
PHYSICAL REVIEW B 87, 155310 (2013)

Epilayer thickness and strain dependence of Ge(113) surface energies
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The stability and growth of three-dimensional (3D) nanostructures in the Ge on Si system is controlled in
part by the strain- and overlayer-thickness-dependent surface energies of the crystal facets involved. Here, we
use density functional theory (DFT) with local-density approximation calculations to calculate the strain- and
thickness-dependent energy of various Ge(113) and Si(113) surface reconstructions. Results of DFT calculations
are compared to Tersoff potential calculations to assess the relative importance of stress-strain effects compared
to electronic effects not captured by empirical atomistic potentials. We find that the self-interstitial-based
3 × 2 adatom-dimer-interstitial and 3 × 2 adatom-interstitial surface reconstructions are stable for Ge overlayer
thicknesses from 0 to 4 monolayers and at applied biaxial strains from ∼−4% to 0%. We leverage calculated
surface energies to determine net effective surface energies of various experimentally observed 3D Ge on Si
nanostructures.
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I. INTRODUCTION

The increasing application of nanostructured materials has
driven increased demand for predictive models of the stability
and properties of nanoscale systems. Such models must incor-
porate both nanoscale and microscale effects and are therefore
necessarily multiscale. A common approach to constructing
multiscale models leverages atomistic calculations, including
quantum-mechanical calculations, of fundamental materials
properties to parametrize longer-length-scale finite-element or
analytic models of microscale behavior.1–7

The Ge on Si heteroepitaxial system has become a prototype
for self-assembling nanostructured materials systems and has
been subject to extensive computational and experimental
analysis for the purpose of constructing predictive multiscale
models of nanostructure growth during and following epitaxial
layer deposition. Models for the stability and growth of
experimentally observed nanoscale three-dimensional (3D)
islands typically assess the relative stability of 3D structures in
contrast to a biaxially strained planar wetting layer (WL) with
the same volume. Such comparisons typically include terms
describing (i) the elastic relaxation energy of the 3D island,
(ii) the surface energy (SE), γ , of both the exposed facets of
the islands and the covered WL, and (iii) the energy of the
edges at the intersections of island facets.8–10

In some circumstances, the quantitative comparison of
computationally predicted stability with experimental obser-
vation of 3D nanostructures has allowed the extrapolation of
parameters inaccessible to both experiment and calculation,
including the estimation of edge energies accounting for the
complex atomic-scale edge structures9,11 and calculation of
effective net surface energies of entire islands.8 Quantitative
predictions and comparisons to experiment, though, require
calculations of absolute surface energies with consistent levels
of accuracy for all relevant facets present in the 3D structures.
Hence, detailed and computationally consistent surface energy
calculations in the Ge on Si system are required for all facets
observed to be present in pyramid, “dome,”12 and “barn”13,14

nanostructures. In addition, the availability of sets of directly
comparable and quantitatively accurate calculated surface
energies would allow the determination of the ground-state
shape of nanocrystallites.15

In this paper, we report calculations of the strain- and
WL-thickness-dependent Ge(113) and Ge on Si(113) surface
energies. These calculations extend previous studies of (001),
(105), and (1 1 10) surface energies in the Ge on Si system9

and continue construction of a coherent set of surface energies
for use as parameters in multiscale models of the growth
and evolution of Ge on Si nanostructures.1,3,4 We leverage
the expanded set of computed surface energies to calculate
the total effective surface energy of various experimentally
observed 3D Ge on Si structures. To explore the role of
both electronic and elastic effects we evaluate the surface
energy γ with both density functional theory with local-density
approximation (DFT-LDA) pseudopotential calculations and
the semiempirical Tersoff potentials.16,17

The (113) facet is a major, stable facet of both Si and
Ge18–21 and is of renewed interest due to recent observations of
technologically promising structures22 exhibiting the surface.
In addition, the (113) facet has been previously studied
as a possible facet relevant in the self-assembly of planar
nanowires.23–25 While previous studies have examined the
atomic structure and energetics of the unstrained Ge24,26–31

and Si30,31 (113) surfaces, no previous studies have examined
the strain-dependent surface structures and energies. The fully
strain- and wetting-layer-thickness-dependent properties of
the (113) surface are required inputs for multiscale models
of the self-assembly of 3D nanostructures (including Ge
nanowires on Si2,23) in the Ge on Si heteroepitaxial system.

II. METHODS

In order to create a consistent set of surface energies with
directly comparable accuracies and calculation settings, we
adopt settings and parameters equivalent to those used in
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Ref. 9. We adopt the slab supercell approach as in previous
studies.1,2,5–7 Surface energies are calculated using density
functional theory as implemented in the commercial plane-
wave/pseudopotential code VASP.32,33 Electron-core interac-
tions are modeled with ultrasoft pseudopotentials (USPP),34

and exchange and correlation effects are described using the
LDA of Ceperley and Alder,35 as parametrized by Perdew
and Zunger.36 The plane-wave cutoff energy is set to 355 eV,
and a repeated slab geometry with vacuum regions between
slabs of twice the Si diamond cubic lattice constant is used
to extract surface excess energies. Eigenvalues are computed
on a Monkhorst-Pack grid of special k points,37 with atomic
positions optimized via a conjugate gradient algorithm and
relaxed structures identified when the maximum residual force
falls below 5 meV/Å. To yield converged calculations in
agreement with previous studies of the (001), (105), and
(1 1 10) Ge and Si surfaces, the k-point density is determined
for each calculation cell according to the “bulk criterion” de-
fined and justified in Ref. 9. In Tersoff calculations the atomic
positions are optimized with a steepest descent algorithm,
with a maximum residual force of 10−6 eV/Å indicating
full relaxation.

Calculation cells are created with the code SLABOS.V01,38

and a representative ball-and-stick model is shown in Fig. 1(a).
All the slabs adopted in this work are symmetric with both
surfaces reconstructed and contain 21 bilayers (BLs) free
to relax at the top and bottom with 2 BLs fixed in their
bulk positions at the middle of the slab [green atoms in
Fig. 1(a)]. All (113) slabs are four unit cells thick and contain
approximately 520 atoms. The number of layers used here
is the same as in Ref. 30, and we choose such large slabs
to guarantee convergence with respect to slab thickness. Test
calculations with thinner slabs [two (113) units cells] do not
differ substantially from results with larger slabs.

The reconstructions we consider are sketched in Fig. 1. In
the present study we focus on the most stable reconstructions
observed in previous papers.24,27,39,40 The first structure,
referred to here as “P”, is made of surface pentagons [Figs. 1(a)
and 1(b)] and is the 3 × 1 (113) reconstruction. Figures 1(c)
and 1(d) show the “void” reconstruction28 (labeled “V”
here), where a surface pentagon is missing. Figures 1(e) and
1(f) show the 3 × 2 adatom-dimer-interstitial reconstruction31

(referred to here as the “interstitial” or “I” reconstruction). The
I reconstruction contains a sixfold coordinated self-interstitial
atom within every other surface pentagon (circled in Fig. 1)
and has been previously found to be the most stable surface
reconstruction for unstrained Si(113).41 It has also previously
been found to be very stable for Ge(113)31,41 but energetically
degenerate with the 3 × 2 adatom-interstitial containing an
interstitial atom in each surface pentagon of the cell [see
Figs. 1(g) and 1(h)] and labeled here as “I-2”. Both the
I and I-2 reconstructions are observed experimentally on
unstrained surfaces,41 and for this reason we study both to
determine if applied strain lifts the degeneracy in energy of
these two structures. As puckered dimer reconstructions30

previously proposed for Ge(113) surfaces have been shown
to be significantly higher in energy than the surface pentagon-
based reconstructions,30 we do not consider these.

Individual calculations cells contain 524, 514, 526, and
528 atoms in the P, V, I, and I-2 reconstructions, respectively.

FIG. 1. (Color online) (left) Side and (right) top views of the cells
used for the calculations for the reconstructions analyzed. These are
the cells used for Ge/Si calculation with coverage of 1.2 ML(001).
Ge atoms are red, Si atoms are blue, and fixed Si atoms are green
and are placed at the center of the cell. The black solid lines delimit
the repeated cells. (a) and (b) report the pentagon “P” reconstruction
and show that Ge is placed both at the top and bottom surfaces. In
parentheses we write the size of the cell (expressed in Å) along xy

in (b) and the thickness of the atoms in (a). (c) and (d) focus on
the side view of the top part of the cell and the top view of the void
reconstruction. (e) and (f) show the interstitial reconstruction with the
interstitial atom highlighted with a dashed circle. (g) and (h) show
reconstruction I-2 with two interstitials. In (b), (d), (f), and (h) the
pentagons are highlighted with black dashed lines. The plots were
made with VESTA software.56

Given the cell sizes reported in Figs. 1(a) and 1(b), the
bulk criterion for converged k-point density derived in Ref. 9
prescribes a 3 × 2 × 1 k-point mesh for the (113) slabs and
yields three irreducible k points. In the present study, however,
we adopt a slightly higher density 3 × 3 × 1 k-point mesh
giving five irreducible k points. This is done to facilitate a
direct comparison to previous calculations of (001), (105),
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and (1 1 10) surface energies,9 as well as to calculations
by Stekolnikov et al.31 that use four irreducible k points.
Tests reveal that differences in calculated surface energies
between the 3 × 2 × 1 mesh prescribed by the bulk criterion
and 3 × 3 × 1 meshes used here are only ∼0.2–0.3 meV/Å2.

III. RESULTS AND DISCUSSION

A. Strain dependence of γGe

Previous studies have shown that both unstrained Si(113)
and Ge(113) surfaces are stabilized by surface-incorporated
self-interstitials to relieve surface stress.30,41 The importance
of such effects at different strain states is unclear, though, as is
as the effect of self-interstitials electronic contributions to the
surface energy (SE).

Here we explicitly probe the role of applied strain in
determining the absolute surface energy for self-interstitial
and noninterstitial Ge(113) surface reconstructions. The SE
γ per unit area of the strained surface Aε of a pure Ge slab
strained along x and y and free to relax along z is defined in
terms of the total energy of the slab Etot as

Etot = μGeNGe + 2Aεγ. (1)

Here, the chemical potential μGe is obtained by straining a
bulk cell along the x and y directions of the slab and finding
the minimum energy per atom as a function of z height.9

Following previous works,9,42 we interpolate the surface
energy trend with applied strain using a second-order polyno-
mial:

γ (εxx,εyy) = γ0 + τxxεxx + τyyεyy

+ Sxxε
2
xx + Syyε

2
yy + Sxyεxxεyy. (2)

In searching for strain-driven transitions between surface
reconstructions, we focus on the effect of biaxial strain (i.e.,
εxx = εyy ≡ εbiax). In characterizing the surface energetics
of identified stable structures, we consider both biaxial and
uniaxial strains (εxx �= εyy). Figures 2(a) and 2(b) show surface
energy values calculated with the Tersoff potential and DFT-
LDA, respectively. Lines show the second-order interpolation
given by

γ (εxx,εyy) = γ0 + τbiaxεbiax + Sbiaxε
2
biax. (3)

Parameters of this expression found by fitting calculated data
are reported in Table I.

Both Tersoff and DFT-calculated results show a single
maximum in calculated surface energy. These maxima occur
at different biaxial strain states, depending on the calculation
method employed (∼0% in DFT, ∼−3% in Tersoff). Despite
this difference, the existence of a single maximum in γ (εbiax),
as opposed to multiple maxima, can be deduced as a general
rule for strain-dependent surface energies at strains that are
not large based on a heuristic elasticity argument.43

Looking specifically at the different (113) surface recon-
structions, we note that the I and I-2 reconstructions are quite
high energy in Tersoff calculations, having higher surface
energy than both P and V reconstructions (but, noticeably,
still exhibiting lower surface energies than that calculated for
unreconstructed “as-cut” slabs, not shown). This is in contrast
to DFT results, which find the I and I-2 surface energies to

FIG. 2. (Color online) Strain dependence of γ Ge(113) per unit
strained surface area (Euler reference frame) in (a) the Tersoff
potential and (b) DFT-LDA. Lines are interpolations using Eq. (3),
whose parameters are reported in Table I. The vertical dashed lines
delimitate the region where the systems GexSi1−x /Si are likely to fall.
(c) shows the trend of the interstitial I γ in DFT-LDA along with the
interpolation, the parameters of which are reported in Table II. The
trend of the uniaxial I-2 reconstruction, showing a similar trend, is
not shown here. See Sec. III A for discussion.

be lower than both P and V surface energies. This contrast
can be rationalized by considering that the Tersoff potential
accurately treats strain effects44 but cannot capture electronic
or charge transfer effects likely at play in determining the
stability of I and I-2 reconstruction,30,41 where the binding
configuration of the interstitial atom(s) differ from that of bulk
atoms. Given this, we note that the relatively high surface
energy of the I and I-2 reconstructions as calculated with the
Tersoff potential does, in fact, support the conclusion that the
presence of self-interstitials on (113) surfaces of Ge does not
primarily stabilize the surface by relieving stress.41,45 That is,
high surface energies for I and I-2 reconstructions in Tersoff
calculations suggest that the stability of I and I-2 is due to
electronic contributions to surface energy.

In contrast to the divergent results of Tersoff potential and
DFT calculations with regards to surface interstitials, Fig. 2
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TABLE I. Parameters of the biaxial strain dependence of Ge(113)
trend reported in Figs. 2(a) and 2(b) interpolated via Eq. (3) for the
reconstructions analyzed in this work. Here the strain is expressed in
pure numbers (not as a percentage).

Reconstruction Tersoff DFT-LDA

Void γ0 � 88.48 74.52
τbiax � −148.66 −3.54
Sbiax � −2080.07 −3428.88

Pentagon γ0 � 83.07 69.30
τbiax � −54.42 76.40
Sbiax � −2161.08 −3332.75

Interstitial γ0 � 96.72 65.20
τbiax � −159.97 45.84
Sbiax � −2100.23 −2734.93

Interstitial 2 γ0 � 110.36 64.66
τbiax � −270.04 5.35
Sbiax � −1991.51 −2655.03

shows that both methods find the P reconstruction to be lower in
energy than the V reconstruction. This suggests that elasticity
concerns alone are sufficient to favor the formation of surface
pentagons. The present results indicate that purely electronic
effects are not primary driving forces controlling the relative
stability of P and V reconstructions.

Overall, results for Ge(113) surfaces are generally in
agreement with previous DFT results31,41 and show that the
Ge(113) is stabilized by self-interstitials [Fig. 2(b)] and that
I and I-2 reconstructions have almost degenerate energy. For
strained Ge(113) surfaces, the I and I-2 reconstructions remain
very similar in energy for a wide range of strains, from −6%
to 0%. Therefore, we expect that the coexistence previously
predicted41 for these surface phases likely occurs for both
strained and unstrained Ge systems.

Considering now the I and I-2 DFT-calculated surface
energies, despite similar energetics overall, the curvature of
γ versus strain for the I and I-2 reconstructions is somewhat
different. This is highlighted by the fact that the I-2 reconstruc-
tion is slightly more stable than the I reconstruction at tensile
strains and somewhat less stable for compressive strains. In
addition, the strong dependence of the surface energy of the
P reconstruction on applied strain results in the P phase as the
most stable reconstruction for extremely compressive strains
(εbiax ∼ −6%). The mechanisms driving this transformation
are unclear, however, and likely represent some combination
of strain-related and electronic-structure-related effects.

In order to fully parametrize multiscale models of 3D
nanostructure formation we must also have surface energies
as a function of uniaxial strain. In this case, we focus solely
on the most stable I and I-2 reconstructions and employ only
DFT calculations, as Tersoff calculations do not accurately
capture all properties of these surfaces. Figure 2(c) shows the
results for the I reconstruction as the representative example
of the data and the resulting trend obtained through Eq. (2).
The I-2 reconstruction exhibits a quantitatively similar trend to
that of the I reconstruction and is therefore not shown. Surface
energies and surface elastic properties fit from the data for both
reconstructions are reported in Table II.

TABLE II. Parameters of Eq. (2) for the trend of γ (113) with the
uniaxial strain obtained from DFT data for the interstitial (the most
stable) reconstructions I and I-2, whose trend is sketched in Fig. 2(c)
for reconstruction I. The strain here is for Ge and is expressed as pure
numbers (not as a percentage).

Reconstruction DFT-LDA

Interstitial γ0 � 65.20
τxx � −26.09
τyy � 44.79
Sxx � −1255.01
Syy � −547.51
Sxy � −1649.00

Interstitial 2 γ0 � 64.66
τxx � −26.23
τyy � 26.12
Sxx � −1274.68
Syy � −57.18
Sxy � −1685.76

B. Thickness dependence of γGe for Ge on Si(113) epilayers

Analogous to previous calculations,9 the dependence of γGe

on epilayer thickness is determined for Si slabs with a fixed
number of top and bottom atomic layers converted to Ge [see
Fig. 1(a)]. In this case, the surface energy is derived from the
total energy of the slab according to

Etot = NGeμGe + NSiμSi + 2Aγ, (4)

where μSi is the unstrained chemical potential of the NSi atoms
of silicon9 and μGe is, as above, the chemical potential of the
Poisson-corrected9 Ge bulk strained at the lattice constant of
Si (here ∼−5.15885 meV/atom). Figure 3 reports calculated
surface energies, with the line representing the interpolation
of SE as9

γ (N ) = (γ0 − γ∞) e−BN + γ∞. (5)

Here γ0 is the surface energy of pure, unstrained Si(113), and
γ∞ is the energy of a pure strained Ge(113) surface. N is the
distance from the topmost (or bottommost, in this case) Ge
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FIG. 3. (Color online) Ge/Si(113) surface energy dependence
of the different reconstruction in DFT-LDA. The lines are the
interpolation of Eq. (5), whose fitting parameters are reported in
Table III. The points group in pairs because of the presence of bilayers.
See Sec. III B for discussion.
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TABLE III. Parameters of the Ge/Si(113) trend reported in Fig. 3
interpolated via Eq. (5) for the reconstructions analyzed in this work.
Here B is in ML−1; γ0 and γ∞ in meV/Å2.

Reconstruction DFT-LDA

Void γ0 � 101.26
B � 0.27

γ∞ � 57.39

Pentagon γ0 � 93.06
B � 0.67

γ∞ � 63.00

Interstitial γ0 � 88.75
B � 0.80

γ∞ � 60.30

Interstitial 2 γ0 � 90.14
B � 0.87

γ∞ � 60.99

layer to the first Si layer in the bulk expressed in the number
of (001) monolayers (MLs). In (113) unit cells 1 ML (001)
is equivalent to

√
11 MLs (113).46 This construction allows

direct comparison of the thickness dependence of variously
oriented Ge on Si facets. Parameters fit from calculated data
are reported in Table III. Figure 3 shows that no surface phase
transition should be expected during initial Ge deposition on
Si(113) surfaces. That is, the I and I-2 reconstruction are stable
for all thicknesses considered [including a “zero” ML surface,
which is simply bare Si(113)].47

C. Effective surface energy in 3D islands

Combining the above results with previously calculated
surface energies of Ge and Ge on Si(001), Si(105), and
Si(1 1 10) facets, it is possible to calculate or estimate the total
effective surface energy of various experimentally observed
3D structures in the Ge on Si system. Here we specifically
calculate net effective surface energies for {105} and {113}
pyramids and estimate the net effective surface energy of the
experimentally observed “dome” and “barn” nanostructures48

shown schematically in Fig. 4. Structures with these shapes
were constructed using SOWOS.V02.49 With the aim being to
take into account the proper elastic response of the island and
to define a general procedure for any island shape, solutions to

FIG. 4. (Color online) Top view of (a) the dome and (b) barn
of Ge used in Ref. 48 and analyzed here in Sec. III C. They are
used here as representative examples of the effective strain-dependent
surface energies of the (105) (red circles) and (113) (blue triangles)
facets. The resulting values of the surface energies are reported in
Table IV.

TABLE IV. Effective surface energies of the (105) and (113)
facets of pyramids and the domes of Fig. 4. These islands are pure
100% Ge islands laying directly on Si(001), with no WL. Here just the
strain dependence of γ is considered, neglecting the dependence on
the distance of Ge from the Si substrate. See Sec. III C for discussion.
“x” in the table means that the considered facet is not present in the
analyzed nanostructure.

γeff (105,ε) γeff (113,I,ε) γeff (113,I −2,ε)
Island (meV/Å2) (meV/Å2) (meV/Å2)

{105} Pyr 57.31 x x
{113} Pyr x 61.81 62.21
Dome 63.23 62.80 63.07
Barn 64.15 65.03 64.59

the linear elasticity problem were calculated not via approxi-
mated analytical expressions, but using finite-element methods
(FEM) as implemented in COMSOL MULTIPHYSICS.50 FEM
results provide the strain state present at equilibrium on the sur-
face of the nanostructure, and these strain states, once rotated
into the axes of the (113) surface,51 are used in conjunction
with Eq. (2) to determine the surface energy at each point on
the nanostructure surface. Total effective surface energies for
the four nanostructures considered are tabulated in Table IV.

From these data we note the following points. (i) Changes
in the details of strain relaxation due to the specific shape of
various island geometries induce changes in the effective sur-
face energies for the same facets on different islands (compare
values in each column). (ii) These differences may be on the
order of as little as 1 meV/Å2 [e.g., as for γeff (113,I − 2,ε),
comparing the {113} pyramid to dome structures] or as large
as ∼7 meV/Å2 [as for γeff (105,ε), comparing the {105}
pyramid to barn structures]. (iii) The effective surface energy is
smallest for {105} pyramids, highlighting the relative stability
of the {105} facet compared to other major facets in the
Ge on Si system (a point confirmed experimentally52,53), as
well as the importance of strain relaxation (that is, reduction
in elastic energy) in driving the evolution of nanostructure
shapes from {105} pyramids to “domes” and subsequently
“barns” with increasing nanostructure volume. (iv) Consider-
ing only the {105} and {113} facets [as surface energy has
not previously been calculated for the (15 3 23) facet], we
estimate a net effective surface energy for dome structures of
∼63 meV/Å2, close to the experimentally derived estimate of
65 meV/Å2 reported in Ref. 8. A more definite confirmation
of this estimate will come when calculations of strain- and
thickness-dependent surface energies are extended to the
(15 3 23) facet.

Expanding on these points, we note that points (i) and
(ii) above demonstrate that the surface energies of facets
on heteroepitaxial nanoislands cannot accurately be treated
as fixed, single values. In turn this necessarily implies
that multiscale models merging atomistically calculated,
strain- and thickness-dependent surface energies with FEM
or continuum-calculated elastic properties are required to
accurately compute the formation energy and relative stability
of faceted nanostructures. In addition, the stability of facets on
strained nanoislands cannot be directly extracted from a simple
geometrical analysis analogous to a Wulff construction.54,55
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The present calculations of net effective surface energy
limit the complexity compared to that of the real system
by neglecting WL thickness and intermixing effects. These
simplifications have been previously addressed for 105 surface
ripples and are not expected to affect the trends reported
here. In addition, it should be noted that for sufficiently small
nanostructures, where facet sizes are on the order of or smaller
than the surface unit cell, facet surface energies are expected to
differ from those calculated for ideal facets. Finally, assuming
nanostructures with sufficiently large facets, we note that the
present multiscale model for calculation of effective surface
energy is generally applicable to any materials system and
structure geometry for which strain- and thickness-dependent
surface energies, in combination with bulk elastic properties,
are known. This, of course, includes other more complex Ge
on Si island-substrate geometries.

IV. CONCLUSIONS

We have calculated the strain- and thickness-dependent
surface energy of the Ge(113) and Ge on Si(113) surfaces.
Calculated values are consistent with previous studies and
show that neither strain nor overlayer thickness significantly
affects the relative stability of various candidate surface
reconstructions. Surface energies have been calculated with
the same calculation settings and convergence parameters used
in previous studies of (001), (105), and (1 1 10) surfaces,
allowing quantitatively consistent multiscale calculations of
net effective surface energy for a range of experimentally
observed 3D Ge on Si nanostructures. As noted previously,9

Tersoff potential results differ from DFT results due to elec-
tronic effects on surface energies that are not captured by the
Tersoff potential. Finally, in combination with previous results
for (1 1 10) nanoripples,9 we note that stable reconstructions
of experimentally observed facets all exhibit similar absolute
surface energies (∼60–70 meV/Å2), making the details of
their strain and thickness dependence critical in determining

relative facet stability and therefore the energetics and shapes
of 3D nanostructures.

APPENDIX: INPUT FILES FOR THE ISLANDS

Here we report the input code for SOWOS49 to create the
pyramids and the islands depicted in Fig. 4 and whose effective
surface energies are reported in Table IV.
Pyramid 105:

2
B 0 0 1 w 0.0 x 1
S 1 0 5 w 10.0 x 0

Pyramid 113:

2
B 0 0 1 w 0.0 x 1
S 1 1 3 w 10.0 x 0

Dome:

5
B 0 0 1 w 0.0 x 1
S 1 0 5 w 9.2 x 0
S 1 1 3 w 9.7 x 0
S 15 3 23 w 11.8 x 0
S 0 0 1 w 9.2 x 1

Barn:

8
B 0 0 1 w 0.0 x 1
S 1 0 5 w 9.2 x 0
S 1 1 3 w 9.2 x 0
S 15 3 23 w 10.2 x 0
S 0 0 1 w 9.2 x 1
S 1 1 1 w 13.0 x 0
S 20 4 23 w 11.0 x 0
S 23 4 20 w 12.0 x 0
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G. Bauer, Phys. Rev. B 80, 205321 (2009).

9D. Scopece, F. Montalenti, and M. J. Beck, Phys. Rev. B 85, 085312
(2012).

10E. Pehlke, N. Moll, and A. Kley, Appl. Phys. A 534, 525
(1997).

11G. Chen, B. Sanduijav, D. Matei, G. Springholz, D. Scopece, M. J.
Beck, F. Montalenti, and L. Miglio, Phys. Rev. Lett. 108, 055503
(2012).

12A. Rastelli and H. von Känel, Surf. Sci. Lett. 515, L493 (2002).
13M. Stoffel, A. Rastelli, J. Tersoff, T. Merdzhanova, and O. G.

Schmidt, Phys. Rev. B 74, 155326 (2006).
14A. Rastelli, M. Stoffel, G. Katsaros, J. Tersoff, U. Denker,

T. Merdzhanova, G. Kar, G. Costantini, K. Kern, H. von Kanel,
and O. G. Schmidt, Microelectron. J. 37, 1471 (2006)

15A. A. Stekolnikov and F. Bechstedt, Phys. Rev. B 72, 125326
(2005).

16J. Tersoff, Phys. Rev. B 39, 5566 (1989).
17J. Tersoff, Phys. Rev. B 41, 3248 (1990).
18Z. Gai, R. G. Zhao, W. Li, Y. Fujikawa, T. Sakurai, and W. S. Yang,

Phys. Rev. B 64, 125201 (2001).
19Z. Gai, W. Yang, R. G. Zhao, and T. Sakurai, Phys. Rev. B 59,

15230 (1999).

155310-6

http://dx.doi.org/10.1103/PhysRevLett.94.176103
http://dx.doi.org/10.1103/PhysRevB.72.125415
http://dx.doi.org/10.1103/PhysRevLett.109.106103
http://dx.doi.org/10.1103/PhysRevB.58.4566
http://dx.doi.org/10.1103/PhysRevB.58.4566
http://dx.doi.org/10.1103/PhysRevLett.94.176102
http://dx.doi.org/10.1103/PhysRevLett.82.4042
http://dx.doi.org/10.1103/PhysRevLett.82.4042
http://dx.doi.org/10.1109/5992.963424
http://dx.doi.org/10.1103/PhysRevB.80.205321
http://dx.doi.org/10.1103/PhysRevB.85.085312
http://dx.doi.org/10.1103/PhysRevB.85.085312
http://dx.doi.org/10.1007/s003390050619
http://dx.doi.org/10.1007/s003390050619
http://dx.doi.org/10.1103/PhysRevLett.108.055503
http://dx.doi.org/10.1103/PhysRevLett.108.055503
http://dx.doi.org/10.1016/S0039-6028(02)01998-2
http://dx.doi.org/10.1103/PhysRevB.74.155326
http://dx.doi.org/10.1016/j.mejo.2006.05.029
http://dx.doi.org/10.1103/PhysRevB.72.125326
http://dx.doi.org/10.1103/PhysRevB.72.125326
http://dx.doi.org/10.1103/PhysRevB.39.5566
http://dx.doi.org/10.1103/PhysRevB.41.3248.2
http://dx.doi.org/10.1103/PhysRevB.64.125201
http://dx.doi.org/10.1103/PhysRevB.59.15230
http://dx.doi.org/10.1103/PhysRevB.59.15230


EPILAYER THICKNESS AND STRAIN DEPENDENCE OF . . . PHYSICAL REVIEW B 87, 155310 (2013)

20Z. Gai, H. Ji, B. Gao, R. G. Zhao, and W. S. Yang, Phys. Rev. B 54,
8593 (1996).

21Z. Gai, R. G. Zhao, X. Li, and W. S. Yang, Phys. Rev. B 58, 4572
(1998).

22C. V. Falub, H. von Kanel, F. Isa, R. Bergamaschini, A. Marzegalli,
D. Chrastina, G. Isella, E. Muller, P. Niedermann, and L. Miglio,
Science 335, 1330 (2012).

23H. Omi and T. Ogino, Appl. Phys. Lett. 71, 2163 (1997).
24G. P. Srivastava, Rep. Prog. Phys. 60, 561 (1997).
25T. Clausen, T. Schmidt, J. I. Flege, and A. Locatelli, Appl. Surf.

Sci. 252, 5321 (2006).
26D. Bird, L. Clarke, R. King-Smith, M. Payne, I. Stich, and A. P.

Sutton, Phys. Rev. Lett. 69, 3785 (1992).
27J. Dabrowski, H.-J. Mussig, and G. Wolff, Phys. Rev. Lett. 73, 1660

(1994).
28J. Dabrowski, H.-J. Mussig, and G. Wolff, Surf. Sci. 331, 1022

(1995).
29J. Knall, J. B. Pethica, J. Todd, and J. Wilson, Phys. Rev. Lett. 66,

1733 (1991).
30A. A. Stekolnikov, J. Furthmüller, and F. Bechstedt, Phys. Rev. B

67, 195332 (2003).
31A. A. Stekolnikov, J. Furthmüller, and F. Bechstedt, Phys. Rev. B

68, 205306 (2003).
32G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
33G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
34D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
35D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
36J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
37H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
38D. Scopece (unpublished); http://www.danielescopece84.altervista.

org/slabos.html.
39J. Schreiner, K. Jacobi, and W. Selke, Phys. Rev. B 49, 2706

(1994).

40K. A. Feng, X. M. Hu, Z. Lin, and Y. R. Xing, Appl. Surf. Sci. 120,
94 (1997).

41A. Laracuente, S. Erwin, and L. Whitman, Phys. Rev. Lett. 81, 5177
(1998).

42M. J. Beck, Ph.D. thesis, Northwestern University, Evanston,
Illinois, 2005.

43This will be discussed in a future manuscript.
44D. Srivastava, R. S. Taylor, and B. J. Garrison, J. Vac. Sci. Technol.

B 9, 1517 (1991).
45H. Vogler, A. Iglesias, W. Moritz, and H. Over, Phys. Rev. B 57,

2315 (1998).
46This will be proven in a future manuscript.
47Our data for unstrained Si(113) surface energy have a negligible

discrepancy from the ones from Stekolnikov et al. (Ref. 30)
and a small one (given probably by the different settings of the
calculations) from the ones of Laracuente et al. (Ref. 41).

48J. J. Zhang, F. Montalenti, A. Rastelli, N. Hrauda, D. Scopece,
H. Groiss, J. Stangl, F. Pezzoli, F. Schäffler, O. G. Schmidt,
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