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Point-defect optical transitions and thermal ionization energies from quantum
Monte Carlo methods: Application to the F-center defect in MgO
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We present an approach to calculation of point-defect optical and thermal ionization energies based on the
highly accurate quantum Monte Carlo methods. The use of an inherently many-body theory that directly treats
electron correlation offers many improvements over the typically employed density functional theory Kohn-Sham
description. In particular, the use of quantum Monte Carlo methods can help overcome the band-gap problem
and obviate the need for ad hoc corrections. We demonstrate our approach to the calculation of the optical and
thermal ionization energies of the F-center defect in magnesium oxide, and obtain excellent agreement with
experimental and/or other high-accuracy computational results.
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I. INTRODUCTION

From electronics to optoelectronics to photovoltaics, point
defects influence and often dominate the properties of
semiconducting materials.1–6 Quantitative descriptions of the
effect of point defects on electronic, optical, and transport
properties is critical to enabling point-defect engineering for
materials design. However, accurate prediction of point-defect
energetics, thermal ionization energies, and optical transition
energies from first principles remains a challenge. Currently,
the most widely used approach based on conventional density
functional theory (DFT) suffers from poor descriptions of band
gaps, which render difficult the accurate description of midgap
defect states.5,7–9 Here we demonstrate that, by contrast, an
inherently many-body approach based on quantum Monte
Carlo (QMC) methods10,11 can eliminate these problems and
enable high-accuracy calculations of point-defect optical and
thermal ionization energies. Our computed optical transi-
tion energies are in excellent agreement with experimental
and other high-accuracy computational results for the same
system,12 and demonstrate that QMC can obtain quantitatively
accurate descriptions.

QMC methods comprise a suite of stochastic tools that
enable calculations of material properties based on the
many-particle Schrödinger equation. Because of their direct
treatment of electron correlation, QMC methods are among
the most accurate electronic structure approaches available
today, and demonstrate a long and distinguished record
of groundbreaking and benchmarking calculations.10,11,13 In
comparison to the other “beyond-DFT” techniques that are
currently explored for calculation of point-defect properties
(DFT + U, hybrid DFT, and the GW method), QMC is directly
based on the true many-body Schrödinger equation and offers
the possibility of parameter-free accurate band gaps and total
energies. The application of QMC techniques to point defects
in solids is still a relatively new field. To date, a handful of
studies have been carried out to compute defect formation
energies: interstitials in silicon,14–16 vacancies in diamond,15

the Schottky defect in MgO,17 and vacancies and interstitials
in aluminum.18

In this contribution, we illustrate the application of the
QMC method to the F-center defect (oxygen vacancy) in
magnesium oxide (MgO) by computing defect formation

energies, thermal ionization levels, and optical ionization
energies (although the approach is general and can be extended
to other materials of interest). The F-center defect in MgO is
a typical example of an intrinsic point defect in a binary ionic
compound.19–24 Despite its apparent simplicity, its properties
as deduced from optical absorption and luminescence studies
have proven somewhat ambiguous. Experimental characteri-
zation of the F center in its neutral (F 0) and singly ionized
(F+1) state has been complicated by their nearly identical
optical absorption energies.22–24 These energies have been
corroborated by recent GW calculations;12 which also pre-
dicted optical emission energies that are substantially different
from the assigned experimental values, causing the authors to
suggest a reinvestigation of the experimental observations. A
particularly compelling possibility is to explore the F-center
defect using distinct high-accuracy first-principles techniques
to compare results. Our results—calculated independently
using QMC methods—corroborate the GW results and further
invite reassessment of the experimental data for the optical
emission energies.

II. METHODOLOGY AND BENCHMARKING

A. Density functional theory

We first compute the properties of the F-center defect
in MgO within a DFT25,26 framework as implemented in
the SIESTA code,27 employing the Perdew-Burke-Ernzerhof28

approximation to the exchange correlation potential. The inner
core electrons are represented by Troullier-Martins pseudopo-
tentials (leaving the Mg 3s and O 2s, 2p electrons in valence),
and the Kohn-Sham orbitals are represented by a linear
combination of numerical pseudoatomic orbitals expanded in
a triple ζ with polarization basis set. For bulk rocksalt MgO, in
agreement with previous DFT calculations29,30 we find a lattice
parameter of 4.25 Å (4.22 Å in experiment31), an atomization
energy of 9.50 eV/MgO (10.50 eV/MgO in experiment31),
and a direct band gap of 4.83 eV at the � point (a considerable
underestimate of the experimental band gap of 7.78 eV32).

The DFT band-gap underestimate has a severe conse-
quence on the prediction of midgap defect states, defect
energetics (particularly for occupied defect levels), and defect-
induced optical absorption and emission energies. Broadly, the

155210-11098-0121/2013/87(15)/155210(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.155210


ERTEKIN, WAGNER, AND GROSSMAN PHYSICAL REVIEW B 87, 155210 (2013)

TABLE I. Comparison of bond length, binding energy, and electron affinity for the MgO molecule according to DMC and in experiment.
Two sets of DMC results are provided, corresponding to the use of neon-core (large) and helium-core (small) pseudopotentials. Error bars are
shown in parentheses.

bond length (Å) binding energy (eV) electron affinity (eV)

DMC, Ne-core PP 1.75 2.28(1) 1.76(1)
DMC, Ar-core PP 1.75 2.43(1) 1.72(1)
Exp. (Refs. 31,33–35) 1.75 2.56(21) 1.630(25)

band-gap underestimate arises because in typically employed
mappings of the interacting many-body Schrödinger equation
to the DFT single-particle effective-potential Kohn-Sham
equations, each electron also interacts with itself (self-
interaction error37–41). This results in an extraneous Coulomb
repulsion that overly delocalizes electronic states. The self-
interaction error, in addition to the absence of a derivative
discontinuity in the exchange-correlation potential,37–41 re-
sults in underestimated band gaps that have plagued DFT
calculations.

B. Quantum Monte Carlo

The QMC calculations reported here are computed within
fixed-node diffusion Monte Carlo (FN-DMC) as implemented
in the QWALK code,42 with single-determinant Slater-Jastrow
trial wave functions constructed from the DFT orbitals,
variance-minimized Jastrow coefficients, and a time step of
0.01 au. To establish that our choice of pseudopotentials
is reasonable, we first calculated the bond length, electron
affinity, and binding energy of the MgO molecule within
DMC.

We tested both Ne- and He-core pseudopotentials for the
Mg atom in the molecule, and found that (although both
give good results) the small core pseudopotential gives a
somewhat better description as shown in Table I. While both
pseudopotentials give excellent agreement to the experimental
bond length and electron affinity, we find some difference
for the binding energy and the ionization energy. Using
a He-core, rather than Ne-core, pseudopotential for Mg
increases the molecular binding energy from 2.28 ± 0.01 eV
to 2.43 ± 0.01 eV, in comparison to the experimental value of
2.54 ± 0.22 eV.31,33–35 This suggests that allowing the Mg 2s

and 2p electrons to participate in the bonding recovers more
of the binding energy. We also find that using the Ne-core
pseudopotential introduces a small 0.04(2) eV error in the
ionization energy compared to the He-core pseudopotential.
These observations suggest that including the Mg 2s and 2p

electrons improves the description slightly; however, for the
solid, the computational cost of the He-core pseudopotential
was too prohibitive.

Next, to test the properties of the defect-free MgO solid
in QMC, we calculate the following states: the ground state
Eo, the �-point optically excited state E�→� , the positively
charged state E+, and the negatively charged state E−. From
the ground-state energy Eo, we compute the atomization
energy of the MgO solid using twist-averaged boundary
conditions and the extrapolation framework described in
Refs 43–45 with supercells containing 16, 32, and 64 atoms
as shown in Fig. 1. The dependence of the binding energy

on the supercell size reflects the spurious electron correlation
that appears in many-body theories when periodic boundary
conditions are applied. This spurious correlation disappears in
the infinite-size supercell limit. The extrapolated value of the
atomization energy in DMC is 10.18 ± 0.05 eV per formula
unit, in comparison to the experimental and DFT values of
10.5 eV and 9.48 eV, respectively.31,32,36 Although DMC
improves the atomization energy in comparison to DFT, it
is most likely necessary to include the Mg 2s and 2p electrons
in valence to obtain atomization energies closer to experiment.

The ionization potential (IP), electron affinity (EA), quasi-
particle gap (QP), and optical gap (OP) are given by

IP = Eo − E+ (1)

EA = E− − Eo (2)

QP = EA − IP (3)

OP = E�→� − Eo (4)

and are similarly computed by extrapolation, as illustrated in
Fig. 2. Here we use only the �-point orbitals to construct the
many-particle wave function, to reduce computational cost and
since the MgO solid exhibits a direct band gap at the � point.
For these quantities, additional finite-size effects are present
including (i) periodic image interactions between the electron-
hole pair for the optical gap and (ii) the electrostatic interaction
between charged supercells in the calculation of the ionization
potential and electron affinity. Extrapolating to the infinite
supercell limit, we obtain an optical gap of 7.96 ± 0.06 eV
and a quasiparticle gap of 7.89 ± 0.10 eV, in close agreement
with the experimental band gap of 7.8 eV.
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FIG. 1. (Color online) The extrapolated value of the atomization
energy as computed in DMC is 10.18 ± 0.05 eV, in comparison to the
experimental and DFT values of 10.5 eV and 9.48 eV, respectively
(Refs. 31, 32, and 36).

155210-2



POINT-DEFECT OPTICAL TRANSITIONS AND THERMAL . . . PHYSICAL REVIEW B 87, 155210 (2013)

-

-

EA=E--Eo

IP=Eo-E+

2

4

6

8

10

12

6.0

6.5

7.0

7.5

8.0

1/64

1/64

1/32

1/32

1/16

1/16

1/128

FIG. 2. (Color online) Optical and quasiparticle gap in MgO
obtained by extrapolating supercells to infinite size. The data points
for finite-size supercells are computed with DMC. The extrapolated
value of the optical gap is 7.96 ± 0.06 eV. The extrapolated ionization
potential IP = Eo − E+ = 3.28 ± 0.07 eV. The extrapolated electron
affinity EA = E− − Eo = 11.17 ± 0.07 eV. This gives a quasiparti-
cle gap of QP = EA − IP = 7.89 ± 0.10 eV. [Note the EA and IP are
referenced to the average electrostatic potential in the supercell.]

The results are summarized in Table II, and show excellent
agreement overall with the experimental values. The slight
underestimation of the atomization energy is likely due to
the Ne-core pseudopotential, since the MgO molecule showed
a similar effect, while the gap calculations are close to
experiment, overestimating the gap slightly.

III. DEFECT CALCULATIONS

For the F-center defect, we use 64 (perfect) and 63 (with
F-center) atom supercells for these calculations. In Fig. 3, we

TABLE II. Comparison of lattice constant, atomization energy,
and band gap in MgO solid according to DFT, DMC, and in
experiment. All computed results are obtained using Ne-core pseu-
dopotentials for magnesium. The optical band gap is determined in
DFT from the Kohn-Sham levels, and in DMC from the extrapolated
optical excitation energy. Error bars are shown in parentheses. Note
that the IP and EA are given with respect to the average potential in
the supercell.

DFT-PBE DMC Exp (Refs. 31, 32, and 36)

Lattice const (Å) 4.25 4.22 4.216
Coh. En. (eV/MgO) 9.50 10.18(5) 10.5
OP (eV) 4.83 7.96(6) 7.78
QP (eV) – 7.9(1) 7.84
IP (eV) – 3.28(7) –
EA (eV) – 11.17(7) –
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FIG. 3. (Color online) Left: The electronic band structure of a 64-
atom MgO supercell containing a single oxygen vacancy, calculated
within DFT-PBE. The neutral oxygen vacancy introduces a localized
midgap defect level of symmetry a1g . There is also a triply degenerate
excited defect level in the conduction band of t1u symmetry.
Right: The corresponding a1g and t1u Kohn-Sham states plotted at the
� point, showing the localized nature in the vicinity of the vacancy.

show the DFT-computed electronic band structure of a 63-atom
MgO supercell containing an F 0-center defect (neutral oxygen
vacancy). In agreement with previous DFT calculations,12 the
F 0-center introduces a fully occupied midgap defect level of
a1g symmetry into the electronic band structure; higher in the
conduction band we also find a triply degenerate excited defect
level of t1u symmetry.

We obtain defect formation energies �ED,q according to

�ED,q = (ED,q − Eperf) −
∑

i

niμi + q(EV + EF ), (5)

where ED,q is the (computed) total energy of the supercell con-
taining a defect D in the charge state q, Eperf is the (computed)
total energy of the perfect supercell, and ni is the number of
atoms of species i added to (ni > 0) or removed from (ni < 0)
the supercell to create the defect.46 Different environmental
conditions are accommodated by the set of chemical potentials
μi for each element by assuming that each is in equilibrium
with a physical reservoir such as a gas or a bulk phase. EV

is the energy of the valence band maximum (the ionization
potential in DMC), and EF is the Fermi energy referenced to
EV so that 0 � EF � Eg where Eg is the band gap.

A. Thermal ionization levels

The thermal ionization energies, which determine the
shallow or deep nature of a defect, correspond to the Fermi
energies at which the energetically most-favored charge state
of the defect changes. According to our DFT calculations, the
creation of an F 0 center results in the formation of a filled
midgap defect level (shown in Fig. 3). There is very little
lattice relaxation that takes place upon removal of the O, as
indicated in Table III. However, when an electron is removed
from the supercell to form the F+1 center, in DFT we find a
large lattice relaxation as the positively charged Mg ions move
outward away from, and the negatively charged O ions move
inward toward, the positively charged vacancy in conjunction
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TABLE III. DFT-computed lattice relaxations for the F , F +, and
F +2 center. The Mg-Mg distance denotes the separation between Mg
atoms that neighbor the missing O atom; similarly the O-O distance
denotes the separation between O atoms that neighbor the missing O
atom.

Mg-Mg (Å) O-O (Å) Relaxation (eV)

perfect 2.98 5.96 –
F 2.99 5.96 0.003
F + 3.09 5.90 0.545
F +2 3.17 5.84 1.182

with a 0.55 eV drop in energy. Further ionizing the defect
to the F+2 state in DFT results in further lattice relaxations
accompanied by an energy recovery of 1.18 eV. The DFT
defect formation energies obtained from Eq. (5) are plotted in
Fig. 4(a), showing thermal ionization levels near the middle of
the gap (plotted here for the Mg-rich limit). In Fig. 4(a), we
have used the as-computed DFT band gap for MgO, without
correction schemes to artificially open the gap.

For the F+1 and F+2 defect, the nonzero net charge in
the simulation cell introduces electrostatic image interactions
between neighboring supercells. For the charged supercells,
the screened interaction energy of the periodically arranged
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FIG. 4. (Color online) Comparison of F-center defect formation
energies and thermal ionization energies in MgO computed in DFT
and DMC. The domain of the Fermi energy (x axis) is determined by
the band gap of the system according to the computational framework;
clearly the DMC description of the gap is better and obviates the
need for band-gap corrections. In comparison to DFT, DMC modifies
somewhat the absolute value of the defect formation energies, but
maintains thermal ionization levels near midgap. [Note that the error
bars of the DMC-computed formation energies are smaller than the
line widths in (b).]
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FIG. 5. (Color online) Charge extrapolation computed within DFT.

charged defect and the compensating background is estimated
within DFT via an extrapolation approach.47 Figure 5 illus-
trates the extrapolation for the singly and doubly charged
oxygen vacancy for supercells of size n × n × n, n = 2,3,4,5.
The solid curved line shows the fit

ET

(
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L

)
= ET

(
1

L
→ 0

)
− A

L
− B

L3
, (6)

in which L3 denotes the volume of the supercell and A,B are
the fitting parameters. The dashed lines in Fig. 5 show the total
energy for each supercell when the finite-size error is estimated
by Eq. (6). Based on the extrapolated value of the total energy
in the dilute limit, the charged defect interactions introduce a
finite-size error of 0.38 eV and 1.49 eV for the F+1 and F+2

centers, respectively, for the 2 × 2 × 2 supercells that we use
in our analysis. The dotted lines shown in Fig. 4(a) show the
defect formation energies for the F+1 and F+2 centers, now
incorporating this estimate of the charged image interaction
energy.

For the QMC calculations of total energies of perfect and
defect supercells (Eperf , ED,q) and the corresponding thermal
ionization levels, we use the relaxed lattice geometries of and
orbitals obtained from the DFT calculations. Total supercell
energies are again obtained using twist-averaged boundary
conditions. Figure 4(b) shows the defect formation energies
and the thermal ionization levels as computed within QMC.
Again, the solid lines indicate the formation energies obtained
when charged image interactions are ignored, and the dotted
lines indicate the shift that occurs when the DFT estimate
of the charged image interactions is incorporated. We have
not carried out the extrapolation within DMC: while this can
be done in principle, it remains prohibitively expensive from a
computational standpoint. However, we note that this would be
of interest, as it is very likely that the DFT and QMC estimate
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of charged image interactions will be different, owing to the
difference in electron localization and thus screening for the
two approaches.

To compare the DFT- and the QMC-obtained defect
formation energies in Fig. 4, we note first that for the
F -center defect, both DFT and QMC put the defect thermal
ionization energies near midgap. This qualitative similarity is
not expected to hold for all material systems (especially for
wide-gap semiconductors or correlated systems for which the
DFT gap error is more insidious). In our case, MgO is an ionic
solid according to both DFT and QMC (albeit less so with
the former), and both approaches give qualitatively similar
behavior. The largest single difference between the DFT and
the QMC results is, of course, the domain for the Fermi energy
0 < EF < Eg . From Fig. 4, the overall formation energy of the
neutral defect (F 0) is higher in QMC by approximately 0.5 eV.
This increase in formation energy may be largely attributed to
the fact that while QMC captures the highly localized, ionic
nature of the solid, DFT-PBE renders the MgO system slightly
more delocalized than in reality.

We can investigate the localization of the two approaches by
calculating the site-resolved charge fluctuations, also known
as the compressibility of a site (Fig. 6). We evaluate the
expectation value 〈�|(n̂i − 〈n̂i〉)2|�〉, where the n̂i is number
operator on the Voronoi polyhedron surrounding atomic site
i. If this quantity is larger, then the system is more metal-like
with mobile charges, and if it is smaller, then the system is
more insulating with larger barriers to charge movement. In
Fig. 6, one can see that the DFT charge fluctuations of the
Mg atoms near the defect track the QMC values surprisingly
well. The main difference between the two theories is that the
oxygen charge fluctuations are much larger in DFT, which is
related to the underestimation of the gap. We thus conclude
that the main error of DFT in the case of the F -center defect
in MgO is excess delocalization in the oxygen bands.

The overly delocalized (more metal-like, with a smaller
band gap) description in DFT makes the penalty for bond
breaking too small, and consequently the defect formation

FIG. 6. (Color online) The charge fluctuations 〈�|(n̂i −
〈n̂i〉)2|�〉 for a Slater determinant of DFT (PBE) Kohn-Sham orbitals
(red, upper curves) and QMC (FN-DMC) wave function (black, lower
curves), for the perfect MgO 64 atom cell, and the defective 63-atom
cell in different charge states. The fluctuations are site resolved
into the Mg atoms adjacent to the F -center defect (circles), Mg
atoms further away from the defect (triangles), and oxygen atoms
(diamonds). Stochastic uncertainties are smaller than the symbol size.

energy too small as well. The effect on computed defect
energies are significant for defects with occupied midgap
defect levels such as the F 0 center. As a result of the
underestimated band gap, in DFT the Kohn-Sham level of
the deep, doubly occupied F 0 level is squeezed too close
to the valence band maximum, directly resulting in a low
calculated formation energy. Our finding here is similar to
the findings for the formation energies of neutral, interstitial
Si atoms in silicon,14–16 for which DMC calculations show that
DFT underestimates formation energies in the case of occupied
midgap defect levels. This analysis is also consistent with re-
cent QMC results for defect formation energies in aluminum:18

for metallic systems, for which DFT delocalization problems
are less significant, the DMC results are more closely matched.

B. Optical transitions: absorption and emission

We now turn to the QMC description of the optical
ionization energies, corresponding to vertical Franck-Condon
transitions on a configuration coordinate diagram as illustrated
in Fig. 7. An optical transition occurs when a photon is
absorbed or emitted by the defect; because this transition
takes place essentially instantaneously on the scale of lattice
relaxations it occurs at fixed atomic coordinates (and hence is
represented as a vertical transition). Such a transition places the
system in an excited vibrational state; for example, F 0-center
absorption illustrated in Fig. 7 refers to the absorption of a
photon and the promotion of an electron from the filled midgap
level to the conduction band, leaving behind an electron in the
conduction band and an F+1 center in an excited vibrational
state (which soon decays to the F+1 vibrational ground state).
Therefore, we compute the optical transitions by using the
relaxed coordinates of the initial state, and occupying the
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FIG. 7. (Color online) Optical absorption and emission energies
(in eV) computed in DMC for the F-center defect in MgO. The DMC
absorption energies are in excellent agreement with experiment and
recently published GW results. The DMC emission energies are in
disagreement with the experimentally assigned values, but match
closely to the GW results.
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Kohn-Sham orbitals as appropriate to describe the vibronic
state. Although we do not include charged supercell
interactions here, we note that their effect should be smaller
here than in the case of the thermal ionization energies above,
since now we are comparing energies of supercells with the
same net charge.

Our DMC absorption energies (Fig. 7) are in excellent
agreement with experiment and remarkably close to the GW-
computed values, demonstrating the high-accuracy potential
of the DMC methodology. The DMC emission energies
are also remarkably similar to the GW-computed values,
but in disagreement with the experimental numbers. The
disagreement between the GW and experimental values led the
authors in Ref. 8 to suggest that the low energy signal around
2.3–2.4 eV that is observed in fact arises when electrons in the
defect level recombine with holes in the valence band. We find
it notable that two distinct many-body approaches (namely
QMC and GW) have yielded similar results for the optical
emission transitions in question.

This leads us to suggest two possibilities. First, we find it
likely that, as suggested by the authors in Ref. 8, the original
emission-peak assignment should be revisited. A second
possibility is based on the fact that both our QMC and the GW
results are built from DFT-relaxed atomic geometries (Table
III). It is possible that the GW and QMC results compare
favorably because both methods are using similar DFT-relaxed
lattice geometries. If the relaxations are not properly described
in DFT, then the many-body energies may be similar but

incorrect. However, the possibility that the lattice geometries
are problematic seems unlikely given the exceptional
agreement with experiment for the absorption transitions.

IV. CONCLUSION

In conclusion, we demonstrate the application of quantum
Monte Carlo methods to the calculation of the thermal and
optical ionization energies of point defects in solids. The
striking agreement between two highly accurate methods,
quantum Monte Carlo and GW, suggests that predictive
calculations of point-defect properties are now in reach. Due
to its inherently many-body approach and accurate treatment
of electron correlation, quantum Monte Carlo shows large
promise for the quantitative first-principles calculation of
point-defect properties.
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