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Subnanosecond magnetization dynamics induced by a pulsed magnetic field in diluted magnetic
semiconductor quantum wells
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The magnetization dynamics induced by a pulsed magnetic field is investigated by time- and polarization-
resolved photoluminescene measurements in (Cd,Mn)Te/(Cd,Mg)Te quantum wells. The magnetization dynamics
of Mn2+ ions is found to be strongly dependent on the external static magnetic field. A dynamical response of the
magnetization on a subnanosecond time scale is observed at zero static magnetic field, while it drastically slows
down and approaches the spin-lattice relaxation time constant for a nonzero static field. Theoretical calculations
emphasize the importance of local spin interactions that interplay with the Zeeman interaction for the observed
magnetization dynamics.
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I. INTRODUCTION

To understand the spin dynamics of magnetic centers in
semiconductors is fundamentally interesting as it indicates
the potential rate of spin control in magnetically doped
semiconductor spintronic devices.1,2 The demonstration of
electrically3,4 and optically4,5 controllable magnetism in di-
luted magnetic semiconductors (DMS) has stimulated vast
investigations in order to evaluate the potential of this class of
materials for spin-based applications.6 Hereby, a critical issue
is the question how fast magnetization can be controlled. Due
to the isoelectronic configuration of localized Mn2+ ions and
the absence of spin-orbit interaction (i.e., with zero orbit spin),
the Mn2+ ions are widely treated as a model system of localized
magnetic centers in II-Mn-VI semiconductors.7–9 Most studies
of Mn2+ ion spin dynamics are performed at a strong external
static magnetic field (Bext).7,8 Nevertheless, as a significant
prerequisite for spin-based information processing, the spin
dynamic properties of Mn2+ ions especially at zero magnetic
field are highly important, but hitherto rarely discussed in
literature.5,10–13

Generally, the dynamic magnetization at a strong external
magnetic field is regarded to be controlled by a spin lattice
relaxation (SLR) process,14 which involves an energy transfer
via phonons between the spin system and the lattice system.
Due to the weak coupling between Mn2+ ions and phonons,
the SLR rate of Mn2+ ions in a DMS system is rather slow
while it is found to be greatly enhanced by increasing the
Mn content.15–18 This is a result of the increased spin-spin
interaction and the formation of Mn2+ ion clusters, in which
fast SLR centers can relax the surrounding Mn2+ ions via
spin diffusion.17,19,20 In addition, carriers are demonstrated
to accelerate the SLR process by opening the carrier-Mn2+

spin-flip channel.21–23 Nevertheless, these effects cannot fasten
the SLR process to less than 100 ns or below at the liquid
helium temperature for a strong external magnetic field.7,16 In
case of zero magnetic field, however, spin relaxation has been
found to be much faster than the inverse SLR rate.11,13,15,16,24

This is ascribed to spin interactions with the local environ-
ment, either the Mn2+ ion spin-spin interaction15,16,24 or the

hyperfine interaction and the spin coupling with any local
electric fields.11 These local spin interactions can adiabatically
induce fast state transitions, and thus bypass the slower SLR
process.11,16 Recently, it has been shown by Goryca et al.11

that the rate of the magnetization dynamics can be varied
by 3 ∼ 4 orders of magnitude by controlling Bext and a fast
magnetization dynamics beyond the SLR regime is observed
with a time constant of ∼10 ns in the absence of an external
magnetic field.

In this work, we study the magnetization dynamics induced
by a pulsed magnetic field (Bpul) down to a few milliteslas by
means of time- and polarization-resolved photoluminescence
(PL) measurements in DMS quantum wells (QWs). An on-chip
microcoil25–27 is used to generate a fast magnetic field pulse
with a transit time of ∼400 ps.13 A magnetization dynamics
on a subnanosecond time scale is observed in the absence of
an external static field, while the time constants drastically
slow down for a nonzero Bext and approach values known
for the SLR process. From Lindblad-type master equation
simulations, the dependence of the magnetization dynamics
on Bext can be well understood as a result of the interplay
between the Zeeman effect and the local spin interactions, i.e.,
hyperfine interaction, spin coupling with the cubic crystal field,
local strain-induced electric field, and the spin-spin interaction
between neighboring Mn2+ ions.

II. SAMPLES AND EXPERIMENTAL TECHNIQUE

The studied DMS samples were grown by molecular beam
epitaxy on an undoped GaAs (001) substrate with a 2.47-μm-
thick CdTe buffer layer. A DMS QW of Cd1−xMnxTe (sample
1: x = 0.067; sample 2: x = 0.024) with a thickness of 12 nm
is embedded between a 1.23-μm-thick lower Cd0.7Mg0.3Te
barrier and a 70-nm Cd0.7Mg0.3Te cap layer. Surface doping
results in a hole density of ∼7 × 1010 cm−2 in the QW.28

Gold microcoils with a thickness of 350 nm are defined atop
the semiconductor by electron-beam lithography and lift-off
technique.25–27 In Fig. 1(a), a typical microcoil with an aperture
diameter of 8.5 μm and a width of 5.6 μm is shown. For such
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FIG. 1. (Color online) (a) Micrograph of a typical microcoil. The
width is 5.6 μm and the inner aperture is 8.5 μm. (b) Time-resolved
PL polarization induced by a pulsed current in sample 1 with
xMn = 0.067. The pulse width is 10 ns, and the repetition period
is 50 ns. The current is +40 mA for the black curve and −40 mA for
the red one. The time delay t is with respect to the leading edge of
the electric pulse.

a microcoil, a current-induced magnetic field of about 7.5 mT
is generated in the microcoil center if the current amplitude is
100 mA.25

The pulsed field-induced magnetization dynamics was
measured by the time- and polarization-resolved micro-PL
spectroscopy. An additional static external field between
−5 and 5 T could be applied in Faraday geometry, i.e.,
a magnetic field parallel to the light propagation direction.
The sample was mounted in a cryostat on a helium flow-
cooled copper finger that allows one to stabilize the sample
temperature in the range from 3.7 to 300 K. The sample was
excited with a cw linearly-polarized laser at the energy of 1.934
eV, which is above the DMS QW band gap but below the band
gap of the barrier.28 The laser was focused by a micro-objective
with a N.A. = 0.75 and the spot diameter was less than 1
μm on the sample. The excitation power density was around
150 W/cm2. The PL was modulated by an electro-optical
modulator (EOM) and detected by a microchannel plate with
a time resolution of 25 ps. The modulation phase was set
at +π/2 and −π/2 for each half period (270 μs), and the
EOM was synchronized with a time-correlated single photon
counting (TCSPC) unit. By putting a linear polarizer at 45
degrees with respect to the EOM optical axes after the EOM,
the right-circularly polarized (σ+) and the left-circularly
polarized (σ−) PL intensity could be quasisimultaneously
counted in the TCSPC unit. The whole cryostat system was
adapted for 50 Ohm matching, and the sample was terminated
by a 50-Ohm resistor. Two pulse generators have been applied
to generate the voltage pulses: for a pulse sequence at a high
repetition frequency (>15 MHz), a pulse generator (Agilent
81133A) with an edge transit time of 90 ps was used. Limited
by the complex impedance of the metal microstructures and
the cables inside the cryostat, a transit time of the voltage pulse
through the microcoil of around 400 ps could be achieved.13

In order to generate longer pulses, we used a second generator
with a transit time of 2 ns (HP 8110A). The duty cycles of
all the voltage pulse patterns used in this work have been
fixed to 20%, and the sample temperature was 5 K for all the
measurements.

III. EXPERIMENTAL RESULTS OF MAGNETIZATION
DYNAMICS

In Fig. 1(b), typical time-resolved PL polarization mea-
surements under the impact of a pulsed magnetic field are
presented. The laser excitation is inside a microcoil with an
aperture of 5 μm on sample 1. The magnetic field pulse
duration is 10 ns and the current amplitude is 40 mA,
which generates a magnetic field of Bpul ≈ 5 mT in the
microcoil center.25 The Mn2+ ions are magnetized by Bpul

and via the strong sp-d exchange interaction the optically
excited carriers are strongly spin-polarized due to the giant
Zeeman effect.29 Since the carrier spin relaxation time is
only a few picoseconds,30 which is much shorter than the
exciton lifetime of about 200 ps here, the dynamics of the
PL polarization directly reflects the magnetization dynamics
of the Mn2+ ions. The transient PL polarization at time t is
given as ρ(t) = [I σ+(t) − I σ−(t)]/[I σ+(t) + I σ−(t)], where
the intensity of the σ+-(σ−-) polarized PL is denoted by
I σ+ (I σ−). Here, t = 0 defines the onset of the magnetic field
pulse. For a positive current (black), a clear transient increase
of ρ(t) at the onset of the magnetic field pulse is observed,
followed by saturation at about ρ ∼ 2.5% and a rapid decay
back to ρ ∼ 0 after switching off the magnetic field. For the
negative current (red), as expected, the polarization changes
its sign, while the dynamics and the saturation magnitude of
the polarization is virtually the same as in case of the positive
current pulse. This fast polarization onset and decay indicates
a much faster magnetization dynamics than recently reported
by Goryca et al., where time constants on the order of ∼10 ns
have been obtained.11

The measured ρ(t) is determined by the dynamic magne-
tization of the Mn2+ ions, written as M(Btot, TMn, t), and the
exciton temperature TX(t). Here, Btot(t) is the amplitude of
the total magnetic field, including the static external field and
the pulsed field, i.e., Btot(t) = Bext + Bpul(t) and TMn is the
effective spin temperature of the Mn2+ ions. In the regime of
a low magnetic field, i.e., Bext � 100 mT, the PL polarization
can be approximated by a linear relation to the magnetization25

as ρ(t) ∼ M(Btot, TMn, t) T −1
X (t). Also M(Bext, TMn, �t) ∼

Bext T −1
Mn (t) holds in the linear regime of the Brillouin

function.25 We now denote ρ+(t) as the dynamic PL polariza-
tion induced by a positive pulsed current with Btot = Bext +
Bpul, and ρ−(t) for a negative one with Btot = Bext − Bpul.
Since the dynamics of the spin temperature, TMn(t), and the
exciton temperature, TX(t), are expected to be independent on
the current polarity, we define ρdiff(t) = 0.5[ρ+(t) − ρ−(t)],
which is proportional to M(Bpul, TMn, t) T −1

X (t) and ρav(t) =
0.5[ρ+(t) + ρ−(t)], which is proportional to M(Bext, TMn, t) ·
T −1

X (t). By comparing these two quantities, one can write
M(Bpul, TMn, t) = M(Bext, TMn, t)ρdiff(t)/ρav(t). As TMn(t)
can be assumed to be constant in the time regime under
investigation,25 we obtain

M(Bpul,TMn,t) ∼ Bext · ρdiff(t)/ρav(t). (1)

This equation is used to evaluate the magnetization dynamics
in the following. In this work, the averaged PL polarization
ρav(t) at Bext = 100 mT is used to evaluate the spin temperature
of the Mn2+ ions,25 which is found to be about 10 K due to
the current-generated heating for both samples. The quantity

155301-2



SUBNANOSECOND MAGNETIZATION DYNAMICS INDUCED . . . PHYSICAL REVIEW B 87, 155301 (2013)

FIG. 2. (Color online) Magnetic field dependence of magne-
tization dynamics induced by a pulsed field for sample 1 with
xMn = 0.067. The pulse width is 7 ns with a repetition period of
35 ns, and the current amplitude is 120 mA. The formation process
is fitted exponentially with τfit (red lines). The time delay t = 0
represents the leading edge of the electric pulse. (a) External field
Bext = 0 mT and fitting constant τfit = 0.5 ns; (b) Bext = 50 mT and
τfit = 1.2 ns; (c) Bext = 100 mT and τfit = 1.5 ns.

ρdiff(t) is obtained for different values of Bext, i.e., 0, 50,
and 100 mT, to investigate the magnetization dynamics at the
corresponding Bext.

In Figs. 2(a)–2(c), the pulse-induced magnetization dy-
namics is presented for different values of Bext in sample
1 (xMn = 0.067). The pulse width is 7 ns, and the used microcoil
is as presented in Fig. 1(a). The current amplitude is 120 mA
generating Bpul ≈ 9 mT. Since the repetition period of 35 ns
is much shorter than the phonon lifetime,25 the Mn2+ ion
spins and the lattice system are in a thermal quasiequilibrium
state. In case of Bext = 0, the dynamics of the pulse-induced
magnetization is clearly below 1 ns. It can be well fitted by an
exponential law (red line) with a time constant of τfit = 0.5 ns.
Once an external field of 50 mT is applied, the formation
process of the magnetization is obviously slowed down and it
can be fitted with τfit = 1.2 ns. The magnetization dynamics
is further slowed down to τfit = 1.5 ns when Bext is increased
to 100 mT. Such a dependence of the magnetization formation
dynamics on the external magnetic field is also observed
by using another microcoil on this sample. The trend that
an external field can strongly slow down the magnetization
dynamics is generally in a good agreement with the reported
results by Goryca et al. for samples with an extremely
low Mn-concentration xMn of 0.002 � xMn � 0.015.11 The
spikes observed at time delay zero for a nonzero Bext most
likely originate from an electric field-induced transient carrier
density in the semiconductor, which is different for a positive
voltage pulse and a negative one. These transient carriers can
change the magnetic susceptibility of the Mn2+ ions8,22,23

and the carrier temperature. Thus the magnetization dynamics
obtained by evaluating ρdiff(t) can show spikes in the presence

FIG. 3. (Color online) Magnetic field dependence of the mag-
netization dynamics induced by a pulsed field for sample 2 with
xMn = 0.024. For (a) and (b), the current amplitude is 120 mA, and
the pulse width is 7 ns with a repetition period of 35 ns. The time
delay is with respect to the leading edge of the electric pulse. (a)
External field Bext = 0 mT; both the formation and the decay process
(red lines) are exponentially fitted with a time constant of τfit = 0.9
ns. (b) Bext = 100 mT. For (c) and (d), the current amplitude is 200
mA, and the pulse width is 400 ns with a repetition period of 2 μs.
(c) Bext = 0 mT; both the formation and decay process (red lines) are
exponentially fitted with a time constant τfit = 3 ns. (d) Bext = 100 mT.
Both the formation and decay process (red lines) are biexponentially
fitted by two time constants: τfit1 = 3 ns and τfit2 = 100 ns.

of the electrically induced non-equilibrium carriers. The width
of the spikes indeed correlates with the carrier lifetime of
roughly 100 ps. As the density of these electrically induced
nonequilibrium carriers—estimated from the transient PL
intensity—is not sufficient to drastically change the spin
relaxation rate of the Mn2+ ions,8,22,23 these spikes do not
affect the magnetization dynamics discussed in this work.

To further explore the Bext dependence of the magnetization
dynamics, similar measurements have been performed in sam-
ple 2 (xMn = 0.024). The evaluated magnetization dynamics
is presented in Fig. 3. In Fig. 3(a), the data are plotted for
Bext = 0 mT and a fast magnetization dynamics is observed,
where both the formation and the decay process can be fitted
by τfit = 0.9 ns. This is quite close to the case of sample 1,
albeit the two Mn contents are quite different and the SLR rates
are expected to differ by roughly two orders of magnitude.16

In contrast, there is no pronounced magnetization formation
within the pulse width of 7 ns once an external field of
100 mT is applied [see Fig. 3(b)]. This indicates a significantly
enhanced magnetization time at Bext = 100 mT for sample 2
as compared to sample 1.

This becomes much clearer if much longer current pulses
are applied, as shown in Figs. 3(c) and 3(d). The pulse
width is increased to 400 ns with an edge transit time of
2 ns, and Bpul is increased to ∼20 mT. In the absence of
Bext, the magnetization dynamics is quasi-instantaneous on
this time scale, as presented in Fig. 3(c): both the formation
and the decay process are fitted by τfit = 3 ns (red line),
mainly limited by the enhanced transit time of the pulse
generator as compared to the data shown in Figs. 3(a) and
3(b). Interestingly, as shown in Fig. 3(d), the magnetization
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dynamics is slowed down once an external field of 100 mT
is applied. Moreover, the magnetization dynamics, either the
formation or the decay, is apparently composed of a fast
process and a clearly slower one. Each process can be well
fitted biexponentially with a short time constant of τfit1 = 3 ns
and a longer one of τfit2 = 100 ns. The amplitude ratio of these
two components is roughly 1:1. Such a biexponential spin
dynamics is observed for different values of Bpul and pulse
widths on this sample. These observations coincide well with
the reported dynamics by Goryca et al.:11 a pronounced slower
magnetization dynamics appears once an external magnetic
field is applied. Thereby the fast component can be suppressed
if a strong magnetic field on the order of 1 T is applied.

The observed magnetization dynamics can be summarized
as follows: (i) in the absence of Bext, the spin dynamics is
clearly on a subnanosecond time scale independent on the Mn
content and (ii) an external field apparently slows down the spin
dynamics and the slow process depends on the Mn content.

IV. NUMERICAL SIMULATIONS OF MAGNETIZATION
DYNAMICS

In order to understand these findings, we consider in
a first approximation the spin dynamics of isolated Mn2+
ions, neglecting the spin-spin interaction between neighboring
Mn2+ ions. The Hamiltonian of a single isolated Mn2+ ion is
given by11

H = Hz + Hhf + Hcub +
∑

Hstrain + Helec, with

Hz = gMnμB Btot · S,

Hhf = AI · S, (2)

Hcub = a

6

[
S4

x + S4
y + S4

z − S(S + 1)(3S2 + 3S + 1)

5

]
,

Hstrain = Ds

[
S2

z − S(S + 1)

3

]
+ Es

[
S2

x − S2
y

]
.

Hereby, S and I are the electron spin and the nuclear spin of the
Mn ion, respectively. Btot denotes the total external magnetic
field, which defines the direction of the spin component Sz.
The first term Hz is the Zeeman energy with the Mn2+ ion g

factor of gMn ≈ 2.01.14 The second term Hhf is the hyperfine
interaction with a hyperfine coupling constant A ≈ 0.68 μeV.11

The spin coupling with the cubic crystal field is given in the
third term Hcub with a ≈ 0.32 μeV.11 The fourth term Hstrain

is the Mn ion spin coupling with a strain-induced electric
field. In the studied (Cd, Mn)Te/Cd0.7Mg0.3Te DMS QW, the
uniaxial strain along the growth direction (z axis) is around
εzz = −0.3% by considering the mismatch of the crystal lattice
constants.31 The coefficients can be deduced as Ds ≈ 0.62 μeV
and Es = 0 for strain applied in [001] direction.31–34 In case
of an additional strain in [110] direction, both coefficients are
nonzero. This can happen from local alloy fluctuations and
dislocations. In Ref. 11, a strain of εxy = 0.4% is suggested
for the (Cd,Mn)Te QWs, which gives Ds ≈ −0.41 μeV
and Es = 0.40 μeV31–35 as a lower-limit estimation for the
investigated samples due to higher Mn contents. The last term
Helec describes the spin coupling with any electric field, which
can be present due to the Fermi level pinning at the surface in
the studied samples28 or due to the applied voltage on the metal

structures. The complete formalism is given in Ref. 36. Since
the magnitude of the electric field is on the order of 107 V/m
as an upper limit, Helec is estimated to be only a few neV, and
thus it can be neglected compared with the other terms.

Based on the spin Hamiltonian in Eq. (2), the magnetization
dynamics of the Mn2+ ions can be phenomenally described by
the Lindblad-type master equation:37

dρ

dt
= 1

ih̄
[H,ρs] + (2LρsL

+ − {L+L,ρs}). (3)

Here, H is the Mn2+ spin Hamiltonian, ρs is the spin density,
L is the Lindblad operator, and h̄ the reduced Planck constant.
There are 36 states in the spin density matrix, i.e., |Si,Ij 〉
for the electron spin of Si and the nuclear spin of Ij , as the
electron spin and the nuclear spin of Mn2+ ions are both 5/2.
The Lindblad operator can be simplified as L = L1 + L2 +
L3, with L1 = �1σ̂+, L2 = �2σ̂−, and L3 = �3σ̂z. The terms
of L1 and L2 describe the spin-lattice relaxation process and
the constants �1 and �2 are determined by the SLR rate and the
Zeeman energy splitting between the spin subbands. Only the
Mn2+ ion SLR is considered while the much longer nuclear
SLR process is neglected.38 The constant values are given by
�−1

1 = τSLR(1 + e�E/kBTMn ) and �−1
2 = �−1

1 (1 + e−�E/kBTMn ),
where τSLR is the SLR time constant and �E is the energy
splitting between the spin subbands. The term L3 describes the
spin-spin relaxation process and �3 is here approximately the
spin-spin relaxation rate. σ̂+, σ̂−, and σ̂z are the Pauli matrices.

For the numerical simulations of the Mn2+ spin dynamics,
the following parameters are used: Ds = 0.62 μeV and
Es = 0 are used for the uniaxial strain, Ds = −0.41 μeV and
Es = 0.40 μeV for a [110] strain of 0.4%, and Ds =−1.23 μeV
and Es = 1.20 μeV for a [110] strain of 1.2%; the Mn2+ ion
spin temperature for both samples is approximated by 10 K,
a spin-spin relaxation time �−1

3 = 500 ps is assumed for both
samples16 and the SLR time is estimated to be τSLR1 ≈ 3 ns
at 10 K for sample 1 (x = 0.067) and τSLR2 = 0.1 μs at 10 K
for sample 2 (x = 0.024) by considering the reported low
temperature SLR time constant16 and the dependence of the
SLR rate on temperature.19 The magnetic pulse is assumed
to be an ideal rectangular pulse, i.e., the edge transit time is
zero, and the amplitude of the pulsed field is Bpul = 9 mT
for sample 1 and Bpul = 20 mT for sample 2. As a result, the
dynamic spin polarization of the Mn2+ ions is determined and
the dynamic change relative to the spin polarization caused
by the applied static field, i.e., �ρM (t), is calculated. As the
magnetization M(t) of the Mn2+ ions is linearly proportional
to the spin polarization �ρM (t) of the Mn2+ ions, i.e.,
M(t) = �ρM (t) · Ms , with Ms as the saturation magnetization,
the calculated dynamic spin polarization �ρM (t) directly
represents the magnetization dynamics induced by the pulsed
magnetic field.

In Figs. 4(a) and 4(b), the simulated magnetization dynam-
ics of sample 1 and sample 2 are presented, respectively. The
field dependence of the calculated magnetization dynamics
is in a nice agreement with the experimental results: the
formation and decay dynamics of the magnetization are both
on a subnanosecond time scale (black solid lines) in case of
zero field. Once an external field is applied, there are two
different dynamic components, which can be nicely seen for
sample 2 both in experiment and in the simulations. The
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FIG. 4. (Color online) Numerically calculated magnetization
dynamics of isolated Mn2+ ions induced by a pulsed magnetic field.
The pulse is indicated by the green dashed line. Simulated magnetic
field dependence of the magnetization dynamics for (a) sample 1 with
xMn = 0.067 and (b) sample 2 with xMn = 0.024. Calculations are
given for an external field of Bext = 0 mT and an in-plane strain of
εxy = 1.2% (black, solid line); for Bext = 50 mT and εxy = 1.2%
(red, solid line); for Bext = 100 mT and εxy = 1.2% (blue, solid line);
for Bext = 0 mT and εxy = 0 (black, dashed line); for Bext = 0 mT
and εxy = 0.4% (magenta, dashed line). (c) Simulated pulsed field
dependence of the magnetization dynamics in case of Bext = 0 mT.
The amplitude of the pulsed magnetic field is 10 (black), 20 (red),
and 40 mT (blue). The inset presents the magnetization dynamics in
the short time range with higher calculation accuracy.

fast component is thereby suppressed if the external magnetic
field is increased to Bext = 50 (red solid lines) and 100 mT
(blue solid lines). The time constant of the slow component
is close to the time constant assumed for the SLR process in
the Lindblad-type master equation. Interestingly, if the local
in-plane strain is not included (εxy = 0), there is a clearly
observable slow component in both the spin onset and spin
decay process even in case of zero Bext (dashed black line),
which is apparently absent in the experimental data shown in
Fig. 3(c). This indicates that the strength of the well-known
local spin interactions, e.g., hyperfine interaction and spin
coupling with the crystal field and the uniaxial strain-induced
electric field, is not large enough to completely surpass the
slow component. This confirms the necessity of another spin

interaction mechanism with off-diagonal elements, e.g., a
possible local in-plane strain, to explain the uniform fast
spin relaxation for different Mn contents in the absence of
an external field. The origin of such a local in-plane strain
is not clearly understood but might be related to dislocations
and alloy or interface fluctuations. It has to be noted that the
strength of each local spin interaction process, i.e., Hhf , Hcub,
and Hstrain, is rather similar, so each term contributes noticeably
to the fast component.

Definitely any spin interactions resulting in an admixture
of spin states can accelerate the magnetization dynamics by-
passing the much slower SLR process. These local interactions
break the orthogonality of the Zeeman interaction and can give
rise to state anticrossings.11 As a result, the stronger the local
interaction is, the stronger magnetic field is required to sup-
press the state admixture. While switching the magnetic field
pulse on and off, adiabatic state transitions happen at the energy
levels of anticrossings, like many simultaneous Landau-Zener
transitions.11 The rate of these kinds of transitions is quite fast,
and it is larger than |Hlocal|/h̄ roughly by a factor of three if
one considers the strength of state transitions for the large spin
numbers,39 i.e., S = 5/2 and I = 5/2. Hereby, |Hlocal| is the
strength of the total local spin interaction, and it is estimated
as |Hlocal| = |Hhf| + |Hcub| + |Hstrain| ≈ 3 μeV. This gives a
state transition time <100 ps, which is much shorter than our
time resolution and much shorter than the spin-spin relaxation
time.

If the pulse amplitude is large, the pulse-induced magnetic
field may become strong enough to separate the spin subbands
by the Zeeman energy splitting, so that the energy levels of
the spin states are too far away to generate state anticrossings.
Then, the SLR process is expected to dominate the magneti-
zation dynamics even in the absence of an external static field.
This can be demonstrated by the calculated Bpul dependence
of the magnetization dynamics as presented in Fig. 4(c) for
sample 2. In case of Bpul = 10 mT (black line), the slow
process is not clearly observable because the local interaction
is stronger than the Zeeman interaction.11 Increasing Bpul to
20 mT (red line), the slow process appears noticeably and the
amplitude of the slow component becomes even comparable
with the fast one for Bpul = 40 mT (blue line). Note that the
saturation level of the Mn2+ ion spin polarization changes
nearly linearly with the Bpul amplitude. The inset presents
the simulated spin formation process on a shorter time scale,
calculated with a much higher time resolution. Interestingly,
the amplitude of the fast component is not linearly proportional
to Bpul, even the magnetization is supposed to change linearly
with the applied field in the weak field regime according to
the Brillouin function. This can be reasonably understood by
considering that the local spin interaction is the dominant
factor that determines the amplitude and the transition rate
of the fast component. Regarding the spin decay dynamics,
there is no Bpul dependence. This is just as expected since the
Zeeman effect vanishes and the spin dynamics is determined
by the spin transitions at the anticrossings.

Now, we discuss possible effects from spin-spin interac-
tions of the Mn2+ ions, i.e., beyond the model of isolated Mn2+
ions. There are three kinds of Mn2+ spin-spin interactions,20

i.e., the Mn-Mn exchange interaction, the Dzyaloshinsky-
Moriya (DM) interaction, and the dipole-dipole (DD)

155301-5



CHEN, WIATER, KARCZEWSKI, WOJTOWICZ, AND BACHER PHYSICAL REVIEW B 87, 155301 (2013)

FIG. 5. (Color online) Numerically calculated magnetization dynamics of a coupled pair of Mn2+ ions induced by a pulsed magnetic field.
The pulse is indicated by the green dashed line. Simulated magnetic field dependence of the magnetization dynamics for (a) sample 1 with
xMn = 0.067 and Bpul = 9 mT; (b) sample 2 with xMn = 0.024 and Bpul = 20 mT.

interaction. The spin Hamiltonian of a coupled Mn-Mn pair is
given as

H = Hz + Hex + HDM + HDD, with

Hz = gMnμB Btot · (S1 + S2),

Hex = −J · (S1 · S2), (4)

HDM = −D · (S1 × S2),

HDD = μ0g
2
Mnμ

2
B

4π

[
S1 · S2

r3
12

− 3 (S1 · r12) · (S2 · r12)

r5
12

]
.

Hereby S1 and S2 are the spin of Mn2+ ion 1 and Mn2+ ion 2,
respectively. The first term is the Zeeman energy for two Mn2+
ions. The exchange interaction is described by Hex and J is
the coupling constant.29 The third term is the DM interaction
with D as the vector coefficient.19 For the DD interaction, μ0

is the vacuum permeability and r12 is the distance vector from
Mn2+ ion 1 to Mn2+ ion 2.14,38

These spin-spin interactions can generate state admixture,
and thus they can accelerate the spin dynamics, similar to
the terms of the local spin interaction given in Eq. (2). The
Mn-Mn exchange interaction is drastically dependent on the
distance between two ions, and the strength is estimated to be
less than 0.1 μeV for two Mn2+ ions located in different unit
cells.40 The DM interaction is always less than the exchange
interaction.19,41 Thus these two contributions are negligible for
the fast magnetization dynamics of Mn2+ ions in different unit
cells. In contrast, the DD interaction is long-distance ranged.
The coupling strength is ∼0.2 μeV (∼0.07 μeV) as an upper
(lower) estimate for two Mn2+ ions in neighboring unit cells.14

Thus the DD contribution can be noticeable but still remains
small compared with the hyperfine interaction (0.68 μeV) and
the spin coupling with the crystal field (0.32 μeV) and the
uniaxial strain (0.62 μeV).

On the other hand, the probability of finding a single Mn2+
ion in one face-center-cubic unit cell is roughly given by
(1–xMn)12,42 which gives 44% for sample 1 and 75% for sample
2. This indicates there is a pronounced formation probability
of Mn-Mn pairs or clusters in both samples. The spin diffusion
between different unit cells cannot be the limiting factor of the
subnanosecond magnetization dynamics, as the spin diffusion

time between two nearest neighboring Mn2+ ions is estimated
to be above the 10-ns time scale.20 Taking a Mn-Mn pair
within a same unit cell for instance, one finds the strength of
the exchange interaction (DM interaction) can vary from a few
100 μeV (10 μeV) to less than 0.1 μeV (0.01 μeV) depending
on the Mn-Mn distance, whereas the DD interaction strength
is between ∼0.2 and ∼2 μeV. All three mechanisms can thus
result in state anticrossings in the millitesla field regime. These
spin-spin interactions can be noticeable especially for the
sample of a higher Mn content, i.e., sample 1 with xMn = 0.067.

Based on the spin Hamiltonian in Eq. (4), the Lindblad-type
master equation is applied to calculate the spin dynamics
of a pair of coupled Mn2+ ions. For the simulations, we
consider two Mn2+ ions diagonally located in one cubic
face and displaced by r12 = √

2aLatt, in which aLatt is the
lattice constant. Here, the Mn-Mn exchange interaction con-
stant is approximated as J = −2.9 μeV by considering its
dependence on the Mn-Mn distance.40 The DM interaction
is neglected as its strength is estimated to be only ∼5%
of the Mn-Mn exchange interaction.41 The DD interaction
strength is determined to be ∼0.35 μeV. For the Lindblad
operators and the pulsed magnetic field for sample 1 and
sample 2 the same values as for the calculations in Fig. 4
are used. The spin density matrix covers 36 states |S1i ,S2i〉,
in which S1i and S2i denote the spin states of two Mn2+ ions,
respectively. The spin states of both Mn2+ ions are calculated,
and the dynamic spin polarization based on two Mn2+ ions is
determined.

The calculated dynamic spin polarization �ρM (t) is plotted
in Figs. 5(a) and 5(b) for sample 1 and sample 2, respectively.
For both samples, there is a fast spin onset and a spin decay
in the absence of an external field, while the spin dynamics is
clearly slowed down and close to the SLR regime if the static
external field Bext is increased. This behavior is qualitatively
similar to the calculations presented in Figs. 4(a) and 4(b). In
addition, the calculated saturation value of the spin polarization
for a coupled Mn-pair is nearly the same as for isolated Mn
ions, where the hyperfine interaction and the spin coupling with
the local electric field are considered. That is, the saturation
levels of the spin polarization are ∼0.14% in both Figs. 4(a)
and 5(a), and they are both ∼0.3% in Figs. 4(b) and 5(b).
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This indicates that besides hyperfine interaction and local
electric fields also the Mn-Mn interaction can contribute to
the experimentally observed fast magnetization dynamics for
zero external field especially for a higher Mn content.

V. CONCLUSION

In conclusion, the magnetization dynamics of localized
Mn2+ ions induced by a pulsed magnetic field is investi-
gated by time- and polarization-resolved photoluminescence
measurements in DMS QWs. A subnanosecond magnetization
dynamics is observed independent of the Mn content in the ab-
sence of an external field, while the dynamics is clearly slowed
down and becomes biexponential once a static magnetic field
is applied. Theoretical calculations based on a Lindblad-type
master equation demonstrate that the observed magnetization
dynamics can be understood as an interplay between the
Zeeman effect and the local spin interactions, i.e., hyperfine
interaction, spin coupling with the crystal field, strain-induced
field, and Mn-Mn interaction. These local spin interactions

result in anticrossings of the Mn2+ spin states in the field
regime of about 10 mT. This allows for fast adiabatic state
transitions if the pulsed magnetic field is switched on or off.
For a sufficiently strong external magnetic field, the Zeeman
energy splitting between the spin states can suppress the
adiabatic spin transitions, and thus the spin lattice relaxation
process becomes dominant for the observed spin dynamics.
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