane-Mele True False False

001 s-sublattice True True False

011 s-exchange False False False

101 Haldane False True False

, (4)

where s- stands for staggered. We find that QAH effects can be
induced by the Haldane term or the staggered exchange term
since they break the TRS.

We address the other potential terms in Eq. (3), or Hpqr

with r = 0. They induce the shift of Dirac cones and break
the electron-hole symmetry, as we discuss in Sec. VI. First,
H000 is nothing but the chemical potential with λ000 = μ.
Second, H010 is the mean exchange coupling term13 with
λ010 = M . The remaining two terms H100 and H110 have not
been discussed previously, and their experimental realizations
would yet be explored. We may call H100 the staggered
Haldane term with λ100 = λSH and H110 the staggered Kane-
Mele term with λ110 = λSKM. We summarize the symmetry
property of the shift term Hpq1 as

Hpq0 Potential term TRS SRS SLS

000 Chemical potential True True True

010 m-exchange False False True

100 s-Haldane False True True

110 s-Kane-Mele True False True

, (5)

where m- and s- stand for mean and staggered, respectively.
We may write the tight-binding term that yields the potential

term Hpqr . The additional terms are12,13

�H = −�
∑
iα

t izEzc
†
iαciα + i

λ�

3
√

3

∑
〈〈i,j〉〉αβ

νij c
†
iαcjβ

+
∑
iα

Mtiz
c
†
iασ z

ααciα + μ
∑
iα

c
†
iαciα

+ i
λSH

3
√

3

∑
〈〈i,j〉〉αβ

τzνij c
†
iαcjα

+ i
λSKM

3
√

3

∑
〈〈i,j〉〉αβ

τzνij c
†
iασ z

αβcjβ . (6)

The Dirac Hamiltonian is

Hη = H 0
η − �Ezτz + ηλ�τz + �Mσzτz

+μ + Mσz + λSHη + λSKM ησz, (7)

where M = 1
2 (MA + MB) and �M = MA + MB . The Dirac

mass is given by

�η
sz

= ηszλSO − �Ez + ηλ� + sz�M, (8)

which may be positive, negative, or zero. We can make a full
control of the Dirac mass independently for each spin and
valley to materialize spin-valleytronics in silicene.

III. TOPOLOGICAL CHARGES

We first explore the Hamiltonian system with the mass
correction terms Hpq1 included. The Hamiltonian Hη is
explicitly given by the 4 × 4 matrix as

Hη =
(

H ↑
η Rη

R†
η H ↓

η

)
, (9)

with the diagonal elements

Hsz

η =
(

�
η
sz

h̄vF(ηkx − iky)

h̄vF(ηkx + iky) −�
η
sz

)
(10)

and the off-diagonal element

Rη =
(

iaλR2(ηkx − iky) 0

0 −iaλR2(ηkx − iky)

)
. (11)

Note that the off-diagonal element Rη vanishes at the Kη point,
where kx = ky = 0.

The characteristic feature is the existence of the electron-
hole symmetry. The energy spectrum at the Kη point contains
four levels, ±�

η
sz

, and the band gap is given by 2|�η
sz
|.

Topological phase transitions are controlled entirely by the
spin-valley-dependent Dirac mass �

η
sz

.
We set λR2 = 0 since it is a small quantity. We are able

to justify this simplification in the present system, as we
describe at the end of this section. When λR2 = 0, the spin
sz is a good quantum number. The Dirac Hamiltonian is given
by the 2 × 2 matrix H

sz
η for each spin sz and each Dirac

valley Kη. For such a system it is straightforward to calculate
the spin-valley-dependent Chern number Cη

sz
by integrating

the Berry curvature over all occupied states of electrons in
the momentum space. The Berry curvature is described by
the meron configuration in the sublattice-pseudospin space,
and the Chern number Cη

sz
becomes identical to the Pontryagin

number.30 We find

Cη
sz

= η

2
sgn

(
�η

sz

)
(12)

as a function of the spin-valley-dependent Dirac mass �
η
sz

.
This is well defined provided that the Fermi level is taken
within the insulating gap. A phase transition may occur when
one Dirac mass becomes zero, �

η
sz

= 0, for certain η and sz.
The topological quantum numbers are the Chern num-

ber C and the spin-Chern number Cs modulo 2. They are
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given by

C = CK
↑ + CK ′

↑ + CK
↓ + CK ′

↓ , (13a)

Cs = 1
2 (CK

↑ + CK ′
↑ − CK

↓ − CK ′
↓ ). (13b)

We now switch on the Rashba interaction adiabatically,
λR2 	= 0. As far as λR2 is small, the band structure is almost
unchanged. Furthermore, it follows from the Hamiltonian (9)
that the phase transition point is independent of λR2 and still
given by solving �

η
sz

= 0. Since the gap keeps open during
this adiabatic process, the Chern numbers are well defined and
their values are unchanged since they are quantized.

IV. PHASE DIAGRAM IN (Ez,�M) PLANE

For definiteness we investigate the topological phase
transition in the (Ez,�M) plane, where

�η
sz

= ηszλSO − �Ez + sz�M. (14)

The phase boundaries are given by solving �
η
sz

= 0, which
yields four heavy lines corresponding to sz = ↑ ↓ and η =
K,K ′ in the phase diagram (Fig. 1). The spin-valley-dependent
Chern number Cη

sz
is calculated at each point (Ez,�M) with

the use of Eq. (12), from which we derive the topological
numbers (C, Cs) based on Eq. (13). They take constant values
in one phase, which we have depicted in the phase diagram.
We illustrate the band structure of a nanoribbon with zigzag
edges in Fig. 2, which manifests the spin-valley structure of
topologically protected phases.

First, there appear four types of insulators:
(1) the spin-polarized QAH (SQAH) insulators with

(C,Cs) = (±1, 1
2 ),

(2) the QSH insulator with (0,1),
(3) the trivial charge-density-wave-type (CDW) band

insulator with (0,0),
(4) the trivial antiferromagnetic-order-type (AF) band

insulator with (0,0).
We note that there are two types of trivial band insulators. The
band gaps are different between the K and K ′ points in the AF
insulator, while they are identical in the CDW insulator.

Second, SDC metals appear in the three phase boundaries
of the SQAH insulator. The SDC metal is originally found
in silicene by applying photoirradiation and electric field
simultaneously.14 It is interesting that the SDC state is also
obtainable without photoirradiation. On the other hand, the
SV semimetal appears at the point where the four topological
insulators meets. They are topologically protected semimetals,
since they appear in the interface of different topological
insulators, each of which is topologically protected against
small perturbations.

V. INHOMOGENEOUS DIRAC MASS

We may apply an inhomogeneous electric field12 Ez (x,y)
or generate a domain wall in the antiferromagnet �M (x,y),
which makes the Dirac mass inhomogeneous. For simplicity
we assume the homogeneity in the x direction. The zero
modes appear along the line determined by �

η
sz

(y) = 0, when
�

η
sz

(y) changes the sign. We may set kx = constant due to
the translational invariance along the x axis. We seek the

zero-energy solution. The particle-hole symmetry guarantees
the existence of zero-energy solutions satisfying the relation
ψB = iξψA with ξ = ±1. Here, ψA is a two-component
amplitude with the up-spin and down-spin. Setting ψA (x,y) =
eikxxφA (y), we obtain HηψA (x,y) = EηξψA (x,y), together
with a linear dispersion relation Eηξ = ηξh̄vFkx . We can
explicitly solve this as

φAsz
(y) = C exp

[
ξ

h̄vF

∫ y

�η
sz

(y ′)dy ′
]

, (15)

where C is the normalization constant. The sign ξ is deter-
mined so as to make the wave function finite in the limit
|y| → ∞. This is a reminiscence of the Jackiw-Rebbi mode31

presented for the chiral mode. The difference is the presence
of the spin and valley indices in the wave function.

VI. PHASE DIAGRAM IN (M,�M) PLANE

We next investigate the Hamiltonian system by including
the Dirac-cone shifting terms Hpq0. General analysis is quite
difficult to make since there exists no electron-hole symmetry.
For definiteness we only consider the mean-exchange-field
term H010. The Hamiltonian is given by (9) together with

Hsz

η =
(

�
η
sz

+ Msz h̄vF(ηkx − iky)

h̄vF(ηkx + iky) −�
η
sz

+ Msz

)
, (16)

where the Dirac mass �
η
sz

is given by Eq. (8). The gap is no
longer given solely by the Dirac mass.

The energy spectrum at the Kη point contains four levels,
�

η
sz

+ Msz and −�
η
sz

+ Msz with sz = ±1. The gap closes at
the Kη point when any two of them coincide,

�η
sz

= ±Msz, (17)

which, in general, gives the phase boundaries. However, the
present analysis is not enough to construct the phase diagram,
because the Dirac cones with the opposite spins touch one to
another at the phase transition point. When they touch, the
Rashba interaction (λR2 	= 0) mixes the up- and down-spins,
yielding an essential modification of the band structure.13 It
is necessary to diagonalize the Hamiltonian (9) with the off-
diagonal element (11) and the diagonal element (16).

Let us study explicitly the simplest case with the exchange
fields MA and MB without any other external fields, where

�η
sz

= ηszλSO + sz�M. (18)

We give the phase diagram in the (M,�M) plane (Fig. 3). The
phase boundaries are given by solving Eq. (17), which yields
four heavy lines corresponding to sz = ↑ ↓ and η = K,K ′ in
the phase diagram. We have four distinct regions referred to
as QSH, AF, QAH, and QSQAH. We also illustrate the band
structure of a silicene nanoribbon with zigzag edges (Fig. 4)
for typical points in the phase diagram.

When we set λR2 = 0, only the QSH phase is an insulator.
In all the other regions the conduction and valence bands
penetrate into one another and are mixed.

When we include the Rashba interaction (λR2 	= 0), the
collision is avoided since it turns the level crossing into the
level anticrossing. Indeed, the energy spectrum consists of
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four levels,

Eη
sz

= ±
√

(aλR2k)2 + F±(k)2, (19)

with F±(k) = ηszM ±
√

(h̄vFk)2 + (ηλSO + �M)2. We can
see that the gap is open everywhere in the phase diagram
except for the phase boundaries: Some typical examples of
nanoribbon band structure are found in Fig. 4.

Since the spin is no longer a good quantum number, the
topological numbers are no longer given by the formulas (13).
The Berry curvature is described by Skyrmions in the real spin
space.13 We are able to introduce the pseudospin-valley Chern
number Cη

tz with tz = A,B,

Cη
tz = 1

2 sgn(ηtzλSO + Mtz ), (20)

in terms of which the topological numbers are given by

C = CK
A + CK

B + CK ′
A + CK ′

B , (21a)

Cs = 1
2

(
CK

A − CK
B − CK ′

A + CK ′
B

)
. (21b)

They are calculated at each point (MA,MB) or (M,�M).
The topological numbers (C,Cs) take constant values in one
phase, which we have depicted in the phase diagram (Fig. 3).
We illustrate the band structure of a nanoribbon with zigzag
edges in Fig. 4. Note that the spin becomes almost a good
quantum number away from the Kη points.

First, there appear four types of insulators:
(1) the QSQAH insulators with (C,Cs) = (±1,1/2), where

the QAH effect is realized at one valley in coexistence with
the QSH effect at the other valley [it is intriguing that, e.g., the
topological numbers (±1,0) are assigned to the K point and
(0,1/2) to the K ′ point];

(2) the trivial AF insulator with (0,0);
(3) the QSH insulator with (0,1);
(4) the QAH phases with (2,0) for M > 0 and (−2,0) for

M < 0.
Second, at the boundary, the topological metal (TM) and the
single-valley topological metal (SVTM) emerge. The band
touches parabolically in them. Their emergencies are also
protected topologically since they are sandwiched by different
topological insulators.

VII. OPTICAL ABSORPTION

An interesting experiment to probe and manipulate the
valley degree of freedom is optical absorption.3–7,26 We
briefly discuss that spin-valley-dependent band structures
we have found will be experimentally observable by spin-
valley-selective circular dichroism. Circular dichroism is a
phenomenon in which the response of the left- and right-
handed circularly polarized light is different. To assess the
optical selectivity of spin and valley by circularly polarized
light, we compute the spin-valley-dependent degree of circular
polarization between the top valence bands and bottom of
conduction bands. It is straightforward to apply the standard
method3–7,26 to calculate an optical absorption.

We consider the interband matrix elements of the left- and
right-polarized radiation fields (±) for spin sz at k for a vertical

transition from band uc to band uv. They are defined by

P
η
± (k) ≡ m0 〈uc (k)| 1

h̄

∂Hη

∂k±
|uv (k)〉 . (22)

If we neglect the Rashba terms (λR2 = 0), we are able to obtain
an analytic formula for the transitions near the Kη point as

|P η
± (k)|2 = m2

0v
2
F

⎛
⎝1 ± η

�
η
sz√(

�
η
sz

)2 + 4a2t2k2

⎞
⎠

2

. (23)

Especially we find the spin-valley-dependent optical selection
rule at k = 0,

|P η
±(0)|2 = m2

0v
2
F

[
1 ± ηsgn

(
�η

sz

)]2
, (24)

which will be detected experimentally. Such a spin-valley-
selective circular dichroism would lead to the eventual real-
ization of spin-valleytronics.

VIII. DISCUSSION

In this paper, exploiting advantages of the buckled structure,
we have proposed to make a full control of the Dirac mass and
hence a full control of the topological charges in silicene.
A topological state has a particular spin-valley structure.
In exploring the phase diagram, we have found a hybrid
topological insulator, named QSQAH insulator, where two
different topological insulators coexist: The QSH effect is
realized at one valley while the QAH effect is realized at the
other valley. The topological numbers are simply given by one
half of the sum of those of the QSH and QAH insulators.

We address a question of how realistic it is to generate
various topological insulators such as the QSQAH state. In
order to make the QSQAH phase, the exchange interaction
at the A (B) site should be larger (smaller) than the SO
interaction, whose magnitude is 3.9 meV. When we attach
a ferromagnet to the side of A sites, the exchange field at
B sites is naturally smaller than that at A sites. Since the
magnitude of the exchange field induced by transition-metal
deposition is of the same order of the SO interaction,17 it is
plausible that the condition for the QSQAH phase can be
satisfied in a realistic experimental situation. Furthermore,
we can think of three possible methods to produce exchange
fields acting separately on the A and B sublattices. First, we
sandwich silicene by two different ferromagnets. Second, we
arrange two different transition metals so as to be absorbed
as adatoms separately to the A and B sublattices. Third, we
attach a honeycomb-lattice antiferromagnet7 or ferrimagnet to
silicene. What kind of materials one should use will be a future
problem.
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