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Helical edge states induced by lateral spin-orbit coupling
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The presence of edges locally breaks the inversion symmetry of heterostructures and gives rise to lateral (edge)
spin-orbit coupling (SOC), which, under some conditions, can lead to the formation of helical edge states. If
the edge SOC is strong enough, the helical edge states can penetrate the band gap and be energetically isolated
from the bulk-like states. As a result, backward scattering is suppressed, dissipationless helical edge channels
protected against time-inversion symmetric perturbations emerge, and the system behaves as a two-dimensional
topological insulator (TI). However, unlike in previous work on TIs, the mechanism proposed here for the creation
of protected helical edge states relies on the strong edge SOC rather than on band inversion.
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I. INTRODUCTION

In contrast to quantum Hall systems, dissipationless edge
states can be realized in two-dimensional (2D) topological
insulators (TIs) without the need for an external magnetic
field.1,2 In 2D TIs, such as inverted HgTe/CdTe and inverted
InAs/GaSb quantum wells (QWs), the TI phase (also known
as a quantum-spin Hall insulator) is characterized by the
existence of gapless, topologically protected helical edge states
whose energies cross the bulk energy gap.3–6 The edge
channels consist of counterpropagating states with opposite
spins. Since one of the edge states is the time reversal
of the other, backscattering due to time-reversal symmetric
perturbations is suppressed.7–9 Topologically protected helical
states can be found also at the surfaces of some 3D crystals
with strong atomic spin-orbit coupling (SOC), the so-called
3D TIs.1,2

Until now the only mechanism recognized to drive TIs into
the topological phase is band inversion. In the present work we
theoretically explore the possibility of creating protected edge
states by employing the lateral (edge) SOC, without resorting
to band inversion.

II. THEORETICAL MODEL

We consider a heterostructure in which a two-dimensional
electron gas (2DEG) is confined inside a symmetric QW
of width d grown along the ẑ ‖ [001] direction. The QW
is assumed to support a single bound state with energy
εz. In addition, the step-like potential Vedge(x) defines the
edges (located at x = 0 and x = L) of the 2DEG along the
x̂ ‖ [100] direction (see Fig. 1). When the distance, L, is large
enough, the overlap between the wave functions localized at
different edges can be neglected and each edge can be treated
independently from the other. In this case it suffices to analyze
one of the edges, say the edge at x = 0. In the vicinity of the
edge at x = 0 the in-plane motion of the 2DEG is described
by the effective 2D Hamiltonian,

H2D = px

[
1

2m∗(x)
px

]
+ p2

y

2m∗(x)
+ V0�(−x) + εz

+ α

h̄
δ(x)pyσz − γ δ(x), (1)

where px (py) is the x component (y component) of the
momentum, σz is a Pauli matrix, V0 is the height of the potential
barrier at the edge, and δ(x) and �(x) denote the Dirac δ

and unit step functions, respectively. The effective mass takes
the values m∗ = min and m∗ = mout in the regions x > 0 and
x < 0, respectively. The presence of the edge at x = 0 locally
breaks the structure inversion symmetry in the x direction.
This gives rise to the edge SOC, which is described by the fifth
term on the right-hand side of Eq. (1) and has an amplitude α.
The last term accounts for the possible existence of localized
Tamm-like edge states.10–12 The effects of the edge SOC (also
referred to as lateral SOC in the case of quantum wires)
on the spin Hall effect and spin polarization in quantum
wires and quantum point contacts have been investigated
from both the theoretical13–18 and the experimental points of
view.16,17 Spin-dependent scattering of bulk-like states caused
by the edge SOC in a 2DEG19 as well as the formation of
interface states in 2DEGs with position-dependent Rashba and
Dresselhaus SOCs20 has also been theoretically investigated.

According to Eq. (1) both the y component of the momen-
tum and the z component of the spin remain as good quantum
numbers. The eigenfunctions of H2D can then be written as

�σ (x,y) = 1√
l
eikyyψσ (x)χσ , (2)

where l is the length of the sample in the y direction and χσ

denotes the eigenspinors of σz with σ = 1 and σ = −1 for up
and down spins, respectively. The functions ψσ (x) obey the
effective Schrödinger equation,{

px

[
1

2m∗(x)
px

]
+ Vσ (x)

}
ψσ (x) = εσψσ (x), (3)

with the spin-dependent effective potential,

Vσ (x) = V1D�(−x) + (σαky − γ )δ(x), (4)

and V1D = V0 − (1 − rm)εy . Here we have introduced the
effective mass ratio rm = min/mout. The eigenenergies,
εσ , are measured with respect to the value εy + εz, where
εy = h̄2k2

y/(2min).
In samples with symmetric edges, the wave functions,

�(L)
σ (x,y), localized around the edge at x = L can be obtained

from those localized around x = 0 [see Eq. (2)] by using the
symmetry relation, �(L)

σ (x,y) = �−σ (L − x,y).
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FIG. 1. (Color online) A 2DEG is formed in a symmetric QW
of width d grown along the z axis. The edges are located at x = 0
and x = L. For symmetric edges, the system has a global structure
inversion symmetry in the x direction. However, such a symmetry is
locally broken by the presence of the edges. The local inversion
asymmetry gives rise to lateral (edge) spin-orbit couplings with
opposite strengths at opposite edges.

We first consider the case in which the edge states are
induced exclusively from the edge SOC and take γ = 0.
In such a case, the origin of the SOC-induced edge states
can be qualitatively understood by analyzing the effective
edge potential Vσ . The first term on the right-hand side
of Eq. (4) represents an effective potential barrier at the
edge, while for γ = 0 the second term can be attractive or
repulsive, dependent on whether the sign of the product σαky

is negative or positive [see Figs. 2(a) and 2(b)]. Therefore,
assuming that the constituent materials are such that α > 0
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FIG. 2. (Color online) Formation of edge states. In the presence
of the edge SOC, the effective edge potentials become spin dependent.
Close to the edge at x = 0 the potential is attractive (a) or repulsive
(b), dependent on whether the product σαky is negative or positive.
When the potential is strong enough, localized edge states can emerge.
For α > 0, Vσ is attractive for spin-up (σ = 1) carriers with ky <

0 and spin-down (σ = −1) carriers with ky > 0. This leads to the
formation of two counterpropagating edge states with opposite spins.
The effective edge potential at x = L, V (L)

σ is related to that at x = 0
by the symmetry relation V (L)

σ (x) = V−σ (L − x). Therefore, edge
states similar to those at x = 0 also appear at x = L, but with inverted
spins. (c) Schematic of the spin-polarized, counterpropagating edge
states. At equilibrium, the finite spin currents flowing along different
edges compensate each other and the total spin current vanishes.

(the generalization to the case α < 0 is straightforward), the
spin-dependent potential Vσ forms an asymmetric QW for both
spin-up (σ = 1) carriers with ky < 0 and spin-down (σ = −1)
carriers with ky > 0, as shown schematically in Fig. 2(a).
Since the resulting edge QW is asymmetric, it does not
support bound states for arbitrary values of ky . However, bound
states can emerge when |ky | is larger than a certain critical
value. These bound states are localized in the x direction
around the edge but propagate freely in the y direction.
They represent two counterpropagating spin-polarized edge
channels with opposite spin polarization, one of which is the
time reversal of the other [see Fig. 2(c)]. Note that the net
spin polarization vanishes, as dictated by the time-reversal
invariance of the Hamiltonian in Eq. (3). In a nonequilibrium
situation, however, the edge SOC can lead to spin-dependent
scattering of bulk-like states at the edge and produce a finite
spin polarization.19

The eigenenergies and eigenfunctions of Eq. (3) corre-
sponding to bound states are given, respectively, by

εσ = −h̄2k2
σ

2min
(5)

and

ψσ (x) =
√

2κσ kσ

κσ + kσ

×
{

eκσ x, x < 0,

e−kσ x, x � 0,
(6)

where κσ =
√

(k2
σ + q2

0 )/rm and q0 =
√

2minV1D/h̄2. The
wave vector kσ obeys the dispersion relation

kσ +
√

rm

(
k2
σ + q2

0

) + σλSOky = 0, (7)

where λSO = 2minα/h̄2 is a dimensionless parameter charac-
terizing the strength of the edge SOC. In what follows we
focus on the case mout > min > 0 and assume that q0 is real.
The other cases can be treated in a similar way.

For Eq. (6) to represent bound states, kσ must be a positive
real number and therefore the appropriate solutions of Eq. (7)
reduce to the form

kσ =
−σλSOky −

√
rmλ2

SOk2
y + rm(1 − rm)q2

0

1 − rm

, (8)

where 0 < rm < 1. The requirement that kσ must be a positive
real number imposes constraints on the existence of the
solutions in Eq. (8). For example, if λSO > 0 (λSO < 0), a
necessary, although not sufficient, condition for the existence
of bound states is σky < 0 (σky > 0), as inferred from Eq. (8).
This confirms our early argument that the SOC-induced
edge states represent two spin-polarized counterpropagating
channels with opposite spins. On the other hand, positive real
values of kσ , and therefore edge states, do not exist for arbitrary
values of ky but only for those values for which the first term
in the numerator in Eq. (8) becomes larger than the second
one. A more general analysis of Eq. (8) reveals that if the SOC
strength is such that λ2

SO < (1 − rm), the domain of ky values
for which edge states exist is given by

rmb

rm(1 − rm) + λ2
SO

< (kyd)2 <
b

(1 − rm) − λ2
SO

. (9)
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On the other hand, if λ2
SO > (1 − rm) the ky domain for edge

states is

(kyd)2 >
rmb

rm(1 − rm) + λ2
SO

. (10)

In the equations above the dimensionless parameter b = V0/ε0

characterizes the height of the edge potential in units of the
energy ε0 = h̄2/(2mind

2).
In contrast to the edge states of the integer quantum

Hall phase and/or in inverted band 2D TIs, the edge states
induced by the edge SOC are, in general, not protected against
disorder. This is so because although scattering from one edge
state to the other is forbidden by time-reversal symmetry,
backscattering can occur through the bulk-like states which, in
general, coexist with the edge states in the same energy range.
However, protected edge states may appear in gapped materials
with strong enough edge SOC. In such a case edge states can
exist inside the band gap and be energetically isolated from
the bulk-like states, as shown below.

The band gap of the material forming the 2DEG is located
below the ground-state energy of the QW, εz. In order to induce
bound states inside the gap, the SOC strength must be such
that the total energy of the edge states, Eσ = εσ + εy + εz,
becomes lower than εz; i.e., the condition

εσ + εy = h̄2

2min

(
k2
y − k2

σ

)
< 0 (11)

must be satisfied. This condition imposes an additional con-
straint for the edge states to be protected against time-reversal
invariant perturbations. Using Eqs. (8) and (11) one finds that a
necessary condition for the emergence of protected edge states
is

|λSO| > 1 + rm. (12)

When the edge SOC is weak, Eq. (12) is not fulfilled
and only unprotected edge states exist. However, when the
edge SOC is strong enough and Eq. (12) is satisfied, the
dissipationless edge states emerge in the ky domain specified
by

|kyd| >

√
rmb

(1 + λSO)2 − r2
m

. (13)

III. RESULTS

The emergence of the helical edge states computed for
rm = 0.2 and V0/ε0 = 100 is displayed in Fig. 3(a), as a
function of the spin-orbit parameter λso and the momentum.
The white zones correspond to the absence of edge states,
while the red and hatched blue regions correspond, respec-
tively, to the unprotected and protected helical edge states. The
upward-pointing arrows (downward-pointing arrows) indicate
that the spin orientation of the states in the corresponding
quadrants is parallel (antiparallel) to the ẑ direction. As
discussed above, at λso = 0 there are no edge states. However,
when |λso| starts to deviate from 0, unprotected helical edge
states emerge in a reduced region of the ky space. As
|λso| increases, the domain of the ky space corresponding
to unprotected edge states becomes wider, and when the
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FIG. 3. (Color online) (a) Energy of edge states for γ = 0 as a
function of the SOC parameter (λso) and the momentum along the
edge (ky). White regions correspond to the absence of edge states.
Red and hatched blue zones represent, respectively, unprotected and
protected edge states. Arrows indicate the spin orientation (up or down
with respect to the z axis) in the corresponding quadrants. (b) Energy
dispersion of the unprotected (λso = −1) and protected (λso = −2)
edge states corresponding to dotted lines (1) and (2) in (a). The
dash-dotted line represents the bulk-like states. The spin orientation
of the different energy branches is indicated by the arrows.

condition in Eq. (12) is fulfilled, the protected edge states
start to appear. The energy dispersions of the edge states
corresponding to lines (1) and (2) in Fig. 3(a) (i.e., for
λso = −1,−2) are shown in Fig. 3(b), where the energy of
the spin-degenerate bulk-like states (dash-dotted line) is also
included for comparison. The spin orientation of the different
energy branches is indicated by the arrows. The pair of helical
edge states labeled (1) coexists with the bulk-like states and
is therefore not protected against disorder (backscattering can
occur through transitions from the edge states to the bulk-like
states). On the other hand, the helical edge states labeled (2)
enter into the gap region (E − εz < 0). Being isolated from the
bulk-like states, these two counterpropagating spin-polarized
states, one of which is the time reversal of the other, become
protected against time-reversal perturbations.

The penetration of the protected edge states into the gap
region can be easily understood in the extreme case rm � 1
(i.e., mout � min). In this case Eq. (8) can be approximated by
kσ ≈ −σλsoky and yields

Eσ − εz ≈ h̄2k2
y

2μ
, (14)

with the SOC-dependent mass,

1

μ
= 1

min

(
1 − λ2

so

)
. (15)

Thus, if |λso| > 1 [note that for rm → 0, this is consistent with
Eq. (12)], the mass μ changes sign and the sub-bands start to
penetrate into the gap region.

In the 2D TIs relying on band inversion the protected
edge states form a Dirac point inside the energy gap and the
corresponding energy spectrum is almost linear. In contrast, as
shown in Fig. 3(b), the protected edge states induced purely by
the edge interface SOC do not form a Dirac point and exhibit a
strongly nonlinear spectrum. A similar behavior of the energy
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FIG. 4. (Color online) Energy spectrum of (a) Tamm-like un-
protected edge states (λso = −0.5) and (b) Tamm-like protected
edge states (λso = −2) for different values of the parameter q =
2minγ d/h̄2. Arrows indicate the spin orientation (up or down with
respect to the z axis) of the corresponding energy branches. The
bulk-like band (dash-dotted line) is also included for comparison.

dispersion has also been found for the edge states in Bi(111)
ultrathin films.21,22

We now consider the case γ 	= 0 and conveniently introduce
the dimensionless parameter q = 2minγ d/h̄2. As long as
the inequality 0 < q <

√
rmq0(ky = 0) holds, there are no

qualitative differences from the case q = 0. The only effect
is the reduction of the ky domain in which edge states do
not exist [i.e., the white zones in Fig. 3(a) are reduced with
increases in q]. This is because as q increases, the energy
branches corresponding to the counterpropagating edge states
tend to match each other at the zone center. If the value of
γ is such that q >

√
rmq0(ky = 0), a Dirac point at ky = 0

emerges inside the energy gap and helical Tamm-like edge
states appear. The energy dispersion of these states is shown in
Fig. 4 for q = 6 [for rm = 0.2 and V0/ε0 = 100, one finds√

rmq0(ky = 0) = 4.47]. Unprotected and protected helical
Tamm-like edge states are represented, respectively, by solid
lines in Figs. 4(a) and 4(b). The dash-dotted lines describe the
bulk-like states and the arrows indicate the spin orientation of
the corresponding energy branch. The unprotected edge states
exhibit a typical Rashba-type spectrum [see Fig. 4(a)],23 while

the energy spectrum of the protected edge states [see Fig. 4(b)]
resembles that of an inverted band TI.

IV. CONCLUSIONS

Protected edge and surface states are known to appear in
systems with strong atomic SOC in which a band inversion
drives the system into a TI phase.1,2 The mechanism proposed
in this work does not rely on band inversion but rather on the
use of the edge SOC. It represents a new alternative for the
creation of protected helical edge states that could be relevant
for engineering new types of TIs. Unfortunately, although the
model presented here provides a qualitative description of the
formation of such states, it is difficult at the present stage to
predict which materials should be combined for the condition
in Eq. (12) to be fulfilled and the protected helical states to
appear. This is so because the parameter characterizing the
strength of the edge SOC (α or its dimensionless version, λso)
is not precisely known for such systems. In general, the value
of α must be extracted from first-principles calculations or
deduced from experiments. Nevertheless, rough estimations
of α have been reported for some interfaces between III-V
semiconductors.24 We have performed similar estimations
for other kinds of experimentally relevant interfaces between
III-V semiconductors and found that for these interfaces the
condition in Eq. (12) is, in general, not fulfilled. However,
for InSb/In0.65Al0.35Sb and Ga0.47In0.53As/Al0.48In0.52As in-
terfaces we found |λso| ∼ 0.3, a value that is only about 4 to 5
times smaller than the value required for the emergence of the
protected helical edge states. This suggests that the proposed
mechanism may indeed exist in other kind of edges (e.g., with
vacuum or between materials with noncommon atoms) where
the interface SOC can, in principle, be enhanced even by orders
of magnitude.
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